
PUBLIC DOCUMENT

VS1005 VSOS AUDIO SUBSYSTEM

VS1005g

All information in this document is provided as-is without warranty. Features are
subject to change without notice.

Revision History
Rev. Date Author Description

3.66a 2023-02-28 HH Added Chapters 7.5, 8.7, 11.3, 7.1.1.
3.66 2023-02-14 HH Updated version number for VSOS 3.66.
3.65b 2022-03-24 HH Added FTIREV and FTIREV23, Chapter 8.4.
3.65a 2022-03-23 HH Added AUOI2SMV, Chapter 7.6.2.
3.65 2021-12-23 HH Updated for VSOS 3.65.
3.60 2020-10-13 HH Updated for VSOS 3.60.
3.58 2019-08-24 HH Added e.g. decape.dl3 to Chapter 13.
3.57 2019-04-10 HH Minor corrections.
3.55b 2018-06-22 HH Added Noise Killer audio driver.
3.55a 2018-04-24 HH New features to Reverb Generator audio driver.
3.55 2018-04-05 HH Added Reverb Generator audio driver.
3.52 2018-01-22 HH Updated for VSOS 3.52.
3.42 2017-05-18 HH More S/PDIF drivers, FLAC Encoder, Pitch Shifter.
3.40 2016-11-03 HH Updated for VSOS 3.40.
3.30a 2016-07-14 HH Bug patch release for VSOS 3.30.
3.30 2016-06-22 HH Updated for VSOS 3.30.
1.03 2016-02-15 HH New AUXPLAY, fract. rates, updated AuOutput.
1.02 2016-01-27 HH Added AuOutput app and Slave Sync drivers.
1.01 2015-09-14 HH Corrections, e.g. Figure 10.
1.00 2015-09-04 HH Initial release.

Rev. 3.66a 2023-02-28 Page 1(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Contents

VS1005 VSOS Audio Subsystem Front Page 1

Table of Contents 2

1 Introduction 6

2 Disclaimer 7

3 Definitions 7

4 Overview 8

5 Requirements 9

6 The VS1005 VSOS Audio Subsystem 10
6.1 Standard Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 VSOS Audio Output Example Program . . . . . . . . . . . . . . . . . . . . 11
6.3 VSOS Audio Input/Output Example Program . . . . . . . . . . . . . . . . 12

7 Audio Drivers 13
7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7.1.1 Examples of Loading and Unloading Audio Drivers . . . . . . . . . 16
7.2 Analog Output DAC Audio Driver . . . . . . . . . . . . . . . . . . . . . . . 17

7.2.1 Driver AUODAC.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3 Analog Output Side Path Audio Driver . . . . . . . . . . . . . . . . . . . . 18

7.3.1 Driver AUOOSET.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.4 Analog Input ADC Audio Driver . . . . . . . . . . . . . . . . . . . . . . . . 19

7.4.1 Driver AUIADC.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.5 Analog Input 3-Channel ADC Audio Driver . . . . . . . . . . . . . . . . . . 21

7.5.1 Driver AUI3ADC.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.6 I2S Audio Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.6.1 Driver AUOI2SMA.DL3 . . . . . . . . . . . . . . . . . . . . . . . . 24
7.6.2 Driver AUOI2SMV.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.6.3 Driver AUOI2SM.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.6.4 Driver AUOI2SS.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.6.5 Driver AUII2SM.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.6.6 Driver AUII2SS.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.6.7 Driver AUXI2SM.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.6.8 Driver AUXI2SS.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.7 S/PDIF Audio Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.7.1 Driver AUOSPDA.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.7.2 Driver AUISPD.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.7.3 Driver AUXSPD.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.7.4 Driver AUXSPD48.DL3 . . . . . . . . . . . . . . . . . . . . . . . . 31
7.7.5 Driver AUOSP48S.DL3 . . . . . . . . . . . . . . . . . . . . . . . . 31
7.7.6 Driver AUOSPD48.DL3 . . . . . . . . . . . . . . . . . . . . . . . . 31

7.8 Pulse Width Modulation Output Driver . . . . . . . . . . . . . . . . . . . . 32

Rev. 3.66a 2023-02-28 Page 2(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.8.1 Driver AUOPWM.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.9 Slave Audio Input Synchronization Driver . . . . . . . . . . . . . . . . . . 33

7.9.1 Driver AUXSYNCS.DL3 . . . . . . . . . . . . . . . . . . . . . . . . 33
7.10 Audio Input to Output Copying Driver . . . . . . . . . . . . . . . . . . . . . 34

7.10.1 Driver AUXPLAY.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 Audio Filter Drivers 35
8.1 Equalizer Filter Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.1.1 Driver FTOEQU.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.1.2 Control Program SETEQU.DL3 . . . . . . . . . . . . . . . . . . . . 37

8.2 DC Offset / AGC Filter Drivers . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2.1 Driver FTIDCBL.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.2.2 Driver FTIAGC.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.2.3 Control Program SETAGC.DL3 . . . . . . . . . . . . . . . . . . . . 39

8.3 Pitch Shifter / Speed Shifter Filter Driver . . . . . . . . . . . . . . . . . . . 40
8.3.1 Driver FTOPITCH.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.3.2 Control Program SETPITCH.DL3 . . . . . . . . . . . . . . . . . . . 40

8.4 Reverb Generator Filter Drivers . . . . . . . . . . . . . . . . . . . . . . . . 41
8.4.1 Driver FTIREV.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.4.2 Driver FTOREV.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.4.3 Driver FTIREV23.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.4.4 Driver FTOREV23.DL3 . . . . . . . . . . . . . . . . . . . . . . . . 44
8.4.5 Control Program SETREV.DL3 . . . . . . . . . . . . . . . . . . . . 45

8.5 Noise Killer Filter Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.5.1 Driver FTINOISE.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.5.2 Control Program SETNOISE.DL3 . . . . . . . . . . . . . . . . . . . 48

8.6 Mono / Differential Filter Drivers . . . . . . . . . . . . . . . . . . . . . . . . 50
8.6.1 Driver FTIMONO.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.6.2 Driver FTOMONO.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.6.3 Control Program SETMONO.DL3 . . . . . . . . . . . . . . . . . . . 50

8.7 Matrix driver: 3 Channels to 2 Channels . . . . . . . . . . . . . . . . . . . 52
8.7.1 Driver FTI3TO2.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.7.2 Driver FTO3TO2.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.7.3 Control Program SET3TO2.DL3 . . . . . . . . . . . . . . . . . . . 53

9 Audio Control Programs 54
9.1 Control Program AUINPUT.DL3 . . . . . . . . . . . . . . . . . . . . . . . . 54
9.2 Control Program AUOUTPUT.DL3 . . . . . . . . . . . . . . . . . . . . . . 55

10 Configuration Examples 56
10.1 Minimal config.sys for Playback . . . . . . . . . . . . . . . . . . . . . . . . 56
10.2 config.sys for Playback with Bass/Treble Controls and automatic I2S +

S/PDIF Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.3 Basic config.sys for Recording . . . . . . . . . . . . . . . . . . . . . . . . 57
10.4 Versatile config.sys for Recording with AGC and I2S + S/PDIF Outputs . . 57
10.5 config.sys for Playback/Recording from I2S in Slave Mode, and Monitor-

ing to DAC with Automatic Synchronization . . . . . . . . . . . . . . . . . 57
10.6 Loading/Unloading Drivers Using the VSOS Shell . . . . . . . . . . . . . . 58

Rev. 3.66a 2023-02-28 Page 3(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11 VSOS Audio ioctl() Controls 59
11.1 Resetting a Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

11.1.1 IOCTL_RESTART . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
11.2 Controlling Sample Rate and Bit Width . . . . . . . . . . . . . . . . . . . . 60

11.2.1 IOCTL_AUDIO_SET_RATE_AND_BITS . . . . . . . . . . . . . . . 60
11.2.2 IOCTL_AUDIO_GET_IRATE, IOCTL_AUDIO_GET_ORATE . . . . 60
11.2.3 IOCTL_AUDIO_SET_IRATE, IOCTL_AUDIO_SET_ORATE . . . . 61
11.2.4 IOCTL_AUDIO_GET_BITS . . . . . . . . . . . . . . . . . . . . . . 61
11.2.5 IOCTL_AUDIO_SET_BITS . . . . . . . . . . . . . . . . . . . . . . 61

11.3 Controlling Number of Audio Channels . . . . . . . . . . . . . . . . . . . . 62
11.3.1 IOCTL_AUDIO_GET_ICHANNELS, IOCTL_AUDIO_GET_OCHANNELS 62
11.3.2 IOCTL_AUDIO_SET_ICHANNELS, IOCTL_AUDIO_SET_OCHANNELS 62

11.4 Controlling Audio Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
11.4.1 IOCTL_AUDIO_GET_INPUT_BUFFER_FILL . . . . . . . . . . . . 63
11.4.2 IOCTL_AUDIO_GET_INPUT_BUFFER_SIZE . . . . . . . . . . . . 63
11.4.3 IOCTL_AUDIO_SET_INPUT_BUFFER_SIZE . . . . . . . . . . . . 63
11.4.4 IOCTL_AUDIO_GET_OUTPUT_BUFFER_FREE . . . . . . . . . . 63
11.4.5 IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE . . . . . . . . . . 64
11.4.6 IOCTL_AUDIO_SET_OUTPUT_BUFFER_SIZE . . . . . . . . . . 64

11.5 Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11.5.1 IOCTL_AUDIO_GET_VOLUME . . . . . . . . . . . . . . . . . . . . 65
11.5.2 IOCTL_AUDIO_SET_VOLUME . . . . . . . . . . . . . . . . . . . . 65

11.6 Miscellaneous Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
11.6.1 IOCTL_AUDIO_GET_SAMPLE_COUNTER . . . . . . . . . . . . . 66
11.6.2 IOCTL_AUDIO_GET_OVERFLOWS . . . . . . . . . . . . . . . . . 66
11.6.3 IOCTL_AUDIO_GET_UNDERFLOWS . . . . . . . . . . . . . . . . 66
11.6.4 IOCTL_AUDIO_SELECT_INPUT . . . . . . . . . . . . . . . . . . . 67

11.7 Fractional Sample Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

12 Controlling Audio from VSOS Shell with UiMessages 69
12.1 Setting Volume anywhere from VSOS Shell . . . . . . . . . . . . . . . . . 69
12.2 Sending Equalizer Controls from VSOS Shell . . . . . . . . . . . . . . . . 69

13 Audio Decoders 70
13.1 Decoder Loop Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 73

14 Audio Encoders 74
14.1 ENCVORB.DL3 - Ogg Vorbis Encoder . . . . . . . . . . . . . . . . . . . . 74
14.2 ENCMP3.DL3 - MP3 Encoder (VS1205 only) . . . . . . . . . . . . . . . . 74
14.3 ENCOPUS.DL3 - Opus Raw Encoder . . . . . . . . . . . . . . . . . . . . 74
14.4 ENCFLAC.DL3 - FLAC Encoder . . . . . . . . . . . . . . . . . . . . . . . 74

15 Latest Document Version Changes 76

16 Contact Information 78

Rev. 3.66a 2023-02-28 Page 4(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

List of Figures

1 VS1005g playback (DA) audio paths . . . . . . . . . . . . . . . . . . . . . 14
2 VS1005g recording (AD, FM, etc) signal paths . . . . . . . . . . . . . . . 15
3 AUODAC.DL3 signal paths shown in bold brown . . . . . . . . . . . . . . 17
4 AUOOSET.DL3 signal paths shown in bold brown . . . . . . . . . . . . . 18
5 AUIADC.DL3 selectable input signal paths shown in bold green for the

left channel, and bold brown for the right channel. Alternative RF audio
path shown in bold cyan . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 AUI3ADC.DL3 selectable input signal paths shown in bold green for chan-
nel 0 (AD_LEFT), bold brown for channel 1 (AD_RIGHT), and bold ma-
genta for channel 2 (AD_MONO). . . . . . . . . . . . . . . . . . . . . . . 21

7 AUOI2SMA.DL3 audio path shown in bold brown . . . . . . . . . . . . . 24
8 AUOI2SMV.DL3 audio path shown in bold brown. Software driver con-

necting to the filterless sample rate converter (bold green) shown in bold
magenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9 AUOI2SM.DL3 audio path shown in bold brown . . . . . . . . . . . . . . 26
10 AUII2SM.DL3 audio path shown in bold brown . . . . . . . . . . . . . . . 27
11 AUOSPDA.DL3 audio path shown in bold brown. Software driver con-

necting to the filterless sample rate converter (bold green) shown in bold
magenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

12 An input filter driver connects to the stdaudioin chain . . . . . . . . . . . . 35
13 An output filter driver connects to the stdaudioout chain . . . . . . . . . . 35
14 Audio with exaggerated DC offset . . . . . . . . . . . . . . . . . . . . . . . 38
15 Audio with DC blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
16 Reverb Generator FTOREV signal paths . . . . . . . . . . . . . . . . . . . 41
17 Reverb Generator FTOREV signal paths . . . . . . . . . . . . . . . . . . . 42
18 Reverb Generator FTIREV23 signal paths . . . . . . . . . . . . . . . . . . 43
19 Reverb Generator FTOREV23 signal paths . . . . . . . . . . . . . . . . . 44
20 Ft3To2 driver’s matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Rev. 3.66a 2023-02-28 Page 5(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

1 Introduction

The VS1005 VSOS offers many, versatile audio drivers.

This document explains how to use the numerous drivers to your best advantage.

After the disclaimer and definitions in Chapters 2 and 3, an overview of the Audio sub-
system is given in Chapter 4, Overview, followed by requirements in Chapter 5, Require-
ments.

The VSOS audio subsystem is presented in Chapter 6, The VS1005 VSOS Audio Sub-
system.

The currently existing audio drivers are presented in Chapter 7, Audio Drivers, followed
by a presentation of the currently existing filters in Chapter 8, Audio Driver Filters, and
control programs in Chapter 9, Audio Control Programs,

Some examples on how to start audio drivers from config.txt or the VSOS Shell are
shown in Chapter 10, Configuration Examples.

Chapter 12 shows how to control some aspects on audio using UiMessages, even if the
program that is currently running doesn’t have any audio controls.

Audio Decoders are presented in Chapter 13, and Audio Encoders in Chapter 14.

The document ends with Chapter 15, Latest Document Version Changes, and Chap-
ter 16, Contact Information.

Rev. 3.66a 2023-02-28 Page 6(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

2 Disclaimer

VLSI Solution makes everything it can to make this documentation as accurate as pos-
sible. However, no warranties or guarantees are given for the correctness of this docu-
mentation.

3 Definitions

DSP Digital Signal Processor.

I-mem Instruction Memory.

LSW Least Significant (16-bit) Word.

MSW Most Significant (16-bit) Word.

RISC Reduced Instruction Set Computer.

VS_DSP4 VLSI Solution’s DSP core.

VSIDE VLSI Solution’s Integrated Development Environment.

VSOS VLSI Solution’s Operating System.

X-mem X Data Memory.

Y-mem Y Data Memory.

Rev. 3.66a 2023-02-28 Page 7(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

4 Overview

The VSOS Audio Subsystem provides numerous drivers to handle the many audio In-
put/Output options of VS1005. The audio drivers can be controlled either with ioctl()
calls from the C language, or from VSOS Shell control program.

While instructions for how to use each audio driver are provided in the README.TXT
or documentation .PDF files of the drivers, this document will provide an overview of
the capabilities of the drivers. However, for details, refer to documentation of the audio
drivers themselves.

Rev. 3.66a 2023-02-28 Page 8(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

5 Requirements

To test the audio drivers in this document, you need to have the following building blocks:

• VS1005g Developer Board. The VS1005g BreakOut Board should also work, but
these instructions have been tested with the DevBoard.

• Latest version of VSOS installed (at least v3.23, released 2015-09-04).
• USB cable between DevBoard and PC for uploading new software.
• If you want to use the VSOS Shell environment, you will also need:

– UART or USB->UART cable connected between DevBoard and PC for using
the UART interface. Data speed is 115200 bps, format is 8N1.

– Your favorite UART Terminal Emulation program installed on the PC. Read
the “VS1005 VSOS Shell” for further details.

