
PUBLIC DOCUMENT

VS1005 VSOS AUDIO SUBSYSTEM

VS1005g

All information in this document is provided as-is without warranty. Features are
subject to change without notice.

Revision History
Rev. Date Author Description

3.60 2020-10-13 HH Updated for VSOS 3.60.
3.58 2019-08-24 HH Added e.g. decape.dl3 to Chapter 13.
3.57 2019-04-10 HH Minor corrections.
3.55b 2018-06-22 HH Added Noise Killer audio driver.
3.55a 2018-04-24 HH New features to Reverb Generator audio driver.
3.55 2018-04-05 HH Added Reverb Generator audio driver.
3.52 2018-01-22 HH Updated for VSOS 3.52.
3.42 2017-05-18 HH More S/PDIF drivers, FLAC Encoder, Pitch Shifter.
3.40 2016-11-03 HH Updated for VSOS 3.40.
3.30a 2016-07-14 HH Bug patch release for VSOS 3.30.
3.30 2016-06-22 HH Updated for VSOS 3.30.
1.03 2016-02-15 HH New AUXPLAY, fract. rates, updated AuOutput.
1.02 2016-01-27 HH Added AuOutput app and Slave Sync drivers.
1.01 2015-09-14 HH Corrections, e.g. Figure 8.
1.00 2015-09-04 HH Initial release.

Rev. 3.60 2020-10-13 Page 1(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Contents

VS1005 VSOS Audio Subsystem Front Page 1

Table of Contents 2

1 Introduction 6

2 Disclaimer 7

3 Definitions 7

4 Overview 8

5 Requirements 9

6 The VS1005 VSOS Audio Subsystem 10
6.1 Standard Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 VSOS Audio Output Example Program . . . . . . . . . . . . . . . . . . . . 11
6.3 VSOS Audio Input/Output Example Program . . . . . . . . . . . . . . . . 12

7 Audio Drivers 13
7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.2 Analog Output DAC Audio Drivers . . . . . . . . . . . . . . . . . . . . . . 15

7.2.1 Driver AUODAC.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.3 Analog Side Path Audio Drivers . . . . . . . . . . . . . . . . . . . . . . . . 16

7.3.1 Driver AUOOSET.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.4 Analog Input ADC Audio Drivers . . . . . . . . . . . . . . . . . . . . . . . 17

7.4.1 Driver AUIADC.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.5 I2S Audio Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7.5.1 Driver AUOI2SMA.DL3 . . . . . . . . . . . . . . . . . . . . . . . . 19
7.5.2 Driver AUOI2SM.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.5.3 Driver AUOI2SS.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.5.4 Driver AUII2SM.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.5.5 Driver AUII2SS.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.5.6 Driver AUXI2SM.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.5.7 Driver AUXI2SS.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.6 S/PDIF Audio Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.6.1 Driver AUOSPDA.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.6.2 Driver AUISPD.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.6.3 Driver AUXSPD.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.6.4 Driver AUXSPD48.DL3 . . . . . . . . . . . . . . . . . . . . . . . . 25
7.6.5 Driver AUOSP48S.DL3 . . . . . . . . . . . . . . . . . . . . . . . . 25
7.6.6 Driver AUOSPD48.DL3 . . . . . . . . . . . . . . . . . . . . . . . . 25

7.7 Slave Audio Input Synchronization Drivers . . . . . . . . . . . . . . . . . . 26
7.7.1 Driver AUXSYNCS.DL3 . . . . . . . . . . . . . . . . . . . . . . . . 26

7.8 Audio Input to Output Copying Driver . . . . . . . . . . . . . . . . . . . . . 27
7.8.1 Driver AUXPLAY.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 Audio Filter Drivers 28

Rev. 3.60 2020-10-13 Page 2(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.1 Equalizer Audio Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.1 Driver FTOEQU.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.2 Control Program SETEQU.DL3 . . . . . . . . . . . . . . . . . . . . 30

8.2 DC Offset/AGC Audio Drivers . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2.1 Driver FTIDCBL.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2.2 Driver FTIAGC.DL3 . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2.3 Control Program SETAGC.DL3 . . . . . . . . . . . . . . . . . . . . 32

