
SOFTWARE DOCUMENT

VS1053B AD MONITOR WITH EQ AND PITCH SHIFTER

VSMPG “VLSI Solution Audio Decoder”

Project Code: VS1053
Project Name: Support

Revision History
Rev. Date Author Description

1.2 2020-01-16 PO Added Pitch Shifter
1.1 2011-06-09 PO First release version

Rev. 1.2 2020-01-16 Page 1(6)

POj

VS1053B AD MONITOR WITH EQ AND PITCH SHIFTERSupport

Contents

VS1053B AD Monitor with EQ and Pitch Shifter Front Page 1

Table of Contents 2

1 Description 3
1.1 Pitch Shifting . 4
1.2 Examples . 4

2 How to Load a Plugin 5

3 How to Use Old Loading Tables 6

List of Figures

Rev. 1.2 2020-01-16 Page 2(6)

POj

VS1053B AD MONITOR WITH EQ AND PITCH SHIFTERSupport

1 Description

Sometimes you would like to route the signal at the analog inputs of vs1053b to the
analog outputs. You can do this by starting the encoding mode, but the encoding mode
doesn’t use the Bass or Treble controls.

This small application reads data from the ADC, optionally performs Bass and Treble
control, and plays the result from the DAC.

AICTRL0, 1, 2, and 3 are used like in the normal vs1053b encoding mode. Supported
rates are: 8000 Hz, 12000 Hz, 16000 Hz, 24000 Hz, and 48000 Hz. Generally you would
select 48000 Hz, or 24000 Hz with pitch shifter. XTALI must be 12.288 MHz for the exact
rates.

CLOCKF should be set to for example 0x6000 (for 3.0x clock) or higher.

• Configure SCI_CLOCKF.

• If other applications, plugins, or patches are loaded, give software reset.

• Configure AICTRL0..3

– AICTRL0 for samplerate, must be exactly one of the supported rates.

– AICTRL1 = 0 for AGC, other values for fixed gain.

– AICTRL2 to set AGC maximum amplification, e.g. 0x1000.

– AICTRL3 = 2 for left channel mono, 3 for right channel mono, 0 or 1 for stereo
modes, or (special to this plugin) use 256 or 257 to convert stereo inputs into
mono.

• Clear the SM_LINE bit from the MODE register, if you want to select MIC.

• Optionally write SCI_BASS to configure bass and treble controls.

• Load the application, it starts automatically.

The code does not set the ADPCM bit in the mode register, and does not provide any
data transfer. SDI data is ignored.

You can change SCI_VOL, SCI_BASS, EarSpeaker, AGC settings, and ADC mode dur-
ing the running of the plugin. To change the samplerate you need to restart.

When the patch is loaded, it starts automatically and restarts the system (you should
wait for DREQ to rise).

This works with the regular version of vs1053b Spectrum Analyzer, but not with
other applications, plugins, or patches. Load the spectrum analyzer after loading
and starting the AD Monitor. Spectrum analyzer works on the ADC signal, not the
pitch-shifted signal, and is unaffected by bass and treble controls.

Rev. 1.2 2020-01-16 Page 3(6)

POj

VS1053B AD MONITOR WITH EQ AND PITCH SHIFTERSupport

1.1 Pitch Shifting

This application also allows to pitch shift the signal. AICTRL0 will be set to 0x4000 after
the application has started. After this AICTRL0 controls pitch shifting - 0x4000 is the
neutral setting.

SCI_AICTRL0 sets the pitch to use. Register value 0x4000 (16384) is equal to 1.0, i.e.
no change. Values above 1.0 raise the pitch, and values below 1.0 lower the pitch. The
intended range is 0.7071 . . . 1.3348, but if more CPU power is available, 0.5 . . . 1.9999 can
be used.

Pitch Shift configuration can be changed at any time, but there may be some artefacts
when the ratio changes between < 1.0, 1.0, and > 1.0.

The following table lists pitch shifter control values for the intended one octave range.
Other ratios between 0.7 and 1.34 can also be used. AICTRL0 = +16384× ratio.