When all of this is in order, you are ready to test the VSOS Audio Subystem.

Rev. 3.66a 2023-02-28 Page 9(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

6 The VS1005 VSOS Audio Subsystem

As a default, VSOS offers a simple audio output driver that lets the user output 16-bit
mono or stereo audio to the VS1005 analog output pins LEFT and RIGHT, and control
the sample rate.

VSOS Audio makes it very easy to produce sound with its standard-C-like standard
audio interface (Chapter 6.1, Standard Audio). Instead of being forced to use audio-
specific I/O routines, audio looks just like files.

More complex audio operations and redirections can be done using the audio drivers,
described Chapter 7, Audio Drivers.

6.1 Standard Audio

VSOS offers the user a standard audio source and destination, although the audio
source is only activated if an appropriate audio input driver is loaded (Chapter 7). Called
stdaudioin and stdaudioout, standard audio file handles are to sound much like stdin
and stdout are to standard input and output in standard C. It is not allowed for the user
to close standard audio input or output files, but the user may modify their parameters.

By default, stdaudioout is connected to analog output pins LEFT and RIGHT, although
this can be changed with appropriate audio drivers.

Both standard audio input and output open in stereo, 16-bit, 48 kHz mode. These pa-
rameters can be changed by the user, with driver and hardware dependent limitations.

The user may use all standard read and write operations to read from and write to
standard audio. It is, however, required that fread() / fwrite() functions are used instead
of character-based operations like fgetc() and fprintf(). It is also recommended to handle
larger chunks of samples, like 32, at a time.

Stereo samples are stored in an interleaved fashion. In 32-bit mode, the least significant
word is stored first. This is the same as the native VSDSP 32-bit word order.

Audio sample buffer 16-bit word order
Audio format Word 0 Word 1 Word 2 Word 3
16-bit stereo Left 0 Right 0 Left 1 Right 1
32-bit stereo Left 0 LSW Left 0 MSW Right 0 LSW Right 0 MSW

Rev. 3.66a 2023-02-28 Page 10(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

6.2 VSOS Audio Output Example Program

The following audio program example creates a low-intensity sine wave to the left chan-
nel, then outputs the samples.

#include <vo_stdio.h>
#include <stdlib.h>
#include <math.h>
#include <saturate.h>
#include <apploader.h>

#define SIN_TAB_SIZE 96
#define SIN_AMPLITUDE 1000 /* Max 32767 */

static const s_int16 __y sinTab[SIN_TAB_SIZE];

int main(void) {
// Remember to never allocate buffers from stack space. So, if you
// allocate the space inside your function, never forget "static"!
static s_int16 myBuf[2*SIN_TAB_SIZE];
int i;

/* Build sine table */
for (i=0; i<SIN_TAB_SIZE; i++) {

sinTab[i] = (s_int16)(sin(i*2.0*M_PI/SIN_TAB_SIZE)*SIN_AMPLITUDE);
}

while (1) {
// Clear buffer
memset(myBuf, 0, sizeof(myBuf));

// Create sine wave to the left channel.
for (i=0; i<SIN_TAB_SIZE; i++) {

myBuf[i*2] = sinTab[i];
}

// Write result
fwrite(myBuf, sizeof(s_int16), 2*SIN_TAB_SIZE, stdaudioout);

}

// Not really needed because there was a while(1) before
return EXIT_SUCCESS;

}

Rev. 3.66a 2023-02-28 Page 11(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

6.3 VSOS Audio Input/Output Example Program

The following audio program reads audio from the default input, and sends it to the
default output, until the user pushes Ctrl-C in the VSOS Shell Environment.

#include <vo_stdio.h>
#include <apploader.h> // Contains LoadLibrary() and DropLibrary()
#include <consolestate.h>

#define BUFSIZE 128

ioresult main(char *parameters) {
static s_int16 myBuf[BUFSIZE];

if (!stdaudioin || !stdaudioout) {
printf("E: NO AUDIO IN OR OUT!\n");
return S_ERROR;

}

while (!(appFlags & APP_FLAG_QUIT)) { /* Until Ctrl-C is pushed */
fread(myBuf, sizeof(s_int16), BUFSIZE, stdaudioin);
fwrite(myBuf, sizeof(s_int16), BUFSIZE, stdaudioout);

}

return S_OK;
}

Rev. 3.66a 2023-02-28 Page 12(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7 Audio Drivers

VS1005g has multiple hardware audio paths, and software Audio Drivers that are meant
to interface between the user and hardware. The Audio Drivers offer a consistent in-
terface to the user so that most of the time the User Application doesn’t need to know
which audio driver it is interfacing with.

This Chapter will explain which driver you will need to attach each audio driver to your
software.

7.1 General

With few exceptions, VS1005 VSOS audio drivers offer a 2-channel (stereo) input,
and/or a 2-channel (stereo) output. An exception to this rule is the 3-channel input
driver presented in Chapter 7.5, Analog Input 3-Channel ADC Audio Driver.

Most if not all audio drivers may be set either to 16-bit or 32-bit mode. The default is 16
bits. If the driver cannot receive or send its word length status, it is operating in 16-bit
mode.

Many audio drivers allow for their sample rate to be set. If applicable for the audio driver,
48 kHz is typical default sample rate. If the driver cannot set or return its sample rate, it
is typically operating at 48 kHz. There are exceptions to this, like the I2S slave drivers
(Chapters 7.6, I2S Audio Drivers) that simple follow external clocking.

Audio drivers are named using the following format:
AUdyyyyyz.DL3
where

Symbol Description
d Driver direction: I = input, O = output, X = Input+Output
yyyyy Driver name, max. 5 characters
z Optional M or S if e.g. I2S driver is Master or Slave

There may be more than one audio driver in use at the time. Most audio drivers may be
started as system drivers in which case they connect to file handles stdaudioin and/or
stdaudioout for easy access from the User Application. If not started as system drivers,
they must be accessed through explicit file handles.

Rev. 3.66a 2023-02-28 Page 13(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

I2S_LEFT

I2S_RIGHT

SP_LDATA

SP_RDATA

GREEN: Sample rate / Hz

24

24

24

24

24

24

24

24

24

DAC_VOL

32/16

SRC_CF

DAC +

output

drivers

I2S_CF

Analog

I2S_BCK,I2S_FRM

I2S_DO

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT
DAC_SRC

SPDIF_OUT
encoder
S/PDIF

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

DAOSET_CF

Digital

Typ. 48/96k

BLUE: Register

RED:   Pin

Typ. 48/96k

Typ. 48/96k

Typ. 8−97.5k

Typ. 48−192k

6.144M

6.144M

6.144M

Typ. 8−96k

6.144M

Typ. 48/96k

24/16

Figure 1: VS1005g playback (DA) audio paths

Figure 1 shows the VS1005 hardware output audio paths. Most of these have a driver
controlling them.

Rev. 3.66a 2023-02-28 Page 14(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

FML

Mono

Right

Left

AD_CF_DEC6ENA

ANA_CF3
_GAIN2

ANA_CF0

ANA_CF0

ANA_CF3
_GAIN1

ANA_CF0

ANA_CF0

I

Digital
Analog and RF

18

18

DEC6_LEFT

DEC6_RIGHT

DIA1

LINE1_1

LINE2_1

LINE3_1

RF_N

RF_P

LINE1_2

LINE2_2

LINE3_2

LINE1_3 L

R
6

18

18

SP_LDATA

SP_RDATA
24

24

SPDIF_IN

24

ADENA
AD_CF_

AD1

S/PDIF
decoder

demod.
FM

DIA2

DIA3

VCO

24

24

24

FM_CF_UAD3

AD_CF_
AD3ENA

AD3

AD_CF_
ADENA

AD2

MIC2N

MIC2P

MIC1P

MIC1N

FM_CF_UAD2

AD23_FLP

AD_CF_

Typ. 3.072M

AD_CF_ADFS

6
.1

4
4
M

Typ. 32−96k

Typ. 32−96k

Typ. 3.072M

Typ. 3.072M

Typ. 32−96k

RED:   Pin

BLUE: Register or register bit(s)

GREEN: Sample rate / Hz

6
.1

4
4
M

AD_CF_ADFS

24 24

AD_RIGHT

AD_MONO

AD_LEFT

6
.1

4
4
M

FM_CF_UAD1

Q

192k

FMR

192k

AD_CF_DEC6SEL

24/48/96/192k

24/48/96/192k

24/48/96/192k

Typ. 48/192k

Typ. 48/192k

Typ. 48/192k
Typ. 8/32k

AD_CF_AD3FS

Figure 2: VS1005g recording (AD, FM, etc) signal paths

Figure 2 shows the VS1005 hardware input audio paths. Most of these have a driver
controlling them.

Rev. 3.66a 2023-02-28 Page 15(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.1.1 Examples of Loading and Unloading Audio Drivers

To load and activate the Analog Output DAC Audio Driver AUODAC.DL3 (Chapter 7.2),
you may add the following line to S:CONFIG.TXT:
AUODAC s

Alternatively you may enter the following command on the VSOS Shell command line:
S:>driver +auodac s

Both of these methods will load and activate the audio driver. The parameter “s” stands
for system, and it will make the audio driver automatically connect to stdaudioout. If this
was an input driver, it would have connected to stdaudioin.

To verify that the driver has actually loaded and is running, you may run the following
command on the VSOS Shell command line:
S:>auoutput
stdaudioout: 0x2056, auodac::audioFile=0x0c43(3139)

->Identify(): 0x3c4f, auodac::Identify returns "AUODAC"
->op: 0x205f, auodac::audioFileOps=0x0000(0)

->Ioctl(): 0x3b06, auodac::AudioIoctl
->Write(): 0x3c05, auodac::AudioWrite

Sample rate: 48000
Bits per sample: 16
Channels: unknown (assuming 2)
Buffer size: 512 16-bit words (256 16-bit stereo samples)
Buffer fill: 4 16-bit words (2 16-bit stereo samples)
Sample counter: 2102830
Underflows: 2100532
Volume: +0.0 dB of maximum level

If you need to load another output audio driver, you can do it and check its status sep-
arately. Note that we already have a system driver for stdaudioout, so this driver will be
started without the “s” system option. Below is a VSOS Shell command line example:
S:>driver +auooset
S:>auoutput -dauooset
audioFP: 0x241c, auooset::audioFile=0x0c43(3139)

->Identify(): 0x436a, auooset::Identify returns "AUOOSET"
->op: 0x2423, auooset::audioFileOps=0x0000(0)

->Ioctl(): 0x423c, auooset::AudioIoctl
->Write(): 0x4311, auooset::AudioWrite

Sample rate: 48000
Bits per sample: 16
Channels: unknown (assuming 2)
Buffer size: 512 16-bit words (256 16-bit stereo samples)
Buffer fill: 4 16-bit words (2 16-bit stereo samples)
Sample counter: 351032
Underflows: 350780
Volume: +0.0 dB of maximum level

To remove the previous driver, you may enter the following command:
S:>driver -auooset
S:>auoutput -dauooset
E: Library auooset was not already in memory

More examples on how to load and unload audio driver are provided in Chapter 10,
Configuration Examples.

Rev. 3.66a 2023-02-28 Page 16(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.2 Analog Output DAC Audio Driver

7.2.1 Driver AUODAC.DL3

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

I2S_LEFT

I2S_RIGHT

SP_LDATA

SP_RDATA

24

24

24

24

24 24

24

24

24

DAC_VOL

32/16

SRC_CF

DAC +

output

drivers

I2S_CF

Analog

I2S_BCK,I2S_FRM

I2S_DO

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

SPDIF_OUT
encoder
S/PDIF

24/16

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

RED text:   Pin

BLUE text: Register

Figure 3: AUODAC.DL3 signal paths shown in bold brown

Figure 3 shows the VS1005 high-quality, fully filtered analog output main audio path.

AUODAC.DL3 is the basic DAC output driver. It takes over the VSOS default driver
and offers a lot of funtionality over it, like 16-bit and 32-bit data transfers. It takes over
stdaudioout, so all software that writes to standard output will send audio to this driver.

The driver offers setting the sample rate with an approximately 0.09 Hz accuracy be-
tween 100 and 97500 Hz on VS1005g. On VS1005h, sample rate accuracy is generally
better. Audio is upconverted to an extremely high rate of 6.144 MHz by a high-quality
hardware sample rate upconverter.

Playback volume can be set with 0.5 dB accuracy between full level volume (-0 dB) and
-127 dB.

Note: On VS1005g, and using the standard 12.288 MHz crystal, some standard sample
rates can be played back accurately (or as accurately as the system clock crystal runs),
while some others have slight rounding errors. E.g. 96000, 48000, and 24000 Hz can
be played back exactly. However, 44100 Hz is played back at ≈44100.0366 Hz, and
8000 Hz is played back at ≈7999.9695 Hz. While these errors are of the same order
of magnitude as crystal speed errors and usually insignificant, intime they can break
internal sync between the ADC and DAC converters. When run on VS1005h, the driver
uses a “fractional sample rate” hardware feature that allows it to play such standard
sample rates as 8000, 16000, 32000, 11025, 22050, and 44100 accurately.

Rev. 3.66a 2023-02-28 Page 17(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.3 Analog Output Side Path Audio Driver

7.3.1 Driver AUOOSET.DL3

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

I2S_LEFT

I2S_RIGHT

SP_LDATA

SP_RDATA

24

24

24

24

24 24

24

24

24

DAC_VOL

32/16

SRC_CF

DAC +

output

drivers

I2S_CF

Analog

I2S_BCK,I2S_FRM

I2S_DO

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

SPDIF_OUT
encoder
S/PDIF

24/16

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

RED text:   Pin

BLUE text: Register

Figure 4: AUOOSET.DL3 signal paths shown in bold brown

Figure 4 shows the VS1005 analog output audio side path. This audio path is not filtered;
it is only put through a Sample and hold upconverter. As such, audible aliasing distortion
may be heard if low sample rates are used. This audio path is best suitable for different
kinds of alarm and effects sounds that may easily be independently overlayed on top of
the audio of the main audio path (see Chapter 7.2.1).

The sample rate of the side audio path is independent from the main audio path. While
it may be set to up to 192 kHz, all sample rates cannot be set accurately. While cer-
tain sample rates like 24, 48, and 96 kHz can be played accurately, some others, like
44.1 kHz, may have an up to 150 Hz error. While not a problem for effects sounds, this
may be create issue with accurate timing when playing longer audio passages.

While there is no hardware volume control for the side audio path, the driver offers an
equivalent software volume control.

Rev. 3.66a 2023-02-28 Page 18(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.4 Analog Input ADC Audio Driver

7.4.1 Driver AUIADC.DL3

FMR

FML

Mono

Right

Left

AD_CF_DEC6SEL

AD_CF_DEC6ENA

ANA_CF3
_GAIN2

ANA_CF0

ANA_CF0

ANA_CF3
_GAIN1

ANA_CF0

ANA_CF0

I

Q

Digital
Analog and RF

18

18

AD_LEFT

DEC6_LEFT

DEC6_RIGHT

DIA1

LINE1_1

LINE2_1

LINE3_1

RF_N

RF_P

LINE1_2

LINE2_2

LINE3_2

LINE1_3 L

R
6

18

18

SP_LDATA

SP_RDATA
24

24

SPDIF_IN

24

AD_CF_ADFSADENA
AD_CF_

S/PDIF
decoder

demod.
FM

DIA2

DIA3

VCO

AD_RIGHT

AD_MONO

24

24

24

24

24

AD_CF_ADFS

FM_CF_UAD3

AD_CF_
AD3ENA

AD3

AD_CF_
ADENA

AD2

MIC2N

MIC2P

MIC1P

MIC1N

FM_CF_UAD1

FM_CF_UAD2

AD23_FLP

AD_CF_

BLUE text: Register or register bit(s)

RED text:   Pin

AD1

AD_CF_AD3FS

Figure 5: AUIADC.DL3 selectable input signal paths shown in bold green for the left
channel, and bold brown for the right channel. Alternative RF audio path shown in
bold cyan

The AUIADC.DL3 driver lets the user select a stereo input from a multitude of analog
and some digital sources. The sources used may be chosen at startup time, or changed
dynamically while the driver is running. Any green source in Figure 5 may be combined
with any brown source to form a stereo signal. However, if the cyan-coloured RF input
is selected, it takes over the whole stereo audio path.