8.3 Pitch Shifter / Speed Shifter Audio Drivers . . . . . . . . . . . . . . . . . . 33
8.3.1 Driver FTOPITCH . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.3.2 Control Program SETPITCH . . . . . . . . . . . . . . . . . . . . . 33

8.4 Reverb Generator Audio Drivers . . . . . . . . . . . . . . . . . . . . . . . 34
8.4.1 Driver FTOREV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.4.2 Driver FTOREV23 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.4.3 Control Program SETREV . . . . . . . . . . . . . . . . . . . . . . . 36

8.5 Noise Killer Audio Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.5.1 Driver FTINOISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.5.2 Control Program SETNOISE . . . . . . . . . . . . . . . . . . . . . 39

9 Audio Control Programs 41
9.1 Control Program AUINPUT.DL3 . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2 Control Program AUOUTPUT.DL3 . . . . . . . . . . . . . . . . . . . . . . 42

10 Configuration Examples 43
10.1 Minimal config.sys for Playback . . . . . . . . . . . . . . . . . . . . . . . . 43
10.2 config.sys for Playback with Bass/Treble Controls and I2S + S/PDIF Outputs 43
10.3 Basic config.sys for Recording . . . . . . . . . . . . . . . . . . . . . . . . 43
10.4 Versatile config.sys for Recording with AGC and I2S + S/PDIF Outputs . . 44
10.5 config.sys for Playback/Recording from I2S in Slave Mode, and Monitor-

ing to DAC with Automatic Synchronization . . . . . . . . . . . . . . . . . 44
10.6 Loading/Unloading Drivers Using the VSOS Shell . . . . . . . . . . . . . . 44

11 VSOS Audio ioctl() Controls 46
11.1 Resetting a Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11.1.1 IOCTL_RESTART . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11.2 Controlling Sample Rate and Bit Width . . . . . . . . . . . . . . . . . . . . 47

11.2.1 IOCTL_AUDIO_SET_RATE_AND_BITS . . . . . . . . . . . . . . . 47
11.2.2 IOCTL_AUDIO_GET_IRATE, IOCTL_AUDIO_GET_ORATE . . . . 47
11.2.3 IOCTL_AUDIO_SET_IRATE, IOCTL_AUDIO_SET_ORATE . . . . 48
11.2.4 IOCTL_AUDIO_GET_BITS . . . . . . . . . . . . . . . . . . . . . . 48
11.2.5 IOCTL_AUDIO_SET_BITS . . . . . . . . . . . . . . . . . . . . . . 48

11.3 Controlling Audio Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.3.1 IOCTL_AUDIO_GET_INPUT_BUFFER_FILL . . . . . . . . . . . . 49
11.3.2 IOCTL_AUDIO_GET_INPUT_BUFFER_SIZE . . . . . . . . . . . . 49
11.3.3 IOCTL_AUDIO_SET_INPUT_BUFFER_SIZE . . . . . . . . . . . . 49
11.3.4 IOCTL_AUDIO_GET_OUTPUT_BUFFER_FREE . . . . . . . . . . 49
11.3.5 IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE . . . . . . . . . . 50
11.3.6 IOCTL_AUDIO_SET_OUTPUT_BUFFER_SIZE . . . . . . . . . . 50

11.4 Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Rev. 3.60 2020-10-13 Page 3(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.4.1 IOCTL_AUDIO_GET_VOLUME . . . . . . . . . . . . . . . . . . . . 51
11.4.2 IOCTL_AUDIO_SET_VOLUME . . . . . . . . . . . . . . . . . . . . 51

11.5 Miscellaneous Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
11.5.1 IOCTL_AUDIO_GET_SAMPLE_COUNTER . . . . . . . . . . . . . 52
11.5.2 IOCTL_AUDIO_GET_OVERFLOWS . . . . . . . . . . . . . . . . . 52
11.5.3 IOCTL_AUDIO_GET_UNDERFLOWS . . . . . . . . . . . . . . . . 52
11.5.4 IOCTL_AUDIO_SELECT_INPUT . . . . . . . . . . . . . . . . . . . 53

11.6 Fractional Sample Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

12 Controlling Audio from VSOS Shell with UiMessages 55
12.1 Setting Volume anywhere from VSOS Shell . . . . . . . . . . . . . . . . . 55
12.2 Sending Equalizer Controls from VSOS Shell . . . . . . . . . . . . . . . . 55