Pitch Shifter Control
Ratio AICTRL0 Description
0.70711 11585 -6 Down six semitones
0.74915 12274 -5 Down five semitones
0.79370 13004 -4 Down four semitones
0.84089 13777 -3 Down three semitones
0.89089 14595 -2 Down two semitones
0.94400 15466 -1 Down one semitone
1.0000 16384 +0 Neutral position, no extra CPU needed
1.0595 17359 +1 Up one semitone
1.1250 18432 +2 Up two semitones
1.1890 19481 +3 Up three semitones
1.2599 20642 +4 Up four semitones
1.3348 21869 +5 Up five semitones

If 48000 Hz sample rate or higher is used, pitch shifting up would exceed the maximum
sample rate of the DAC (48000 Hz with 12.288 MHz clock). Use 24000 Hz rate if you
want to pitch shift up.

1.2 Examples

An example configuration:

SCI_CLOCKF = 0x8000

SCI_MODE = 0x0c00

SCI_AICTRL0 = 0x5dc0

SCI_AICTRL1 = 0x0000

SCI_AICTRL2 = 0x1000

SCI_AICTRL3 = 0x0002

SCI_BASS = 0x0000

SCI_VOL = 0x1010

Rev. 1.2 2020-01-16 Page 4(6)

POj

VS1053B AD MONITOR WITH EQ AND PITCH SHIFTERSupport

2 How to Load a Plugin

A plugin file (.plg) contains a data file that contains one unsigned 16-bit array called
plugin. The file is in an interleaved and RLE compressed format. An example of a
plugin array is:

const unsigned short plugin[10] = { /* Compressed plugin */

0x0007, 0x0001, 0x8260,

0x0006, 0x0002, 0x1234, 0x5678,

0x0006, 0x8004, 0xabcd,

};

The vector is decoded as follows:
1. Read register address number addr and repeat number n.
2. If (n & 0x8000U), write the next word n times to register addr.
3. Else write next n words to register addr.
4. Continue until array has been exhausted.

The example array first tells to write 0x8260 to register 7. Then write 2 words, 0x1234
and 0x5678, to register 6. Finally, write 0xabcd 4 times to register 6.

Assuming the array is in plugin[], a full decoder in C language is provided below:

void WriteVS10xxRegister(unsigned short addr, unsigned short value);

void LoadUserCode(void) {

int i = 0;

while (i<sizeof(plugin)/sizeof(plugin[0])) {

unsigned short addr, n, val;

addr = plugin[i++];

n = plugin[i++];

if (n & 0x8000U) { /* RLE run, replicate n samples */

n &= 0x7FFF;

val = plugin[i++];

while (n--) {

WriteVS10xxRegister(addr, val);

}

} else { /* Copy run, copy n samples */

while (n--) {

val = plugin[i++];

WriteVS10xxRegister(addr, val);

}

}

}

}

Rev. 1.2 2020-01-16 Page 5(6)

POj

VS1053B AD MONITOR WITH EQ AND PITCH SHIFTERSupport

3 How to Use Old Loading Tables

Each patch contains two arrays: atab and dtab. dtab contains the data words to write,
and atab gives the SCI registers to write the data values into. For example:

const unsigned char atab[] = { /* Register addresses */

7, 6, 6, 6, 6

};

const unsigned short dtab[] = { /* Data to write */

0x8260, 0x0030, 0x0717, 0xb080, 0x3c17

};

These arrays tell to write 0x8260 to SCI_WRAMADDR (register 7), then 0x0030, 0x0717,
0xb080, and 0x3c17 to SCI_WRAM (register 6). This sequence writes two 32-bit instruc-
tion words to instruction RAM starting from address 0x260. It is also possible to write
16-bit words to X and Y RAM. The following code loads the patch code into VS10xx
memory.

/* A prototype for a function that writes to SCI */

void WriteVS10xxRegister(unsigned char sciReg, unsigned short data);

void LoadUserCode(void) {

int i;

for (i=0;i<sizeof(dtab)/sizeof(dtab[0]);i++) {

WriteVS10xxRegister(atab[i]/*SCI register*/, dtab[i]/*data word*/);

}

}

Patch code tables use mainly these two registers to apply patches, but they may also
contain other SCI registers, especially SCI_AIADDR (10), which is the application code
hook.

If different patch codes do not use overlapping memory areas, you can concatenate the
data from separate patch arrays into one pair of atab and dtab arrays, and load them
with a single LoadUserCode().

Rev. 1.2 2020-01-16 Page 6(6)

	VS1053B AD Monitor with EQ and Pitch Shifter Front Page
	Table of Contents
	Description
	Pitch Shifting
	Examples

	How to Load a Plugin
	How to Use Old Loading Tables