Supported sample rates are 192, 96, 48, and 24 kHz. However, it is also possible to use
a high-quality down-by-6 decimator to create such sample rates as 32, 16, and 8 kHz.
When the decimator is selected, the driver automatically reads its samples from the
DEC6_LEFT/DEC6_RIGHT registers instead of the default AD_LEFT/AD_RIGHT.

Note that even if RF is selected for FM radio input, all of the FM hardware is not started
by the driver. So you will still need a dedicated FM Receiver program to e.g. tune the
FM radio. The only supported sample rate for the FM receiver is 32 kHz (using 192 kHz
main sample rate and putting the signal through the I/Q - FM demodulation - down-by-6

Rev. 3.66a 2023-02-28 Page 19(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

decimator hardware).

Optionally, digital microphone inputs DIA1 and DIA2 may be used instead of the analog
inputs. The 1-bit signals in the megahertz domain from the microphones are fed to the
high-quality digital low-pass filtering path of VS1005.

On the VS1005 DevBoard, line inputs are connected LINE1_1 and LINE1_3. On the
VS1005 BreakOut Board, LINE1_1 and LINE1_2 are used.

Input selection can be controlled using the the AUINPUT program (Chapter 9.1).

AUIADC.DL3 Command Line Parameters

If “s” is provided as the first command line parameter, then the driver will become a
system driver, i.e. it will connect to the standard file handle stdaudioin so that all software
may automatically connect to it.

A sample rate in Hz may also be provided as a command line parameter. Alternatives
are 24000, 48000, 96000, and 192000. If a separate “dec6” parameter is provided on
the command line to activate the hardware decimate-by-6 filter, 4000, 8000, 16000, or
32000 may be selected.

To select the inputs, either one stereo element, or one left and one right element from
the following list may be selected:

Stereo Elements
(stereo output)

fm
Left Elements Right Elements
(left output) (right output)
line1_1 line1_2
line2_1 line2_2
line3_1 line3_2
mic1 line1_3
dia1 mic2

dia2

Example 1; basic configuration for VS1005 Developer Board:
AUIADC s 48000 line1_1 line1_3

Example 2; basic configuration for VS1005 BreakOut Board:
AUIADC s 48000 line1_1 line1_2

Example 3; FM radio configuration for VS1005 BreakOut Board. Note that separate
software is needed to tune the FM receive channel:
AUIADC s 32000 fm dec6

Note that input selection and sample rate can also be controlled using the AUINPUT
program (Chapter 9.1).

Rev. 3.66a 2023-02-28 Page 20(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.5 Analog Input 3-Channel ADC Audio Driver

7.5.1 Driver AUI3ADC.DL3

FMR

FML

Mono

Right

Left

AD_CF_DEC6SEL

AD_CF_DEC6ENA

ANA_CF3
_GAIN2

ANA_CF0

ANA_CF0

ANA_CF3
_GAIN1

ANA_CF0

ANA_CF0

I

Q

Digital
Analog and RF

18

18

AD_LEFT

DEC6_LEFT

DEC6_RIGHT

DIA1

LINE1_1

LINE2_1

LINE3_1

RF_N

RF_P

LINE1_2

LINE2_2

LINE3_2

LINE1_3 L

R
6

18

18

SP_LDATA

SP_RDATA
24

24

SPDIF_IN

24

AD_CF_ADFSADENA
AD_CF_

S/PDIF
decoder

demod.
FM

DIA2

DIA3

VCO

AD_RIGHT

AD_MONO

24

24

24

24

24

AD_CF_ADFS

FM_CF_UAD3

AD_CF_
AD3ENA

AD3

AD_CF_
ADENA

AD2

MIC2N

MIC2P

MIC1P

MIC1N

FM_CF_UAD1

FM_CF_UAD2

AD23_FLP

AD_CF_

BLUE text: Register or register bit(s)

RED text:   Pin

AD1

AD_CF_AD3FS

Figure 6: AUI3ADC.DL3 selectable input signal paths shown in bold green for channel
0 (AD_LEFT), bold brown for channel 1 (AD_RIGHT), and bold magenta for channel
2 (AD_MONO).

The AUI3ADC.DL3 driver is much like the AIOADC.DL3 driver presented in Chapter 7.4.1,
but with some crucial differences.

AUI3ADC.DL3 lets the user to select a 3-channel input from a multitude of analog and
some digital sources. The sources must be set after the driver has started. Any green
source in Figure 6 may be combined with any brown source and the magenta source
to form a 3-channel signal.

The 3-channel output of this driver can either be read by the User Application as 3-word
triplets, or handed down to a driver capable of converting the number of channels to a
more standard one, like the one presented in Chapter 8.7, Matrix driver: 3 Channels to
2 Channels.

Supported sample rates are 192, 96, 48, and 24 kHz. With this driver, it is not possible
to use the hardware down-by-6 decimator to create other sample rates.

Rev. 3.66a 2023-02-28 Page 21(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Unlike with AUIADC.DL3, no hardware RF FM demodulation is provided. If the user
needs to decode a stereo RF FM signal, a sample rate of 192 kHz must be set and the
IQ signal provided in output channels 0 and 1 must be decoded with software. Also note
that even if RF is selected for FM radio input, all of the FM hardware is not started by
the driver. So you will still need a dedicated FM Receiver program to e.g. tune the FM
radio.

Optionally, digital microphone inputs DIA1 and DIA2 may be used instead of the analog
inputs. The 1-bit signals in the megahertz domain from the microphones are fed to the
high-quality digital low-pass filtering path of VS1005.

On the VS1005 DevBoard, LINE1_1 and LINE1_3 are used as the default analog inputs;
they can be routed by this driver to outputs channels 0 and 2. On the VS1005 BreakOut
Board, LINE1_1 and LINE1_2 are used; they can be routed by this driver to output
channels 0 and 1.

Input selection can also be controlled using the AUINPUT program (Chapter 9.1).

AUI3ADC.DL3 Command Line Parameters

If “s” is provided as a command line parameter, then the driver will become a system
driver, i.e. it will connect to the standard file handle stdaudioin so that all software may
automatically connect to it.

AUI3ADC.DL3 Selectable Audio Channels

Input selection and sample rate can be controlled with ioctl() calls from C or using the
AUINPUT program (Chapter 9.1).

To select the inputs for channels 0 and 1, one left and one right element from the follow-
ing list must be selected. In addition, line1_3 will always be read to channel 2:

Left Elements Right Elements
(output channel 0) (output channel 1)
line1_1 line1_2
line2_1 line2_2
line3_1 line3_2
mic1 mic2
dia1 dia2

Example 1; configuration for line1_1, line1_2, and line1_3:
AUIADC s
RUN AUINPUT -r48000 line1_1 line1_2

Example 2; voice quality configuration for a stereo mic and line1_3:
AUIADC s
RUN AUINPUT -r24000 mic1 mic2

Rev. 3.66a 2023-02-28 Page 22(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.6 I2S Audio Drivers

I2S Audio drivers allows for I2S operation in both master and slave mode. Whenever
possible, it is recommended to use master mode, because that way VS1005 has exact
control over the sample rate.

The sample rate and number of bits (16/32) may be controlled with ioctl() commands
IOCTL_AUDIO_SET_RATE_AND_BITS (recommended), IOCTL_AUDIO_SET_IRATE,
IOCTL_AUDIO_SET_ORATE, and IOCTL_AUDIO_SET_BITS. In master mode, sample
rates 24, 48, 96, and 192 kHz are supported.

In slave mode, the other end selects the sample rate, which is the same for both I2S
input and output. If the user wants to monitor audio using analog output, they need to
use the Slave Audio Input Synchronization Driver (Chapter 7.9).

With the exception of AUOI2SMA.DL3 and AUOI2SMV.DL3, all drivers connect to stdau-
dioin and/or stdaudioout if started with parameter “s”. Otherwise, the drivers need to be
opened and accessed manually.

Summary of I2S drivers
Name M In Out Sys Notes
AUOI2SMA X X Automatic HW DAC/DAOSET duplication to I2S
AUOI2SMV X X Automatic DAC duplication to I2S w/ manual volume control

AUOI2SM X X X Master output
AUOI2SS X X Slave output
AUII2SM X X X Master input
AUII2SS X X Slave input
AUXI2SM X X X X Master input / output
AUXI2SS X X X Slave input / output

Name Name of the driver.

M Driver uses I2S in Master Mode, i.e. it generates its own clock signals. If not crossed,
driver uses I2S in Slave Mode.

In Driver implements I2S input.

Out Driver implements I2S output.

Sys Driver can connect to stdaudioin (if input driver) and/or stdaudioout (if output driver)
if parameter “s” is added to the command line.

Master drivers are limited to only a few standard sample rates, e.g. 48000 and 96000 Hz
while Slave drivers can adapt to a wide range of sample rates.

Rev. 3.66a 2023-02-28 Page 23(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.6.1 Driver AUOI2SMA.DL3

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

I2S_LEFT

I2S_RIGHT

SP_LDATA

SP_RDATA

24

24

24

24

24 24

24

24

24

DAC_VOL

32/16

SRC_CF

DAC +

output

drivers

I2S_CF

Analog

I2S_BCK,I2S_FRM

I2S_DO

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

BLUE text: Register

SPDIF_OUT
encoder
S/PDIF

24/16

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

RED text:   Pin

Figure 7: AUOI2SMA.DL3 audio path shown in bold brown

AUOI2SMA.DL3 is a driver that makes it possible to add easy I2S support. As Figure 7
shows, the driver activates an automatic audio hardware path. The sum of the DAC
and DAOSET drivers are send to the DAC volume control, then this result is sent to
I2S. To function, the driver needs a DAC (e.g. AUODAC.DL3) and/or DAOSET (e.g.
AUOOSET.DL3) driver to be active.

The sample rate is set to a default of 96000 Hz / 32 bits. If either “96000” or “48000”
is specified on the command line, the sample rate is set when the driver is starting and
cannot be modified while the driver is running. Anything played back through VS1005’s
analog audio path is converted to the target sample rate by VS1005 hardware.

Because this driver simply activates an existing audio hardware path, it doesn’t require
any extra CPU when running.

Example config.txt snippet for automatically transmitting all audio to I2S:

AUODAC s
AUOI2SMA 96000

Then run a program from the VSOS Shell command line, like:

S:>cd d:
D: SD/SD Card
D:>PlayDir

Example config.txt snippet for listening to audio coming through I2S:

AUODAC s
AUII2SS s
AUXSYNCS
AUXPLAY

Rev. 3.66a 2023-02-28 Page 24(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.6.2 Driver AUOI2SMV.DL3

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

I2S_LEFT

I2S_RIGHT

SP_LDATA

SP_RDATA

24

24

24

24

24 24

24

24

24

DAC_VOL

32/16

SRC_CF

DAC +

output

drivers

I2S_CF

Analog

I2S_BCK,I2S_FRM

I2S_DO

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

SPDIF_OUT
encoder
S/PDIF

24/16

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

RED text:   Pin
BLUE text: Register

Figure 8: AUOI2SMV.DL3 audio path shown in bold brown. Software driver connecting
to the filterless sample rate converter (bold green) shown in bold magenta

AUOI2SMV.DL3 is a driver that makes it possible to add easy I2S support. As Figure 8
shows, the driver creates an audio path that copies to I2S everything that is sent to the
DAC audio path. To function, it needs a DAC (e.g. AUODAC.DL3) driver to be active.

The sample rate is set to a default of 96000 Hz / 32 bits. If either “96000” or “48000”
is specified on the command line, the sample rate is set when the driver is starting and
cannot be modified while the driver is running. Anything played back through VS1005’s
analog audio path is converted to the target sample rate by VS1005 hardware.

Example config.txt snippet for automatically transmitting DAC audio also to I2S:
AUODAC s
AUOI2SMV 96000

Then run a program from the VSOS Shell command line, like:
S:>cd d:
D: SD/SD Card
D:>PlayDirP -dauoi2smv
Note:
You may change hardware volume for the DAC output with keys ’<’ and ’>’, and for the
software volume for the I2S with keys ’d’ and ’u’. To see how to implement separate
volume controls, refer to the source code of PlayDirP.

Example config.txt snippet for listening to audio coming through I2S:
AUODAC s
AUII2SS s
AUXSYNCS
AUXPLAY

Rev. 3.66a 2023-02-28 Page 25(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.6.3 Driver AUOI2SM.DL3

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

I2S_LEFT

I2S_RIGHT

SP_LDATA

SP_RDATA

24

24

24

24

24 24

24

24

24

DAC_VOL

32/16

SRC_CF

DAC +

output

drivers

I2S_CF

Analog

I2S_BCK,I2S_FRM

I2S_DO

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

SPDIF_OUT
encoder
S/PDIF

24/16

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

RED text:   Pin

BLUE text: Register

Figure 9: AUOI2SM.DL3 audio path shown in bold brown

AUOI2SM.DL3 makes it possible to send independent audio to the DAC and I2S. Note,
however, that that driver can only support the basic master mode sample rates (e.g. not
44100 Hz).

Figure 9 shows the manual audio path activated by the AUOI2SM.DL3 driver.

7.6.4 Driver AUOI2SS.DL3

The AUOI2SS.DL3 is otherwise similar to AUOI2SM.DL3 (Chapter 7.6.3), except that
the driver operates in slave mode.

In slave mode the user has no control over sample rate, so the audio cannot be fed
anywhere else without resynchronization except the I2S output. Currently there does
not exist a driver to synchronize I2S slave output with DAC output. Also there is no
driver to synchronize inputs with I2S slave output.

Rev. 3.66a 2023-02-28 Page 26(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.6.5 Driver AUII2SM.DL3

I2S_LEFT

I2S_RIGHT32/16 decoder

Digital

24

I2SI2S_BCK,I2S_FRM

I2S_DI

RED text:   Pin

BLUE text: Register

Figure 10: AUII2SM.DL3 audio path shown in bold brown

AUII2SM.DL3 makes it possible to read audio data in master mode, as shown in Fig-
ure 10.

7.6.6 Driver AUII2SS.DL3

The AUII2SS.DL3 is otherwise similar to AUII2SM.DL3 (Chapter 7.6.5), except that the
driver operates in slave mode.

In slave mode the user has no control over sample rate, so the audio cannot be fed
anywhere else without resynchronization except the I2S output. To synchronize I2S
slave audio with the analog audio output driver AUODAC.DL3 (Chapter 7.2.1), use the
AUXSYNCS.DL3 synchronization driver (Chapter 7.9.1).

7.6.7 Driver AUXI2SM.DL3

The AUXi2SM.DL3 audio driver handles both I2S input and output in master mode, as
shown in Figures 9 and 10.

The I2S input and output are always kept in sync, so software using both the input and
output doesn’t need to do synchronization. Also, because the exact I2S sample rates
24 and 48 kHz are directly supported by VS1005’s analog audio output path, as well as
the analog audio input path, once in sync they will stay in sync.

7.6.8 Driver AUXI2SS.DL3

The AUXI2SS.DL3 is otherwise similar to AUXI2SM.DL3 (Chapter 7.6.7), except that the
driver operates in slave mode.

In slave mode the user has no control over sample rate, so the audio cannot be fed
anywhere else without resynchronization except the I2S output. To synchronize I2S
slave audio with the analog audio output driver AUODAC.DL3 (Chapter 7.2.1), use the
AUXSYNCS.DL3 synchronization driver (Chapter 7.9.1).

Rev. 3.66a 2023-02-28 Page 27(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.7 S/PDIF Audio Drivers

S/PDIF drivers allow receiving and transmitting audio using a coaxial or optical S/PDIF
bus.

S/PDIF is a one-way channels, so the transmitter always controls the clocking of the
audio. For this reason, and for certain hardware resons, those drivers that need to either
support synchronizing S/PDIF output to input, or to support 44.1 ot 88.2 kHz sample
rates, need to set VS1005’s master clock to either 56.448 or 61.440 MHz.

With the exception of AUOXSPDA.DL3, all drivers connect to stdaudioin and/or stdau-
dioout if started with parameter “s”. Otherwise, the drivers need to be opened and
accessed manually.

Only one S/PDIF driver may be in use at any given time. It is not possible to run one
input and one output driver, and expect the system to do anything sensible.

All S/PDIF drivers are incompatible with USB operation, because USB requires that
CLKI = 60.000 MHz, and no standard sample rates can be implemented with this clock
rate.

Summary of S/PDIF drivers
Name Sample rates / kHz Modifies Exact Notes

44.1 48 88.2 96 SysClk1 rates2

AUOSPDA X X X 3 Automatic output
AUISPD X X X X X Generic input
AUXSPD X X X X X Generic I/O, sync in & out
AUXSPD48 X X X Limited I/O, sync in & out
AUOSP48S X X Output, sync with input
AUOSPD48 X X Output at exactly 48 kHz

1 The driver modifies System Clock to either 56.448 MHz (for 44.1 or 88.2 kHz operation)
or 61.440 MHz (for 48 or 96 kHz operation). The driver is incompatible with FM receiver
software.

2 The driver sample rate is as accurate as the input clock’s 12.288 MHz is.

3 Audio sample rate may be anything up to 96 kHz. It is converted by hardware to the
target sample rate.

7.7.1 Driver AUOSPDA.DL3

AUOSPDA.DL3 captures audio that is being sent to the DAC audio path, and copies it
automatically to the S/PDIF output.

Figure 11 shows the automatic audio path built by the driver. The driver copies the audio
going to the DAC driver, and sends it through a software volume control to the S/PDIF
output. To function, it needs a DAC (e.g. AUODAC.DL3) driver to be installed.

Rev. 3.66a 2023-02-28 Page 28(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

I2S_LEFT

I2S_RIGHT

SP_LDATA

SP_RDATA

24

24

24

24

24 24

24

24

24

DAC_VOL

32/16

SRC_CF

DAC +

output

drivers

I2S_CF

Analog

I2S_BCK,I2S_FRM

I2S_DO

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

SPDIF_OUT
encoder
S/PDIF

24/16

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

RED text:   Pin
BLUE text: Register

C
op

y 
w

it
h 

"V
" 

op
ti
on

In
di

vi
du

al
 c

on
tr

ol
 w

it
ho

ut

Figure 11: AUOSPDA.DL3 audio path shown in bold brown. Software driver connecting
to the filterless sample rate converter (bold green) shown in bold magenta

The sample rate is set by default to 96000 Hz, and anything played back is converted to
the target sample rate by the high-quality VS1005 Filterless sample rate downconverter,
then through a software volume control to the SP_LDATA/SP_RDATA registers. As long
as the audio that is being played back has a sample rate that is not higher than the
S/PDIF output sample rate, no aliasing will occur, and sound quality will remain good.

If the driver is started with parameter “48000”, it will use an output rate of 48 kHz. Only
use this option if no audio that you play back has a sample rate over 48 kHz.

The driver can be opened manually, in which case it has a separate volume control that
can be used. As a default, full output volume is used. However, if the driver is started
with parameter “v”, it will automatically copy any volume setting sent to stdaudioout.

If the driver has not started with the “v” option, the user may set the volume from C
by opening a file pointer to it, then calling stdio() to set the volume (see README.TXT
of the driver for details on how to do that), then finally closing the file pointer / driver.
Alternatively volume may be set from the VSOS Shell using AuOutput (Chapter 9.2), as
in the following example that sets volume to -12.5 dB of maximum level:
S:>auoutput -dauospda -l-12.5

7.7.2 Driver AUISPD.DL3

AUISPD.DL3 enables S/PDIF input. It supports 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz
sample rates.

Rev. 3.66a 2023-02-28 Page 29(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

This driver automatically sets the VSDSP core clock to enable S/PDIF operation. It is
incompatible with any USB drivers or FM Radio receiver software.

Example of how to activate under VSOS Shell so that input from S/PDIF is automatically
played back to the DAC, and the DAC is kept synchronized with the input:
S:>driver +auodac s
S:>driver +auispd s
S:>driver +auxsyncs
S:>driver +auxplay
S:>auinput
stdaudioin: 0x23dc, auispd::audioFile=0x0c63(3171)

->Identify(): 0x43b7, auxsyncs::Identify returns "AUXSYNCS"
->op: 0x23e3, auispd::audioFileOps=0x0000(0)

->Ioctl(): 0x41ee, auxsyncs::AudioIoctl
->Read(): 0x40f6, auispd::AudioRead

Sample rate: 47995
Bits per sample: 16
Channels: unknown (assuming 2)
Buffer size: 512 16-bit words (256 16-bit stereo samples)
Buffer fill: 84 16-bit words (42 16-bit stereo samples)
Sample counter: 1068008
Overflows: 4170
S:>

7.7.3 Driver AUXSPD.DL3

AUXSPD.DL3 enables S/PDIF input and output, and synchronizes the output with the
input. It supports 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz sample rates.

Because this driver automatically synchronizes its output with its input, there is no need
to run a separate synchronization driver like AUXSYNCS.DL3.

This driver automatically sets the VSDSP core clock to enable S/PDIF operation. It is
incompatible with any USB drivers or FM Radio receiver software.

Example of how to activate under VSOS Shell so that input from S/PDIF is automatically
played back to the S/PDIF output:
S:>driver +auxspd s
S:>driver +auxplay
S:>auinput
stdaudioin: 0x279f, auxspd::audioFile=0x0c63(3171)

->Identify(): 0x40ed, auxspd::Identify returns "AUXSPD"
->op: 0x27a7, auxspd::audioFileOps=0x0000(0)

->Ioctl(): 0x3f69, auxspd::AudioIoctl
->Read(): 0x4059, auxspd::AudioRead

Sample rate: 48010
Bits per sample: 16
Channels: unknown (assuming 2)

Rev. 3.66a 2023-02-28 Page 30(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Buffer size: 512 16-bit words (256 16-bit stereo samples)
Buffer fill: 82 16-bit words (41 16-bit stereo samples)
Sample counter: 654782
Overflows: 1320
S:>

7.7.4 Driver AUXSPD48.DL3

Like AUXSPD.DL3 (Chapter 7.7.3), but limited to 48 and 96 kHz, and for this reason
slightly smaller.

7.7.5 Driver AUOSP48S.DL3

AUOSPD48S.DL3 enables S/PDIF output, and synchronizes the output with an input of
another audio driver, which should nominally run at 48 kHz. An example use case for
this driver is when the input is I2S in slave mode (Chapter 7.6.6, Driver AUII2SS.DL3),
and when it is known beforehand that the nominal sample rate of the input is always
48 kHz.

Because this driver automatically synchronize its output with an input, there is no need
to run a separate synchronization driver like AUXSYNCS.DL3.

This driver automatically sets the VSDSP core clock to enable S/PDIF operation. It is
incompatible with any USB drivers or FM Radio receiver software.

Example of how to activate under VSOS Shell so that input from I2S (slave mode) is
automatically played back to the S/PDIF output (note: nothing is played through analog
audio): the input:
S:>driver +auii2ss s
S:>driver +auosp48s s
S:>driver +auxplay
S:>

7.7.6 Driver AUOSPD48.DL3

AUOSPD48.DL3 enables S/PDIF output at exactly 48 kHz.

Example of how to activate under VSOS Shell so that input from the ADC is automati-
cally played back to the S/PDIF output (note: nothing is played through analog audio):

S:>driver +auiadc s
S:>driver +auospd48 s
S:>driver +auxplay
S:>

Rev. 3.66a 2023-02-28 Page 31(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.8 Pulse Width Modulation Output Driver

The Pulse Width Modulation audio driver converts its input to a sigma-delta encoded
mono signal, and outputs that signal through VS1005’s PWM output pin (pin 88). If the
PWM pin is followed by a proper RC low-pass filter, the PWM output can be used to
implement a high-quality so-called 0.1-channel subwoofer output.

For best results, the accompanying filter should have its -3 dB point at approximately
200 Hz or lower.

7.8.1 Driver AUOPWM.DL3

AUOPWM.DL3 offers a sigma-delta encoded PWM output running at exactly 48 kHz.
The useful bandwidth of the output is in the range of 0. . . 200 Hz.

Rev. 3.66a 2023-02-28 Page 32(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.9 Slave Audio Input Synchronization Driver

When inputting audio data in slave mode (using for example the I2S audio input slave
driver AUII2SS.DL3), the exact sample rate of the audio is usually not known. Even
if the nominal sample rate is known, mismatches between master transmitter and the
VS1005 receiver clock crystals causes there to always be a mismatch between them
(example: transmitter nominally sends 48000 Hz, but because of a clock mismatch the
receiver sees the data at 48002.3 Hz).

This speed mismatch will eventually cause an audio buffer underflow or overflow, which
may cause audible clicks or other kinds of distortion.

The slave audio input synchronization drivers are intended to remove the synchroniza-
tion issue.

7.9.1 Driver AUXSYNCS.DL3

The Slave Audio Input Synchronization Driver AUXSYNCS.DL3 synchronizes a slave
audio input driver with the analog Earphone/Line Out driver AUODAC.DL3.

Before starting the Sync Driver, the user must first load and connect a slave audio input
driver to stdaudioin, and the analog output driver to stdaudioout. When the driver is
loaded, it will automatically adjust the analog output sample rate according to the input.
The adjustment range is up to 97500 Hz, so standard sample rates up to 96 kHz can be
received. The Sync Driver can dynamically change its sample rate if the input sample
rate changes.

Example config.txt file clip:
# Load I2S Slave Input driver and make it stdaudioin
AUII2SS s
# Load Line Out / Earphone output driver and make it stdaudioout
AUODAC s
# Connect and synchronize stdaudioout with stdaudioin slave
AUXSYNCS

The same can be done using the VSOS Shell using the following commands:
S:>driver +auii2ss s
S:>driver +auodac s
S:>driver +auxsyncs

AUXSYNCS.DL3 has been tested with the I2S Slave Input drivers, but it is designed to
be usable with any generic slave input driver that offers a near-constant data rate. It
may not work properly with input drivers with large data bursts.

Rev. 3.66a 2023-02-28 Page 33(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.10 Audio Input to Output Copying Driver

Sometimes it’s useful to play back audio data from an input to an output in the back-
ground. This can be done by an audio copying driver.

7.10.1 Driver AUXPLAY.DL3

The AUXPLAY.DL3 driver reads data from stdaudioin and copies it to stdaudioout. While
seemingly trivial, it does so in the background, allowing the user to do other operations
while sound is being played back.

Normally the driver reports to stdout if there are input buffer overflows or output buffer
underflows. The amount of the overflows/underflows are given in stereo samples (so
e.g. +4800 at a sample rate of 48000 means 1/10s). The reports use the following
format:
AUXSPLAY: In overflow +4088
AUXSPLAY: Out underflow +4034

To disable overflow and underflow reporting, give the ’q’ parameter to AUXSPLAY.DL3.

Rev. 3.66a 2023-02-28 Page 34(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8 Audio Filter Drivers

Audio filter drivers connect to an audio source or sink, and offer additional functionality,
like filtering.

Audio filter drivers are named using the following format:
FTdyyyyy.DL3
where

Symbol Description
d Driver direction: I = input, O = output, X = Input/Output
yyyyy Driver name, max 5 characters

application

VSOS

application

VSOS

stdaudioin

stdaudioininput filter

driver

audio input

audio input

driver

driver

Figure 12: An input filter driver connects to the stdaudioin chain

All filter input drivers connect directly between the current stdaudioin program chain and
the user program, as shown in Figure 12. The base driver responsible for stdaudioin
(e.g. AUIADC.DL3) must be loaded before the filter driver.

application

VSOS

driver

stdaudioout

stdaudioout output filter

audio output

driver

audio output

driver

VSOS

application

Figure 13: An output filter driver connects to the stdaudioout chain

All filter output drivers connect directly between the user program and the current stdau-
dioout program chain, as shown in Figure 13. The base driver responsible for stdau-
dioout (e.g. AUODAC.DL3) must be loaded before the filter driver.

Audio filters must be removed in the reverse order of loading.

Rev. 3.66a 2023-02-28 Page 35(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Below is a command line example of audio and filter driver allocation and removal:

S:>auinput
E: No stdaudioin or NULL ptr
S:>driver +auiadc s
S:>auinput
stdaudioin: 0x2392, auiadc::audioFile=0x0c63(3171)

->Identify(): 0x414e, auiadc::Identify returns "AUIADC"
->op: 0x2399, auiadc::audioFileOps=0x0000(0)

->Ioctl(): 0x4023, auiadc::AudioIoctl
->Read(): 0x4104, auiadc::AudioRead

Sample rate: 48000
Bits per sample: 16
Channels: unknown (assuming 2)
Buffer size: 512 16-bit words (256 16-bit stereo samples)
Buffer fill: 508 16-bit words (254 16-bit stereo samples)
Sample counter: 51484
Overflows: 51232
S:>driver +ftiagc
S:>auinput
stdaudioin: 0x2541, FTIAGC::audioFile=0x0863(2147)

->Identify(): 0x4644, FTIAGC::Identify returns "FTIAGC32"
->op: 0x2569, FTIAGC::audioFileOps=0x0000(0)

->Ioctl(): 0x4508, FTIAGC::AudioIoctl
->Read(): 0x4597, FTIAGC::AudioRead

[... rest of auinput printouts cut for brevity ...]
S:>driver -ftiagc
S:>auinput
stdaudioin: 0x2392, auiadc::audioFile=0x0c63(3171)

->Identify(): 0x414e, auiadc::Identify returns "AUIADC"
->op: 0x2399, auiadc::audioFileOps=0x0000(0)

->Ioctl(): 0x4023, auiadc::AudioIoctl
->Read(): 0x4104, auiadc::AudioRead

[... rest of auinput printouts cut for brevity ...]
S:>driver -auiadc
S:>auinput
E: No stdaudioin or NULL ptr

Rev. 3.66a 2023-02-28 Page 36(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.1 Equalizer Filter Driver

The Equalizer Filter Drivers implements a high-quality, multiband equalizer to VS1005’s
output audio path.

The package itself contains detailed PDF documentation; please read it for details.

8.1.1 Driver FTOEQU.DL3

The Equalizer driver FTOEQU.DL3 connects to stdaudioout as shown in Figure 13 on
page 35.

The package itself contains detailed PDF documentation; please read it for details.

8.1.2 Control Program SETEQU.DL3

Usage: SetEqu [-i|-o] [n [flags centerF gain qFactor]] [-h]
-i Set stdaudioin
-o Set stdaudioout (default)
n Use filter number n (1 ... MAX_FILTERS)
flags 1=left, 2=right
centerF Center frequency in Hz
gain Gain in dB (-12.0 ... 12.0)
qFactor Q Factor (0.1 ... 4.0)
-h Show this help

Examples:
setequ 1 3 400 -6.0 0.5 # Set filter 1, L+R, 400 Hz, -6 dB, Q 0.5
setequ 1 0 # Clear filter 1
setequ 1 # Show filter 1
setequ # Show all filters

SETEQU.DL3 is a program to set and/or display the equalizer parameters.

Note that the equalizer is a relatively expensive function, so the user should take notice
of free CPU time if adding more than a basic bass/treble controller.

The package itself contains detailed PDF documentation; please read it for details.

Rev. 3.66a 2023-02-28 Page 37(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.2 DC Offset / AGC Filter Drivers

When audio is digitized, two technical issues are DC Offset and Large Dynamic Range.

0 100 200 300 400

-1

-0.5

0

0.5

1

Figure 14: Audio with exaggerated DC offset

In an ideal world DC Offset wouldn’t happen. However, in the real world, signals almost
always have a slight DC offset. Note, how the sine wave in Figure 14 does not move
evenly around the center point, but has an offset of about +0.35. While the figure has
been greatly exaggerated, this is a real phenomenon caused by a myriad of different
reasons.

0 100 200 300 400

-1

-0.5

0

0.5

1

Figure 15: Audio with DC blocking

DC offset may cause many issues, including increased power consumption, audible
cracks and pops, waring down of speaker elements, and non-ideal audio compression.
Because of this, it is best to remove the audio offset with a DC Blocker algorithm, as
shown in Figure 15. Notice how the offset disappear after a little while (in this case, it

Rev. 3.66a 2023-02-28 Page 38(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

has vanished practically completely by sample 150).

Another issue in audio is excessive dynamic range. This is not a problem when recording
well-mixed, pre-recorded music, but it may be a big issue when recording speech from
the microphone. To compensate for the audio level differences of close and faw away
speakers, and Automatic Gain Control (AGC) unit may often be useful. Note, however,
that AGC should not be used for HiFi recording applications!

8.2.1 Driver FTIDCBL.DL3

The DC Block driver FTIDCBL.DL3 connects to stdaudioin as shown in Figure 12 on
page 35.

The driver may be controlled either through C ioctl() function calls as described in the
README.TXT file for the driver itself, or from the VSOS Shell using the SETAGC.DL3
command.

8.2.2 Driver FTIAGC.DL3

In addition to the DC Block driver described in 8.2.1, the AGC driver offers an Automatic
Gain Control function.

The driver may be controlled either through C ioctl() function calls as described in the
README.TXT file for the driver itself, or from the VSOS Shell using the SETAGC.DL3
command.

8.2.3 Control Program SETAGC.DL3

Usage: SetAgc [-i|-o] [-a x|-d x|-t x|-max x|-min x|-d x] [-h]
-i Set stdaudioin (default)
-o Set stdaudioout
-a x Set attack (ms)
-d x Set decay (ms)
-t x Set target level (dB)
-max x Set maximum gain (dB)
-min x Set minimum gain (dB)
-b x Set DC Block Filter (0x4000 = HiFi, 0x8000 = Speech,

0x0 = Auto, 0xC00x = Set to x)
-h Show this help

With no parameters SetAgc will show current values

Sets/Prints AGC and/or DC Block Filter parameters. For the DC Block Filters only the -b
setting option is available.

Rev. 3.66a 2023-02-28 Page 39(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.3 Pitch Shifter / Speed Shifter Filter Driver

The FtPitch package offers a pitch and speed shifter that connects to stdout. The speed
shifter can nominally be controlled to speeds between 0.68x and 1.64x of realtime, and
the pitch shifter can nominally be controlled between 0.61x and 1.47x of normal pitch.

Features and limitations:

• Speed divided by pitch (speed/pitch) must be between 0.68 and 1.64.

• Pitch shifting alters sample rate. If the resulting sample exceeds 96 kHz, playback
will be at incorrect speed.

• The shifter has been optimized to work best for audio where sample rate is be-
tween 32 and 48 kHz.

8.3.1 Driver FTOPITCH.DL3

The Pitch shifter driver FTOPITCH.DL3 connects to stdaudioout as shown in Figure 13
on page 35.

The driver may be controlled either through C ioctl() function calls as described in the
README.TXT file for the driver itself, or from the VSOS Shell using the SETPITCH.DL3
command.

8.3.2 Control Program SETPITCH.DL3

Usage: SetPitch [-i|-o] [-sx] [-px] [-h]
-i Set stdaudioin
-o Set stdaudioout (default)
-sx Set speed to x times normal (0.68 - 1.64 if pitch=1.0)
-px Set pitch to x times normal (0.61 - 1.47 if speed=1.0)
-h Show this help

Note:
Correct playback requires that 0.68 <= speed/pitch <= 1.644.

Sets/Prints Pitch and Speed Shifter parameters. Example:

S:>driver +ftopitch
S:>setpitch
Pitch 1.000
Speed 1.000
S:>setpitch -p1.1 -s0.9
S:>setpitch
Pitch 1.100
Speed 0.900

Rev. 3.66a 2023-02-28 Page 40(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.4 Reverb Generator Filter Drivers

The FtRev package offers a reverb-style echo generator that connects to stdaudioin or
stdaudioout. Many parameters of the Reverb Generator may be modified.

8.4.1 Driver FTIREV.DL3

Features and limitations:

• Works up to 48 kHz 32 bits.

• Requires about 32 MIPS when running at 48 kHz 16 bits.

Dry Gain

Wet Gain

Generator

Reverb

Reverb Generator driver

Audio

Driver
stdaudiooin

Figure 16: Reverb Generator FTOREV signal paths

The Reverb Generator driver FTOREV.DL3 connects to stdaudioin as shown in Fig-
ure 12 on page 35. The Reverb Generator signal paths are shown in Figure 16.

The driver may be controlled either through C ioctl() function calls as described in the
README.TXT file for the driver itself, or from the VSOS Shell using the SETREV.DL3
command.

Note: To easily test how modifying parameters affects sound, you can start the automatic
playback driver AUXPLAY (Chapter 7.10.1) as follows:

S:>driver +ftirev
S:>driver +auxplay
S:>setrev -i -v -s600 -d0 -w1024 -t65535 -f25000 -r85
ROOM:

(-r) First reflection: 85 ms
(-s) Room size : 600 cm (1-32767)
(-t) Reverb time : 65535 ms (1-65535)
(-f) Room softness : 25000 (0=hard-65535=soft)
(-d) Dry gain : 0 (0-32767, 1024=1)
(-w) Wet gain : 1024 (0-32767, 1024=1)

Sample rate : 48000 Hz

Rev. 3.66a 2023-02-28 Page 41(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Delay pairs : 7
Ext. mem. size : 0 bytes
Ext. mem. read : 0x0000
Ext. mem. write : 0x0000

S:>

8.4.2 Driver FTOREV.DL3

Audio

Driver

Dry Gain

Wet Gain

Generator

Reverb

stdaudioout

Reverb Generator driver

Figure 17: Reverb Generator FTOREV signal paths

The Reverb Generator driver FTOREV.DL3 is similar to FTIREV.DL3 presented in Chap-
ter 8.4.1, except that it connects to stdaudioout in a way shown in Figure 13 on page 35
instead of stdauioin. The Reverb Generator signal paths are shown in Figure 17.

Note: To easily test how modifying parameters affects sound, you can start the automatic
playback driver AUXPLAY (Chapter 7.10.1) as follows:

S:>driver +ftorev
S:>driver +auxplay
S:>setrev -v -s600 -d0 -w1024 -t65535 -f25000 -r85
ROOM:

(-r) First reflection: 85 ms
(-s) Room size : 600 cm (1-32767)
(-t) Reverb time : 65535 ms (1-65535)
(-f) Room softness : 25000 (0=hard-65535=soft)
(-d) Dry gain : 0 (0-32767, 1024=1)
(-w) Wet gain : 1024 (0-32767, 1024=1)

Sample rate : 48000 Hz
Delay pairs : 7
Ext. mem. size : 0 bytes
Ext. mem. read : 0x0000
Ext. mem. write : 0x0000

S:>

Rev. 3.66a 2023-02-28 Page 42(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.4.3 Driver FTIREV23.DL3

Features and limitations:

• FTIREV23 is like FTIREV (Chapter 8.4.1), but makes it possible to create larger
and thus more believable rooms.

• Uses VS23S010 or VS23S040 S-RAM IC for buffering.

• Optimized for 48 kHz, but works up to 96 kHz mode.

• Requires about 48 MIPS when running at 48 kHz 16 bits.

• Requires about 59 MIPS when running at 96 kHz 32 bits.

• If sample rate is greater than 48 kHz (typ. 96 kHz), the first reflection option (-f in
SETREV, Chapter 8.4.5) is not available.

Dry Gain

Wet Gain

Generator

Reverb

Reverb Generator driver

VS23S0X0
S−RAM

Audio

Driver
stdaudioin

Figure 18: Reverb Generator FTIREV23 signal paths

The Reverb Generator driver FTIREV23.DL3 is like FTIREV.DL3 except that it uses an
external VS23S010 or VS23S040 S-RAM IC for buffering, making it possible to create
larger rooms than with FTIREV.DL3. The Reverb Generator signal paths are shown in
Figure 18.

Running FTIREV23 at 96 kHz 32 bits

The FTIREV23 Reverb Generator supports sample rates up to 96 kHz and bit depths up
to 32 bits. However, if used at these parameters, it requires lots of calculating power,
and when system overhead (typically 20 MIPS) is counted in, the clock requirement is
typically around 80 MHz.

An example of how to start the driver in 96 kHz 32-bit mode succesfully from config.txt
is shown below:

Rev. 3.66a 2023-02-28 Page 43(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

RUN SETCLOCK -l93 80
AUODAC s
AUIADC s
RUN AUOUTPUT -b32 -r96000 -s2048
RUN AUINPUT -b32 -r96000 -s2048
FTOREV23
AUXPLAY

The same can be achieved from the command line as follows. Here you can also see
that the system requires almost 79 MHz to run:

S:>setclock -l93 80
S:>driver +auodac s
S:>driver +auiadc s
S:>auoutput -b32 -r96000 -s2048
S:>auinput -b32 -r96000 -s2048
S:>driver +ftirev23
S:>driver +auxplay
S:>setclock -t
CPU speed: effective speed 7.33/86.02 MHz = 8.5%, overhead 78.68 MHz
S:>

8.4.4 Driver FTOREV23.DL3

Audio

Driver

Dry Gain

Wet Gain

Generator

Reverb

stdaudioout

Reverb Generator driver

VS23S0X0
S−RAM

Figure 19: Reverb Generator FTOREV23 signal paths

The Reverb Generator driver FTOREV23.DL3 is like FTIREV23.DL3 in Chapter 8.4.3
except that if connects stdaudioout instead of stdaudioin. The Reverb Generator signal
paths are shown in Figure 19.

Rev. 3.66a 2023-02-28 Page 44(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.4.5 Control Program SETREV.DL3

Usage: SetRev [-i|-o] [-v|+v] [-sx|-tx|-fx|-dx|-wx] [-h]
-i Set stdaudioin
-o Set stdaudioout (default)
-rx Set first reflection time in milliseconds
-sx Set room size to x cm (200-1200 recommended)
-tx Set reverb Time to x ms (100-5000 recommended)
-fx Set room wall soFtness (0 = hard, 65535 = soft)
-dx Set Dry gain (0-65535, 1024 = 1)
-wx Set Wet gain (0-65535, 1024 = 1)
-v|+v Verbose on/off
-h Show this help

Note:
It is recommended that Dry gain + Wet gain would not be much
over 1024 to avoid distortion.

S:>setrev
ROOM:

(-r) First reflection: 20 ms
(-s) Room size : 600 cm (1-32767)
(-t) Reverb time : 1000 ms (1-65535)
(-f) Room softness : 32767 (0=hard-65535=soft)
(-d) Dry gain : 1024 (0-32767, 1024=1)
(-w) Wet gain : 256 (0-32767, 1024=1)

Sample rate : 48000 Hz
Delay pairs : 7

The user-adjustable parameters are as follows.

First Reflection Time (-r, 1. . . 200)

First Reflection Time tells how many milliseconds it takes before the first reflection
reaches the listener. By making this number large, the user can simulate a stadium-
like environment or a hall where lots of reverberation comes from the other end of the
hall.

Room Size (-s, 1. . . 32767)

Room Size is the approximate room size in centimeters. The larger the room, the more
indistinct, or hall-like, the reverb is.

Note that room size is limited by the amount of free data memory there is available in
the system. When you run SetRev, the displayed parameter “Delay pairs” tells how well

Rev. 3.66a 2023-02-28 Page 45(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

the reverb driver has been able to set its filters. In an ideal case, “Delay pairs” should be
8. Anything below 4 usually gives a somewhat artificial result. Also, if you define a room
that is way too large to being implemented, it will automatically be resized.

In the example below, we try to make a “room” 300 meters wide and the first echo
should come only after 500 milliseconds. But, depending on the driver we may end up
with a room that is smaller, and with a shorter pre-echo time. Note also the “Delay pair”
counter: it prefably be 8, and anything below 4 usually isn’t enough to create a natural
result. Note that the driver FTOREV23.DL3 doesn’t have the room size limitation.

S:>setrev -s30000 -r500 -v
ROOM:

(-r) First reflection: 85 ms
(-s) Room size : 9842 cm (1-32767)
(-t) Reverb time : 1000 ms (1-65535)
(-f) Room softness : 32767 (0=hard-65535=soft)
(-d) Dry gain : 1024 (0-32767, 1024=1)
(-w) Wet gain : 256 (0-32767, 1024=1)

Sample rate : 48000 Hz
Delay pairs : 1

Reverb Time (-t, 1. . . 65535)

Reverb Time tells how many milliseconds it will take for the reverberation to fade -60 dB
from the original level. For some insane effects, try to set the reverb time to 10 or 60
seconds!

Room Softness (-f, 0. . . 65535)

Room Softness defines the softness of the wall material in the room. In a soft room,
higher frequencies will attenuate faster than low frequencies, making the room feel
warmer.

Dry Gain (-d, 0. . . 32768)

Dry Gain is the gain setting for the direct input to output audio path. 1024 is the nominal
gain: the original sound is passed through with no volume change.

To avoid distortion, it is recommended that Dry Gain + Wet Gain <= 1024, or at least not
much over 1024.

Rev. 3.66a 2023-02-28 Page 46(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Wet Gain (-w, 0. . . 32768))

Wet Gain is the gain setting for the reverb signal. 1024 is the nominal gain.

To avoid distortion, it is recommended that Dry Gain + Wet Gain <= 1024, or at least not
much over 1024.

SETREV.DL3 Examples

The following examples sets reverb parameters for stdaudioin. If running an output
driver, use “-o” option instead of “-i” to connect to stdaudioout.

Example 1; stdaudioin, mild effect:
S:>setrev -i -v -r2 -s600 -t1000 -f20000 -d960 -w64

Example 2; stdaudioin, moderate effect:
S:>setrev -i -v -r85 -s600 -t1000 -f32768 -d768 -w256

Example 3; stdaudioin, strong effect:
S:>setrev -i -v -r100 -s1000 -t5000 -f65500 -d512 -w512

Example 4; stdaudioin, nightmarishly strong effect:
S:>setrev -i -v -r100 -s2000 -t20000 -f10000 -d64 -w960

Rev. 3.66a 2023-02-28 Page 47(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.5 Noise Killer Filter Driver

Because of the way stereo information is transmitted on FM radio, stereo reception is
always more suscept to white noise and other artifacts than mono reception. A way to
reduce or remove the noise is to either dampen the stereo effect at the receiver, or to just
turn FM stereo reception off. The FtNoiseKiller package offers an adaptive FM stereo
radio noise killer algorithm that doesn’t destroy the stereo image.

8.5.1 Driver FTINOISE.DL3

Features and limitations:

• Optimized for 32 kHz operation.

• Requires about 25 MIPS at 32 kHz 16 bits.

• Can only handle 16-bit audio (if audio is set to 32 bits, the noise killer is disabled).

The noise killer driver FTINOISE.DL3 connects to stdaudioin as shown in Figure 12 on
page 35.

The driver may be controlled either through C ioctl() function calls as described in the
README.TXT file for the driver itself, or from the VSOS Shell using the SETNOISE.DL3
command.

Note: To easily test how the algorithm works, you can start the RDS Radio receiver
(v1.05 or higher) after activating the noise killer driver:

S:>driver +ftinoise
S:>rdsradio

Now you can turn the noise killer off by pushing ’0’, and back on by pushing ’5’ (or ’4’ or
’3’ if reception is poor).

8.5.2 Control Program SETNOISE.DL3

Usage: SetNoise [-i|-o] [-v|+v] [-nx] [-h]
-i Set stdaudioin (default)
-o Set stdaudioout
-nx Set noise killer level (default: 50 dB, 0 = off)
-v|+v Verbose on/off
-h Show this help

Example:

Rev. 3.66a 2023-02-28 Page 48(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

S:>setnoise
Noise killer at 50 dB
S:>setnoise -n0 -v
Noise killer at 0 dB
S:>

The default for the noise killer is a signal-to-noise ratio of 50 dB. If the reception is poor,
lower numbers may be required. Note that by the value of 30 dB, the stereo image
mostly disappears. Setting the noise killer to 0 dB will disable it.

Rev. 3.66a 2023-02-28 Page 49(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.6 Mono / Differential Filter Drivers

The FtMono audio drivers makes it possible to convert a stereo signal into a mono signal,
and optionally inverting either or both of its outputs to get a differential signal. This is
helpful e.g. when connecting VS1005’s analog outputs to a differential mono amplifier.

The drivers may be controlled either through C ioctl() function calls as described in the
README.TXT file for the driver itself, or from the VSOS Shell using the SETMONO.DL3
command.

8.6.1 Driver FTIMONO.DL3

The mono / differential driver FTIMONO.DL3 connects to stdaudioin as shown in Fig-
ure 12 on page 35.

8.6.2 Driver FTOMONO.DL3

The mono / differential driver FTOMONO.DL3 connects to stdaudioout as shown in Fig-
ure 13 on page 35.

8.6.3 Control Program SETMONO.DL3

Usage: SetMono [-o] [-i] [lr|ll|rr|rl|mono] [il] [ir] [-h]
-i Set stdaudioin
-o Set stdaudioout (default)
lr Normal LR stereo
ll Copy Left to output
rr Copy Right to output
rl Swap Left and Right
mono Output mean of Left and Right
il Invert Left output
ir Invert Right output
-h Show this help

With no parameters set, current flags are shown

Example that starts the output driver, then we set it to mono mode and invert the right
channel for differential output:

S:>AuOutput
stdaudioout: 0x2056, auodac::audioFile=0x0c43(3139)

->Identify(): 0x3cb1, auodac::Identify returns "AUODAC"
->op: 0x205f, auodac::audioFileOps=0x0000(0)

Rev. 3.66a 2023-02-28 Page 50(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

->Ioctl(): 0x3b69, auodac::AudioIoctl
->Write(): 0x3c67, auodac::AudioWrite

Sample rate: 48000
Bits per sample: 16
Channels: unknown (assuming 2)
Buffer size: 4096 16-bit words (2048 16-bit stereo samples)
Buffer fill: 4 16-bit words (2 16-bit stereo samples)
Sample counter: 528719
Underflows: 526675
Volume: +0.0 dB of maximum level
S:>driver +ftomono
S:>AuOutput
stdaudioout: 0x23e4, FtOMono::audioFile=0x0843(2115)

->Identify(): 0x3cb1, auodac::Identify returns "AUODAC"
->op: 0x23df, FtOMono::audioFileOps=0x0000(0)

->Ioctl(): 0x437d, FtOMono::AudioIoctl
->Write(): 0x43c8, FtOMono::AudioWrite

Sample rate: 48000
Bits per sample: 16
Channels: unknown (assuming 2)
Buffer size: 4096 16-bit words (2048 16-bit stereo samples)
Buffer fill: 4 16-bit words (2 16-bit stereo samples)
Sample counter: 3410130
Underflows: 3408087
Volume: +0.0 dB of maximum level
S:>SetMono
Mono flags: lr
S:>SetMono mono ir
S:>SetMono
Mono flags: mono ir

Rev. 3.66a 2023-02-28 Page 51(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.7 Matrix driver: 3 Channels to 2 Channels

The FtMono audio drivers matrixes a 3-channels input signal to a 2-channel output. A
gain between -32. . . 32 can be applied to each matrix point.

X

X

X

X

X

X

/1024

/1024

/1024

/1024

/1024

/1024

0 1 2 0 1 2

+ +

GAIN_0_L

GAIN_1_R

GAIN_0_R

GAIN_1_L

GAIN_2_L

GAIN_2_R

Sample 1Sample 0

L R L R

Sample 0 Sample 1

Input

Output

Figure 20: Ft3To2 driver’s matrix

Figure 20 shows the matrix operation that is performed between the input and output.
The gains can be set by the user.

The drivers may be controlled either through C ioctl() function calls as described in the
README.TXT file for the driver itself, or by using the VSOS Shell control command
SET3TO2.DL3.

8.7.1 Driver FTI3TO2.DL3

The matrix driver FTI3TO2.DL3 connects to stdaudioin as shown in Figure 12 on page 35.

This driver is particularly useful for downmatrixing the output of the 3-channel analog in-
put audio driver AUI3ADC.DL3 (Chapter 7.5.1) to a more conventional 2-channel stereo
signal.

8.7.2 Driver FTO3TO2.DL3

The matrix driver FTO3TO2.DL3 connects to stdaudioout as shown in Figure 13 on
page 35.

Rev. 3.66a 2023-02-28 Page 52(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.7.3 Control Program SET3TO2.DL3

S:>Set3To2 -h
Usage: Set3To2 [-o|-i|-sc1,..|-v|+v|-h]
-i Use stdaudioin
-o Use stdaudioout (default)
-sc1,.. Set matrix coefficients
-h Show this help
-v|+v Verbose on/off

With no parameters, shows current coeffs with example of how to use "-s"

Example that demonstrates how to read and downmix 3 channels on the VS1005 Devel-
oper Board. The example uses the 3-channel ADC driver AUI3ADC.DL3 (Chapter 7.5)
to activate MIC1 and MIC2 on the board (Note: JP5 and JP6 both must have a jumper
set to MIC), and also read line1_3 and play it as a mono signal.

S:>auinput
E: No stdaudioin or NULL ptr
S:>driver +aui3adc s
S:>auinput
stdaudioin: 0x2392, aui3adc::audioFile=0x0c63(3171)

->Identify(): 0x416d, aui3adc::Identify returns "AUI3ADC"
->op: 0x239a, aui3adc::audioFileOps=0x0000(0)

->Ioctl(): 0x4044, aui3adc::AudioIoctl
->Read(): 0x4128, aui3adc::AudioRead

Sample rate: 48000
Bits per sample: 16
Channels: 3
Buffer size: 510 16-bit words (255 16-bit stereo samples)
Buffer fill: 504 16-bit words (252 16-bit stereo samples)
Sample counter: 506835
Overflows: 506669
S:>driver +fti3to2
S:>set3to2 -i -s1024,0,0,1024,512,512
S:>auinput -r48000 -s512 mic1 mic2
S:>auinput
stdaudioin: 0x2503, FtI3To2::audioFile=0x0823(2083)

->Identify(): 0x416d, aui3adc::Identify returns "AUI3ADC"
->op: 0x24fe, FtI3To2::audioFileOps=0x0000(0)

->Ioctl(): 0x44dc, FtI3To2::AudioIoctl
->Read(): 0x456a, FtI3To2::AudioRead

Sample rate: 48000
Bits per sample: 16
Channels: unknown (assuming 2)
Buffer size: 512 16-bit words (256 16-bit stereo samples)
Buffer fill: 508 16-bit words (254 16-bit stereo samples)
Sample counter: 2951878
Overflows: 2951285
S:>driver +auxplay

Rev. 3.66a 2023-02-28 Page 53(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

9 Audio Control Programs

These programs are useful for displaying and changing audio parameters, as well as
debugging audio interfaces. They are parts of the AuControl solution.

9.1 Control Program AUINPUT.DL3

Usage: AuInput [-ddrv|-pfp|-rrate|-bbits|-sbufsize|-cch|chconf|-v|+v|-h]
-ddrv Connect to audio driver DRV.DL3
-pfp Set input audio driver pointer to fp (use with caution!)
-rrate Set sample rate to rate
-bbits Number of bits (16 or 32)
-sbufSz Set buffer size to bufSz 16-bit words
-cch Set number of channels to ch
-v|+v Verbose on|off
chconf Audio channel config (only with AUIADC driver, see definitions below)
-h Show this help

chconf needs either one stereo element, or one left and one right element.
Stereo elements:
- fm
Left elements:
- line1_1, line2_1, line3_1, mic1, dia1
Right elements:
- line1_2, line2_2, line3_2, line1_3, mic2, dia2, dia3

Example:
auinput line1_1 line1_3

AUINPUT lets the user display control several parameters of stdaudioin, or any unlocked
audio input driver, or file pointer if it is known. If used with the analog input drivers
AUIADC (Chapter 7.4.1) or AUI3ADC (Chapter 7.5.1), AUINPUT can also be used to
configure the input channels’ multiplexers.

If called without any command line arguments that change a value, AUINPUT will display
the status of the audio driver as shown below

S:>auinput
stdaudioin: 0x203a, auii2ss::audioFile=3171(0xc63)

->Identify(): 0x3b4f, auxsyncs::Identify returns "AUXSYNCS"
->op: 0x2041, auii2ss::audioFileOps=0(0x0)

->Ioctl(): 0x3992, auxsyncs::AudioIoctl
->Read(): 0x38cf, auii2ss::AudioRead

Sample rate: 48000
Bits per sample: 16
Channels: unknown (assuming 2)

Rev. 3.66a 2023-02-28 Page 54(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Buffer size: 512 16-bit words (256 16-bit stereo samples)
Buffer fill: 508 16-bit words (254 16-bit stereo samples)
Sample counter: 235803492
Overflows: 123022

In this example, slave audio synchronization driver AUXSYNCS.DL3 (Chapter 7.9.1)
has been loaded on top of AUII2SS.DL3 (Chapter 7.6.6), replacing two of its methods,
Identify() and Ioctl().

9.2 Control Program AUOUTPUT.DL3

Usage: AuOutput [-ddrv|-pfp|-rrate|-bbits|-sbufSize|-cch|-lvol|-v|+v|-h]
-ddrv Connect to audio driver DRV.DL3
-pfp Set output audio file pointer to fp (use with caution!)
-rrate Set sample rate to rate
-bbits Number of bits (16 or 32)
-sbufSz Set buffer size to bufSz 16-bit words
-cch Set number of channels to ch
-lvol Volume Level of maximum (vol = -128 .. 127.5)
-v|+v Verbose on|off
-h Show this help

AUOUTPUT lets the user display control several parameters of stdaudioout, or any un-
locked audio input driver, or file pointer if it is known.

If called without any command line arguments that change a value, AUOUTPUT will
display the status of the audio driver as shown below

S:>auoutput
stdaudioout: 0x1fea, auodac::audioFile=3139(0xc43)

->Identify(): 0x3b4f, auxsyncs::Identify returns "AUXSYNCS"
->op: 0x1ff1, auodac::audioFileOps=0(0x0)

->Ioctl(): 0x355b, auodac::AudioIoctl
->Write(): 0x39fb, auxsyncs::AudioWrite

Sample rate: 47793
Bits per sample: 16
Channels: unknown (assuming 2)
Buffer size: 4096 16-bit words (2048 16-bit stereo samples)
Buffer fill: 4 16-bit words (2 16-bit stereo samples)
Sample counter: 235977115
Underflows: 177796
Volume: +0.0 dB of maximum level

In this example, slave audio synchronization driver AUXSYNCS.DL3 (Chapter 7.9.1)
has been loaded on top of AUODAC.DL3 (Chapter 7.2.1), replacing two of its methods,
Identify() and Write().

Note: To display symbol information, AUINPUT requires library TRACE.DL3.

Rev. 3.66a 2023-02-28 Page 55(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

10 Configuration Examples

Here are some configuration examples for loading different audio drivers.

For full options for each of these programs, have a look at the README.TXT / PDF file
for each of the drivers.

10.1 Minimal config.sys for Playback

# Audio DAC out driver
AUODAC s

Note the “s” parameter after the AUODAC.DL3 driver. This “s” parameter marks that the
driver should become a system driver. In other words, it should connect to the system
file stdaudioout so that all subsequent writes to stdaudioout will go through this driver.

10.2 config.sys for Playback with Bass/Treble Controls and automatic I2S
+ S/PDIF Outputs

# Audio DAC out driver
AUODAC s
# I2S automatic out; automatic is hardware, so doesn’t require CPU
AUOI2SMA
# S/PDIF automatic out, parameter can be either 48000 or 96000 (default)
# If "v" is defined, stdaudioout volume control is copied to S/PDIF,
# otherwise it needs to be controlled manually (otherwise it stays at
# maximum level)
AUOSPDA 96000 v
# Equalizer, set 100 and 10000 Hz to +6 dB with Q Factor 0.7
FTOEQU
RUN SETEQU 1 3 100 +6 0.7
RUN SETEQU 2 3 10000 -6 0.7

In this example, only AUODAC.DL3 was defines as the system driver with the “s” option
because AUOI2SMA.DL3 and AUOSPDA.DL3 both automatically copy anything written
to the DAC by the AUODAC.DL3 driver, and thus they don’t get individual audio data
handles.

Rev. 3.66a 2023-02-28 Page 56(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

10.3 Basic config.sys for Recording

# New 2015 audio DAC out driver
AUODAC s
# New 2015 audio ADC in driver
AUIADC s 48000 line1_1 line1_3
# DC Block; use at least this with analog input even if not using AGC
FTIDCBL

In this example, both AUODAC.DL3 and AUIADC.DL3 have the system “s” option, so
they will occupy standard audio handles stdaudioout and stdaudioin, respectively.

In addition to the “s” option, AUIADC.DL3 can also take a sample rate definition as
well as an input channel definition. More details are provided in Chapter 7.4.1, Driver
AUIADC.DL3.

10.4 Versatile config.sys for Recording with AGC and I2S + S/PDIF Out-
puts

# New 2015 audio DAC out driver
AUODAC s
# New 2015 audio ADC in driver
AUIADC s 48000 line1_1 line1_3
# I2S automatic out; automatic is hardware, so doesn’t require CPU
AUOI2SMA
# S/PDIF automatic out, parameter can be either 48000 or 96000 (default)
# If "v" is defined, stdaudioout volume control is copied to S/PDIF,
# otherwise it needs to be controlled manually (otherwise it stays at
# maximum level)
AUOSPDA 96000 v
# DC Block + AGC unit to stdaudioin
FTIAGC

10.5 config.sys for Playback/Recording from I2S in Slave Mode, and Mon-
itoring to DAC with Automatic Synchronization

# Load I2S Slave Input driver and make it stdaudioin
AUII2SS s
# Load Line Out / Earphone output driver and make it stdaudioout
AUODAC s
# Connect and synchronize stdaudioout with stdaudioin slave
AUXSYNCS
# Copy stdaudioin to stdaudioout
# If loaded with ’q’ parameter, buffer under-/overflows are not reported
AUXPLAY

Rev. 3.66a 2023-02-28 Page 57(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

10.6 Loading/Unloading Drivers Using the VSOS Shell

Using the VSOS Shell Environment, you can use the DRIVER.DL3 program to load
drivers to memory, and to later unload them.

If possible, you should always unload drivers in the reverse order of loading them. This
is particularly true with drivers that connect to other drivers, like AUXSYNCS which con-
nects to both the stdaudioin and stdaudioout drivers (in this case AUII2SS and AUODAC,
respectively), and AUXPLAY which also uses stdaudioin and stdaudioout

Example: to load the drivers in Chapter 10.5, run the following commands:
S:>driver +auii2ss s
S:>driver +auodac s
S:>driver +auxsyncs
S:>driver +auxplay

To unload the drivers, enter the following commands:
S:>driver -auxplay
S:>driver -auxsyncs
S:>driver -auodac
S:>driver -auii2ss

Rev. 3.66a 2023-02-28 Page 58(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11 VSOS Audio ioctl() Controls

VSOS Audio Drivers can be controlled from C language using ioctl() controls declared
in <aucommon.h>.

There are many more definitions in the #include file <aucommon.h>. Refer to the doc-
umentation of the specific drivers you use for exact details on what of these functions
they support and how to get access to a file pointer for that driver.

The ioctl() function prototype is
s_int16 ioctl(void *p, register int request, register char *arg);
where p is the file or device pointer (e.g. stdaudioin or stdaudioout), request is the
type of the request, and arg is the optional argument.

ioctl() returns S_ERROR (-1) for an error (there was an error in the parameters, or the
ioctl() for the request doesn’t exist in this driver), any other value for success.

Generally, for functions that set a value, if arg is a pointer or a 16-bit value, it is casted to
c char * and passed to the function (e.g. IOCTL_AUDIO_SET_BITS in Chapter 11.2.5).
If arg is a larger entity (e.g. 32-bit number), a pointer to the value is passed instead (e.g.
IOCTL_AUDIO_SET_ORATE in Chapter 11.2.3).

Again, generally, for functions that return a 16-bit value where S_ERROR (-1) isn’t included
in the valid value range, the value is returned directly (e.g. IOCTL_AUDIO_GET_BITS
in Chapter 11.2.4). Otherwise, the user needs to transmit a pointer to the return value in
arg (e.g. IOCTL_AUDIO_GET_ORATE in Chapter 11.2.2). Not that in both cases ioctl()
returns S_ERROR (-1) if there was an error in the call.

11.1 Resetting a Driver

11.1.1 IOCTL_RESTART

Restart driver. Normally this needs never be done.

Example:
ioctl(fp, IOCTL_RESTART, NULL);

Rev. 3.66a 2023-02-28 Page 59(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.2 Controlling Sample Rate and Bit Width

11.2.1 IOCTL_AUDIO_SET_RATE_AND_BITS

Set sample rate and number of bits. This is the recommended way of setting the sample
rate and bit width with drivers like e.g I2S where there is a limit to sample rate and bit
width combinations. Note that the sample rate / bit width argument may be larger than
what can be fit into 16 bits, so it needs to be passed through a pointer.

Some drivers have very restricted number of sample rates supported. If you want to
see what sample rate actually was set by the hardware, it is recommended to do a
IOCTL_AUDIO_GET_IRATE or IOCTL_AUDIO_GET_ORATE call to see what you ac-
tually got.

• labs(rateBits) = sampleRate, may be in fractional sample rate format (Chapter 11.7).
• if rateBits < 0, then use 32-bit I/O
• Sets both input and output sample rate, if applicable
• Not available with Slave Mode drivers

Example:
s_int32 rateBits = -48000; /* Set to 48000 Hz, 32 bits */
if (ioctl(fp, IOCTL_AUDIO_SET_RATE_AND_BITS, (char *)(&rateBits))) {

printf("Couldn’t set sample rate and bits\n");
}

11.2.2 IOCTL_AUDIO_GET_IRATE, IOCTL_AUDIO_GET_ORATE

Get integer part of the current sample rate. Note that sample rate may be larger than
what can fit into 16 bits, so it needs to be passed through a 32-bit pointer.

Some drivers have very restricted number of sample rates supported. If you want to
see what sample rate actually was set by the hardware, it is recommended to do a
IOCTL_AUDIO_GET_IRATE or IOCTL_AUDIO_GET_ORATE call to see what you ac-
tually got.

• Not available with Slave Mode drivers

Example for input driver:
s_int32 sampleRate;
if (ioctl(fp, IOCTL_AUDIO_GET_IRATE, (char *)(&sampleRate))) {

printf("Couldn’t get sample rate\n");
}

Example for output driver:
s_int32 sampleRate;
if (ioctl(fp, IOCTL_AUDIO_GET_ORATE, (char *)(&sampleRate))) {

printf("Couldn’t get sample rate\n");
}

Rev. 3.66a 2023-02-28 Page 60(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.2.3 IOCTL_AUDIO_SET_IRATE, IOCTL_AUDIO_SET_ORATE

Set sample rate, which may be in fractional sample rate format (Chapter 11.7). Note
that sample rate may be larger than what can fit into 16 bits, so it needs to be passed
through a 32-bit pointer.

• Only for Master Mode drivers
• It is recommended to use IOCTL_AUDIO_SET_RATE_AND_BITS instead

Example for input driver:
s_int32 sampleRate = 48000;
if (ioctl(fp, IOCTL_AUDIO_SET_IRATE, (char *)(&sampleRate))) {

printf("Couldn’t set sample rate\n");
}

Example for output driver:
s_int32 sampleRate = 48000;
if (ioctl(fp, IOCTL_AUDIO_SET_ORATE, (char *)(&sampleRate))) {

printf("Couldn’t set sample rate\n");
}

11.2.4 IOCTL_AUDIO_GET_BITS

Get number of bits for driver. If the driver only supports 16-bit mode, it may not imple-
ment this function call.

Example:
s_int16 bits = ioctl(fp, IOCTL_AUDIO_GET_BITS, NULL);
if (bits < 0) bits = 16;

11.2.5 IOCTL_AUDIO_SET_BITS

Set number of bits for driver.

Example:
• bits may be 16 or 32
• With Master Mode drivers it is recommended to use

IOCTL_AUDIO_SET_RATE_AND_BITS instead

Example:
if (ioctl(fp, IOCTL_AUDIO_SET_BITS, (char *)(32))) {

printf("Couldn’t set bits\n");
}

Rev. 3.66a 2023-02-28 Page 61(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.3 Controlling Number of Audio Channels

These functions are relevant to drivers that can handle other than normal 2-channel
audio. 2-channel drivers don’t need to implement these function calls.

11.3.1 IOCTL_AUDIO_GET_ICHANNELS, IOCTL_AUDIO_GET_OCHANNELS

Get number of audio channels of a driver. If the driver only supports 2-channel audio, it
may not implement this function call.

Example for input driver:
s_int16 channels = ioctl(fp, IOCTL_AUDIO_GET_ICHANNELS, NULL);
if (channels < 0) channels = 2;

Example for output driver:
s_int16 channels = ioctl(fp, IOCTL_AUDIO_GET_OCHANNELS, NULL);
if (channels < 0) channels = 2;

11.3.2 IOCTL_AUDIO_SET_ICHANNELS, IOCTL_AUDIO_SET_OCHANNELS

Set number of bits audio channels. As of the writing of this (2023-02-28) no drivers
support this function.

Example for input driver:
if (ioctl(fp, IOCTL_AUDIO_SET_ICHANNELS, (char *)(6))) {

printf("Couldn’t set number of channels\n");
}

Example for output driver:
if (ioctl(fp, IOCTL_AUDIO_SET_OCHANNELS, (char *)(6))) {

printf("Couldn’t set number of channels\n");
}

Rev. 3.66a 2023-02-28 Page 62(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.4 Controlling Audio Buffers

11.4.1 IOCTL_AUDIO_GET_INPUT_BUFFER_FILL

Get input buffer fill state in 16-bit words.

• Only for drivers with input capability

Example:
iBufFill = ioctl(fp, IOCTL_AUDIO_GET_INPUT_BUFFER_FILL, NULL);

11.4.2 IOCTL_AUDIO_GET_INPUT_BUFFER_SIZE

Get input buffer size in 16-bit words.

• Only for drivers with input capability

Example:
iBufSize = ioctl(fp, IOCTL_AUDIO_GET_INPUT_BUFFER_SIZE, NULL);

11.4.3 IOCTL_AUDIO_SET_INPUT_BUFFER_SIZE

Set input buffer size in 16-bit words.

• Only for drivers with input capability

Example:
if (ioctl(fp, IOCTL_AUDIO_SET_INPUT_BUFFER_SIZE, (char *)(1024))) {

printf("Couldn’t set input buffer size\n");
}

11.4.4 IOCTL_AUDIO_GET_OUTPUT_BUFFER_FREE

Get how many 16-bit words there are free in the output buffer.

• Only for drivers with DSP output capability

Example:
iBufFill = ioctl(fp, IOCTL_AUDIO_GET_OUTPUT_BUFFER_FREE, NULL);

Rev. 3.66a 2023-02-28 Page 63(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.4.5 IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE

Get output buffer size in 16-bit words.

• Only for drivers with DSP output capability

Example:
oBufSize = ioctl(fp, IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE, NULL);

11.4.6 IOCTL_AUDIO_SET_OUTPUT_BUFFER_SIZE

Set output buffer size in 16-bit words.

• Only for drivers with DSP output capability

Example:
if (ioctl(fp, IOCTL_AUDIO_SET_OUTPUT_BUFFER_SIZE, (char *)(1024))) {

printf("Couldn’t set output buffer size\n");
}

Rev. 3.66a 2023-02-28 Page 64(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.5 Volume Control

11.5.1 IOCTL_AUDIO_GET_VOLUME

Get volume. Volume is a number between 0 - 511 where 256 is full-scale, and each
successive number represents a volume gain step of -0.5 dB. See table below:

IOCTL_AUDIO_GET_VOLUME argument table
Argument Amplification Description

0 +128.0 dB Insane amplification
1 +127.5 dB Insane amplification minus 0.5 dB
... ... ...

255 +0.5 dB Slightly louder than full-scale volume
256 0.0 dB Full-scale volume
257 -0.5 dB Almost full-scale volume

... ... ...
509 -126.0 dB Very silent
510 -∞dB No sound, may not turn off driver
511 -∞dB No sound, may turn off driver

A driver may limit the range it actually accepts for its volume settings. E.g. the analog
output driver AUODAC only supports the range between 256 (0.0 dB) and 511 (analog
driver power-down). As another example, the S/PDIF driver supports the range between
208 (+24.0 dB) and 511 (silence). If a driver does not support the whole range, it will
automatically limit itself so you can still call it with the extreme values.

511 is a special value that allows e.g. the audio driver to turn itself off (supported by e.g.
AUODAC). Use with caution!

Example:
volume = ioctl(fp, IOCTL_AUDIO_GET_VOLUME, NULL);

11.5.2 IOCTL_AUDIO_SET_VOLUME

Set volume. Scale for volume is the same as for IOCTL_AUDIO_GET_VOLUME (Chap-
ter 11.5.1).

Example:
/* Set full scale volume */
if (ioctl(fp, IOCTL_AUDIO_SET_VOLUME, (char *)(256))) {

printf("Couldn’t set volume\n");
}

Rev. 3.66a 2023-02-28 Page 65(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.6 Miscellaneous Controls

11.6.1 IOCTL_AUDIO_GET_SAMPLE_COUNTER

Get sample counter. This value may be used to synchronize input and output (e.g. by
the driver AUXSYNCS, Chapter 7.9.1).

Example:
s_int32 sampleCounter;
if (ioctl(fp, IOCTL_AUDIO_GET_SAMPLE_COUNTER, (char *)(&sampleCounter))) {

printf("Couldn’t get sample counter\n");
}

11.6.2 IOCTL_AUDIO_GET_OVERFLOWS

Get overflow sample counter for the input buffer.

If this number changes while an audio input program is running, this is an indication of
a program performance or input/output buffer size issue.

If nobody cosumes samples from the input audio driver, this value increases at the rate of
the sample counter that can be read with IOCTL_AUDIO_GET_SAMPLE_COUNTER.

• Only for drivers with input

Example:
s_int32 overFlow;
if (ioctl(fp, IOCTL_AUDIO_GET_OVERFLOWS, (char *)(&overFlow))) {

printf("Couldn’t get overflow counter\n");
}

11.6.3 IOCTL_AUDIO_GET_UNDERFLOWS

Get underflow sample counter for the output buffer.

If this number changes while an audio output program is running, this is an indication of
a program performance or input/output buffer size issue.

If nobody produces samples for the output audio driver, this value increases at the rate of
the sample counter that can be read with IOCTL_AUDIO_GET_SAMPLE_COUNTER.

• Only for drivers with output

Example:
s_int32 underFlow;
if (ioctl(fp, IOCTL_AUDIO_GET_UNDERFLOWS, (char *)(&underFlow))) {

printf("Couldn’t get underflow counter\n");
}

Rev. 3.66a 2023-02-28 Page 66(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.6.4 IOCTL_AUDIO_SELECT_INPUT

Select analog input when using analog input driver AUIADC. Parameter bitmask must
have one stereo element, or one left and one right element. Definitions can be found in
<aucommon.h> .

Stereo elements:
• AID_FM

Left elements:
• AID_LINE1_1, AID_LINE3_1, AID_LINE2_1, AID_MIC1, AID_DIA1

Right elements:
• AID_LINE1_2, AID_LINE3_2, AID_LINE2_2, AID_MIC2, AID_DIA2, AID_DIA3,

AID_LINE1_3

• This ioctl() is only applicable to the AUIADC driver.
• Optionally, AID_DEC6 may also be defined. It activates the high-quality down-by-6

decimator.

Example:
s_int32 sampleCounter;
if (ioctl(fp,IOCTL_AUDIO_SELECT_INPUT,(char *)(AID_LINE1_1|AID_LINE1_3))) {

printf("Couldn’t select input\n");
}

Rev. 3.66a 2023-02-28 Page 67(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.7 Fractional Sample Rates

For most audio drivers, setting the sample rate with an accuracy of 1 Hz is enough. How-
ever, some drivers are internally capable of setting the sample rate with better accuracy.
As an example the analog output driver AUODAC.DL3 can set the sample rate with an
accuracy of approximately 0.09 Hz. This makes a driver more useful when streaming
audio in slave mode, e.g. when using the AUXSYNCS.DL3 synchronization driver.

Because being able to set the sample rate with higher than 1 Hz accuracy was a new
VSOS feature for 2016, it was important to maintain compatibility with older software
that is incapable of setting the sample rate with sub-hertz accuracy.

To set a fractional sample rate, ioctl()’s IOCTL_AUDIO_SET_RATE_AND_BITS,
IOCTL_AUDIO_SET_IRATE, and IOCTL_AUDIO_SET_ORATE all can take their pa-
rameters in a 32-bit integer-compatible fractional representation, where bits 30:24 of
the sample rate parameter represent 1/128 Hz increments, as shown in the following
table.

32-bit fractional sample rate representation
Bits Range Description

31 0 Not used, set to 0
30:24 0..127 Sample rate fractions in 1/128 Hz

23:0 0..16777215 Sample rate integer part in Hz

32-bit fractional sample rate examples
Sample rate Representation

44100 Hz 0x0000ac44
44100 1

128 Hz 0x0100ac44
44100.5 Hz 0x4000ac44

44100127
128 Hz 0x7f00ac44

Audio drivers which are not interested in the sample rate’s fractional part, mask away
bits 30:24 from ioctl() sample rate setting parameters.

To maintain compatilibity with software unaware of the fractional sample rate presenta-
tion format, IOCTL_AUDIO_GET_IRATE and IOCTL_AUDIO_GET_ORATE only return
the integer portion of the sample rate.

Rev. 3.66a 2023-02-28 Page 68(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

12 Controlling Audio from VSOS Shell with UiMessages

When using the VSOS Shell, some audio functions may be controlled even if running
a VSOS program that doesn’t take audio controls. If the TTY is not in RAW mode, the
following escape sequences defined in <uimessages.h> may be sent to the shell.

12.1 Setting Volume anywhere from VSOS Shell

Note that <B> here means sending ASCII code 2, invoked in most terminal emulation
programs by pushing Ctrl-B.

Volume up by 1/2 dB:
<B>111ms

Volume down by 1/2 dB:
<B>112ms

Set attenuation to -HH/2 dB, where HH is a hexadecimal number:
<B>206mHHs

Example:
To set volume to -20 dB, you need to send 40 = 0x28:
<B>206m28s

12.2 Sending Equalizer Controls from VSOS Shell

The filters are accessed with UiMessages that have the following format, where X is the
filter number (0..f), and YY is the 16-bit signed value presented as an unsigned 16-bit
hexadecimal number. <B>21XmYYs

Example:
Let’s assume we have the following configuration lines in config.txt:

RUN SETEQU 1 3 100 0 0.7
RUN SETEQU 2 3 10000 0 0.7

Now, to set bass (filter channel 1) to +6 dB (6), send the following command:
<B>210m6s

To set treble (filter channel 2) to -12 dB (0xfff4), send the following command:
<B>211mfff4s

Up To 16 channels may be accesses with messages ranging from 0x210 to 0x21f.

Rev. 3.66a 2023-02-28 Page 69(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

13 Audio Decoders

Library audiodec automatically chooses between many Audio Decoders when presented
an audio file. The libraries, their respective decode audio formats, and their clock rate
requirements, are presented below.

NOTE: The clock speeds have been tested with a Class 4 SD card and “typical test
files”. While VLSI believes the information to be accurate, clock rates should still be
interpreted as estimates. The estimates are given for a system with a typical interrupt
load and with a 8 KiW audio output buffer. An example S:CONFIG.TXT configuration file
that sets the system up for best playback audio performance is provided in file con-
fig_audio_decoders.txt in the VSOS Root and Libraries Source Code package.

Audio Decoders
LibName Format Description
decaac AAC AAC in ADTS and MP4 containers (.aac, .m4a, .mp4, .3gpp)
decac3 AC3 AC3 decoded into stereo
decaiff AIFF Apple uncompressed PCM format
decalac ALAC Apple lossless in MP4 (.mp4, .m4a) or CAFF (.caf) container
decape APE Monkey’s audio
decdsd DSD DSD bitstream files in .DSF and .DFF container, LSb first only
decflac FLAC Free Lossless Audio Codec
decmp3 MP3 MPEG audio layer 3
decopus Opus RAW VLSI version of RAW Opus data
decvorb Ogg Vorbis Vorbis audio in Ogg container
decwav RIFF WAV Many RIFF WAV subformats
decwma WMA Windows Media Audio
mp4file - Determines if MP4 file contains ALAC or AAC

NOTE: For formats where there may be more than 2 audio channels, only files up to 2
audio channels are supported.

Library decaac subformats and clock requirements
Clock Description
30 MHz AAC up to 48 kHz, 280 kbit/s

Library decaiff subformats and clock requirements
Clock Description
12 MHz AIFF up to 96 kHz 16-bit
18 MHz AIFF up to 96 kHz 24-bit
37 MHz AIFF up to 192 kHz 24-bit
61 MHz AIFF up to 352 kHz 24-bit

Library decac3 subformats and clock requirements
Clock Description
– MHz 5.1 channels at 48 kHz, – kbit/s

Rev. 3.66a 2023-02-28 Page 70(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Library decalac subformats and clock requirements
Clock Description
37 MHz Apple lossless up to 48 kHz 16-bit
74 MHz Apple lossless up to 96 kHz 24-bit

Library decape subformats and clock requirements
Clock Description
61 MHz Monkey’s Audio up to 48 kHz 24-bit, profile Fast
67 MHz Monkey’s Audio up to 48 kHz 24-bit, profile Normal
79 MHz Monkey’s Audio up to 48 kHz 24-bit, profile High
N/A Monkey’s Audio, profiles Extra High and Insane

Library decdsd subformats and clock requirements
Clock Description
49 MHz DSD64 (2.8 MHz, 1-bit)
86 MHz DSD128 (5.6 MHz, 1-bit)
92 MHz DSD256 (11.3 MHz, 1-bit)

Library decflac subformats and clock requirements
Clock Description
12 MHz FLAC up to 16 kHz, 16-bit
18 MHz FLAC up to 32 kHz, 16-bit
25 MHz FLAC up to 48 kHz, 16-bit
37 MHz FLAC up to 96 kHz, 16-bit
43 MHz FLAC up to 96 kHz, 24-bit

Library decmp3 subformats and clock requirements
Clock Description
12 MHz MP3 at 8 kHz, 8 kbit/s
31 MHz MP3 up to 48 kHz, 320 kbit/s

Library decopus subformats and clock requirements
Clock Description
– MHz Mono, 8 kHz, – kbit/s
– MHz Mono, 16 kHz, – kbit/s

Library decvorb subformats and clock requirements
Clock Description
12 MHz Ogg Vorbis up to 16 kHz, 73 kbit/s
18 MHz Ogg Vorbis up to 32 kHz, 151 kbit/s
37 MHz Ogg Vorbis up to 48 kHz, 346 kbit/s
55 MHz Ogg Vorbis up to 96 kHz, 362 kbit/s

Rev. 3.66a 2023-02-28 Page 71(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Library decwav subformats and clock requirements
Clock Description
12 MHz RIFF WAV up to 96 kHz 16-bit
18 MHz RIFF WAV up to 96 kHz 24-bit
31 MHz RIFF WAV up to 192 kHz 24-bit (e.g. DXD format)
55 MHz RIFF WAV up to 352 kHz 24-bit (e.g. DXD format)
68 MHz RIFF WAV up to 352 kHz 32-bit floating-point (e.g. DXD format)

Library decwma subformats and clock requirements
Clock Description
61 MHz All WMA files in VLSI Solution’s internal test suite

Rev. 3.66a 2023-02-28 Page 72(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

13.1 Decoder Loop Functionality

Some of the audio decoders include a chance to play a part of the audio file in a loop.

Depending on the decoder, there may or may not be support for the

The list of audio decoders that contains loop functionality, and the level of support, is
provided in the following table:

Audio decoders with loop functionality
LibName Set Sample Smooth3 Comments

timing1 accurate2

decvorb Yes Yes No -
decwav Yes Yes4 No -

1 If this feature is not available, the decoder is only able to loop the complete audio file.
To make sure user software is compatible with potential future versions of the driver
which may start supporting the Set Timing feature, Loop structure should be set as
follows:
loop->startSeconds = loop->endSeconds = loop->endSamples = 0;
loop->endSeconds = 0xFFFFFFFFU;
2 If this feature is available, looping is sample-accurate. If not available, loop start and
stop points may vary slightly.
3 If this feature is available, loop supports the CFL_DECLICK flag which declicks the loop
but is not sample accurate. If this feature is missing from the decoder, flag CFL_DECLICK
is ignored.
4 Exception: IMA ADPCM is not sample accurate.

An example of how to use the loop feature is provided in solution PlayFileLoop in the
VSOS Root and Libraries Source Code package. Read the README.TXT file for details.

Rev. 3.66a 2023-02-28 Page 73(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

14 Audio Encoders

There are currently two Audio Encoders. They are for Ogg Vorbis and MP3 formats.
Both are intended to operate properly at the 60 MHz standard operating speed. For
details of how to use them, see the source code for the VSIDE solution Rec (more
information for Rec is available in the VSOS Shell document).

14.1 ENCVORB.DL3 - Ogg Vorbis Encoder

ENCVORB.DL3 offers a high-quality encoder for the free end open Ogg Vorbis audio
format. This is the recommended format for those users that don’t specifically need the
MP3 format, and for whom the variable bitrate property of Ogg Vorbis is not a problem.

The Ogg Vorbis encoder is a Variable BitRate encoder, and works best when given an
encoding quality value. The range for the quality is from 0 and 10 (10 is the best; qualities
above 6 may require a higher clock speed than 60 MHz). If set to Constant bitrate, the
encoder will convert that to an approximate quality value, and still use Variable BitRate.

14.2 ENCMP3.DL3 - MP3 Encoder (VS1205 only)

ENCMP3.DL3 offers a high-quality encoder for the popular MP3 audio format. While
not capable of getting quite the same quality as Ogg Vorbis when using similar bitrates,
the MP3 encoder still offers high fidelity sound at bitrates between 160-192 kbit/s, and
acceptable speech quality at very much lower bitrates.

The MP3 encoder can operate either with a Variable BitRate or Constant BitRate en-
coder depending on whether a quality or bitrate value is set. For best quality per bit,
Variable BitRate is recommended.

14.3 ENCOPUS.DL3 - Opus Raw Encoder

ENCOPUS.DL3 is a speech encoder that implements Opus Silk-endoding for highly
compressed speech. It provides intelligible speech at bitrates below 10 kbit/s.

The storage format is not the usual Ogg Encapsulation because it would either intro-
duce a prohibitive system delay or, alternatively, inefficient compression. Instead VLSI’s
proprietary Opus RAW format variant is used.

14.4 ENCFLAC.DL3 - FLAC Encoder

ENCFLAC.DL3 offers a lossless encoder for 16-bit audio up to 48 kHz. Typically a 48 kHz
16-bit stream is compressed from 1.536 Mbit/s to 0.8-1.3 Mbit/s. Because encoding is

Rev. 3.66a 2023-02-28 Page 74(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

lossless, compression efficiency depends on the audio data.

Because the bitrates are much higher than for the Ogg Vorbis or MP3 encoders, storing
the result to e.g. an SD card may require a separate buffer memory.

Rev. 3.66a 2023-02-28 Page 75(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

15 Latest Document Version Changes

This chapter describes the latest changes to this document.

Version 3.66a, 2023-02-28

• Added Chapter 7.5, Analog Input 3-Channel ADC Audio Driver.

• Added displaying number of channels to Chapter 9, Audio Control Programs.

• Added Chapter 11.3, Controlling Number of Audio Channels.

• Revised Chapter 7, Audio Drivers, and added example Chapter 7.1.1, Examples
of Loading and Unloading Audio Drivers.

• Added description of command line parameters to Chapter 7.4, Analog Input ADC
Audio Driver.

• Added Chapter 8.7, Matrix driver: 3 Channels to 2 Channels.

• Clarified text as well as Figures 12, 13 and added example to Chapter 8, Audio
Filter Drivers.

• All audio drivers that dynamically allocate their audio buffers have been updated
so that they can allocate buffers sizes that are not powers of 2.

Version 3.66, 2023-02-14

• Updated version number for VSOS 3.66.

Version 3.65b, 2022-03-24

• Added new drivers FTIREV.DL3 and FTIREV23 to Chapter 8.4, Reverb Generator
Audio Drivers.

Version 3.65a, 2022-03-23

• Rewrote introduction to Chapter 7.6, I2S Audio Drivers, and added a new driver,
AUOI2SMV.DL3.

Version 3.65, 2021-12-23

• Added Chapter 7.8, Pulse Width Modulation Output Driver.

• Added Chapter 8.6, Mono / Differential Audio Drivers.

• Added AC3 and Opus Raw to Chapter 13, Audio Decoders.

• Added Opus Raw Chapter 14.3, ENCOPUS.DL3.

Rev. 3.66a 2023-02-28 Page 76(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Version 3.60, 2020-10-13

• Better explanation of sample rate availability for driver AUODAC.DL3 in Chap-
ter 7.2.1, Driver AUODAC.DL3.

• Added mention of new volume control for driver AUOOSET.DL3 in Chapter 7.3.1,
Driver AUOOSET.DL3.

• Other, minor modifications and typo corrections.

Version 3.58, 2019-08-24

• Added mention that all S/PDIF drivers are incompatible with USB in Chapter 7.7,
S/PDIF Audio Drivers.

• Replaced incorrect text IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE with
IOCTL_SET_OUTPUT_BUFFER_SIZE in Chapter 11.4.6,
IOCTL_SET_OUTPUT_BUFFER_SIZE.

Version 3.57, 2019-04-10

Minor corrections, updated for VSOS 3.57.

Version 3.55b, 2018-06-12

Added Chapter 8.5, Noise Killer Drivers.

Version 3.55a, 2018-04-05

• Added new first reflection flag “-f” to Reverb Generators in Chapter 8.4, Reverb
Generator Audio Drivers.

• Added another Reverb Generator Driver and Chapter 8.4.4, Driver FTOREV23.

Version 3.55, 2018-04-05

Added Chapter 8.4, Reverb Generator Audio Drivers.

Version 3.52, 2018-01-22

Release for VSOS 3.52, no major changes.

Rev. 3.66a 2023-02-28 Page 77(78)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

16 Contact Information

VLSI Solution Oy
Entrance G, 2nd floor

Hermiankatu 8
FI-33720 Tampere

FINLAND

URL: http://www.vlsi.fi/
Phone: +358-50-462-3200

Commercial e-mail: sales@vlsi.fi

For technical support or suggestions regarding this document, please participate at
http://www.vsdsp-forum.com/

For confidential technical discussions, contact
support@vlsi.fi

Rev. 3.66a 2023-02-28 Page 78(78)


	VS1005 VSOS Audio Subsystem Front Page
	Table of Contents
	Introduction
	Disclaimer
	Definitions
	Overview
	Requirements
	The VS1005 VSOS Audio Subsystem
	Standard Audio
	VSOS Audio Output Example Program
	VSOS Audio Input/Output Example Program

	Audio Drivers
	General
	Examples of Loading and Unloading Audio Drivers

	Analog Output DAC Audio Driver
	Driver AUODAC.DL3

	Analog Output Side Path Audio Driver
	Driver AUOOSET.DL3

	Analog Input ADC Audio Driver
	Driver AUIADC.DL3

	Analog Input 3-Channel ADC Audio Driver
	Driver AUI3ADC.DL3

	I2S Audio Drivers
	Driver AUOI2SMA.DL3
	Driver AUOI2SMV.DL3
	Driver AUOI2SM.DL3
	Driver AUOI2SS.DL3
	Driver AUII2SM.DL3
	Driver AUII2SS.DL3
	Driver AUXI2SM.DL3
	Driver AUXI2SS.DL3

	S/PDIF Audio Drivers
	Driver AUOSPDA.DL3
	Driver AUISPD.DL3
	Driver AUXSPD.DL3
	Driver AUXSPD48.DL3
	Driver AUOSP48S.DL3
	Driver AUOSPD48.DL3

	Pulse Width Modulation Output Driver
	Driver AUOPWM.DL3

	Slave Audio Input Synchronization Driver
	Driver AUXSYNCS.DL3

	Audio Input to Output Copying Driver
	Driver AUXPLAY.DL3


	Audio Filter Drivers
	Equalizer Filter Driver
	Driver FTOEQU.DL3
	Control Program SETEQU.DL3

	DC Offset / AGC Filter Drivers
	Driver FTIDCBL.DL3
	Driver FTIAGC.DL3
	Control Program SETAGC.DL3

	Pitch Shifter / Speed Shifter Filter Driver
	Driver FTOPITCH.DL3
	Control Program SETPITCH.DL3

	Reverb Generator Filter Drivers
	Driver FTIREV.DL3
	Driver FTOREV.DL3
	Driver FTIREV23.DL3
	Driver FTOREV23.DL3
	Control Program SETREV.DL3

	Noise Killer Filter Driver
	Driver FTINOISE.DL3
	Control Program SETNOISE.DL3

	Mono / Differential Filter Drivers
	Driver FTIMONO.DL3
	Driver FTOMONO.DL3
	Control Program SETMONO.DL3

	Matrix driver: 3 Channels to 2 Channels
	Driver FTI3TO2.DL3
	Driver FTO3TO2.DL3
	Control Program SET3TO2.DL3


	Audio Control Programs
	Control Program AUINPUT.DL3
	Control Program AUOUTPUT.DL3

	Configuration Examples
	Minimal config.sys for Playback
	config.sys for Playback with Bass/Treble Controls and automatic I2S + S/PDIF Outputs
	Basic config.sys for Recording
	Versatile config.sys for Recording with AGC and I2S + S/PDIF Outputs
	config.sys for Playback/Recording from I2S in Slave Mode, and Monitoring to DAC with Automatic Synchronization
	Loading/Unloading Drivers Using the VSOS Shell

	VSOS Audio ioctl() Controls
	Resetting a Driver
	IOCTL_RESTART

	Controlling Sample Rate and Bit Width
	IOCTL_AUDIO_SET_RATE_AND_BITS
	IOCTL_AUDIO_GET_IRATE, IOCTL_AUDIO_GET_ORATE
	IOCTL_AUDIO_SET_IRATE, IOCTL_AUDIO_SET_ORATE
	IOCTL_AUDIO_GET_BITS
	IOCTL_AUDIO_SET_BITS

	Controlling Number of Audio Channels
	IOCTL_AUDIO_GET_ICHANNELS, IOCTL_AUDIO_GET_OCHANNELS
	IOCTL_AUDIO_SET_ICHANNELS, IOCTL_AUDIO_SET_OCHANNELS

	Controlling Audio Buffers
	IOCTL_AUDIO_GET_INPUT_BUFFER_FILL
	IOCTL_AUDIO_GET_INPUT_BUFFER_SIZE
	IOCTL_AUDIO_SET_INPUT_BUFFER_SIZE
	IOCTL_AUDIO_GET_OUTPUT_BUFFER_FREE
	IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE
	IOCTL_AUDIO_SET_OUTPUT_BUFFER_SIZE

	Volume Control
	IOCTL_AUDIO_GET_VOLUME
	IOCTL_AUDIO_SET_VOLUME

	Miscellaneous Controls
	IOCTL_AUDIO_GET_SAMPLE_COUNTER
	IOCTL_AUDIO_GET_OVERFLOWS
	IOCTL_AUDIO_GET_UNDERFLOWS
	IOCTL_AUDIO_SELECT_INPUT

	Fractional Sample Rates

	Controlling Audio from VSOS Shell with UiMessages
	Setting Volume anywhere from VSOS Shell
	Sending Equalizer Controls from VSOS Shell

	Audio Decoders
	Decoder Loop Functionality

	Audio Encoders
	ENCVORB.DL3 - Ogg Vorbis Encoder
	ENCMP3.DL3 - MP3 Encoder (VS1205 only)
	ENCOPUS.DL3 - Opus Raw Encoder
	ENCFLAC.DL3 - FLAC Encoder

	Latest Document Version Changes
	Contact Information