13 Audio Decoders 56
13.1 Decoder Loop Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 58

14 Audio Encoders 59
14.1 ENCVORB.DL3 - Ogg Vorbis Encoder . . . . . . . . . . . . . . . . . . . . 59
14.2 ENCMP3.DL3 - MP3 Encoder (VS1205 only) . . . . . . . . . . . . . . . . 59
14.3 ENCFLAC.DL3 - FLAC Encoder . . . . . . . . . . . . . . . . . . . . . . . 59

15 Latest Document Version Changes 60

16 Contact Information 62

Rev. 3.60 2020-10-13 Page 4(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

List of Figures

1 VS1005g playback (DA) audio paths . . . . . . . . . . . . . . . . . . . . . 13
2 VS1005g recording (AD, FM, etc) signal paths . . . . . . . . . . . . . . . 14
3 AUODAC.DL3 signal paths shown in bold brown . . . . . . . . . . . . . . 15
4 AUOOSET.DL3 signal paths shown in bold brown . . . . . . . . . . . . . 16
5 AUIADC.DL3 selectable input signal paths shown in bold green for the

left channel, and bold brown for the right channel. Alternative RF audio
path shown in bold magenta . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 AUOI2SMA.DL3 audio path shown in bold brown . . . . . . . . . . . . . 19
7 AUOI2SM.DL3 audio path shown in bold brown . . . . . . . . . . . . . . 20
8 AUII2SM.DL3 audio path shown in bold brown . . . . . . . . . . . . . . . 21
9 AUOSPDA.DL3 audio path shown in bold brown. Software driver con-

necting to the filterless sample rate converter (bold green) shown in bold
magenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10 A filter input driver connects to the stdaudioin chain . . . . . . . . . . . . . 28
11 A filter output driver connects to the stdaudioout chain . . . . . . . . . . . 28
12 Audio with exaggerated DC offset . . . . . . . . . . . . . . . . . . . . . . . 31
13 Audio with DC blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
14 Reverb Generator FTOREV signal paths . . . . . . . . . . . . . . . . . . . 34
15 Reverb Generator FTOREV23 signal paths . . . . . . . . . . . . . . . . . 35

Rev. 3.60 2020-10-13 Page 5(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

1 Introduction

The VS1005 VSOS offers many, versatile audio drivers.

This document explains how to use the numerous drivers to your best advantage.

After the disclaimer and definitions in Chapters 2 and 3, an overview of the Audio sub-
system is given in Chapter 4, Overview, followed by requirements in Chapter 5, Require-
ments.

The VSOS audio subsystem is presented in Chapter 6, The VS1005 VSOS Audio Sub-
system.

The currently existing audio drivers are presented in Chapter 7, Audio Drivers, followed
by a presentation of the currently existing filters in Chapter 8, Audio Driver Filters, and
control programs in Chapter 9, Audio Control Programs,

Some examples on how to start audio drivers from config.txt or the VSOS Shell are
shown in Chapter 10, Configuration Examples.

Chapter 12 shows how to control some aspects on audio using UiMessages, even if the
program that is currently running doesn’t have any audio controls.

Audio Decoders are presented in Chapter 13, and Audio Encoders in Chapter 14.

The document ends with Chapter 15, Latest Document Version Changes, and Chap-
ter 16, Contact Information.

Rev. 3.60 2020-10-13 Page 6(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

2 Disclaimer

VLSI Solution makes everything it can to make this documentation as accurate as pos-
sible. However, no warranties or guarantees are given for the correctness of this docu-
mentation.

3 Definitions

DSP Digital Signal Processor.

I-mem Instruction Memory.

LSW Least Significant (16-bit) Word.

MSW Most Significant (16-bit) Word.

RISC Reduced Instruction Set Computer.

VS_DSP4 VLSI Solution’s DSP core.

VSIDE VLSI Solution’s Integrated Development Environment.

VSOS VLSI Solution’s Operating System.

X-mem X Data Memory.

Y-mem Y Data Memory.

Rev. 3.60 2020-10-13 Page 7(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

4 Overview

The VSOS Audio Subsystem provides numerous drivers to handle the many audio In-
put/Output options of VS1005. The audio drivers can be controlled either with ioctl()
calls from the C language, or from VSOS Shell control program.

While instructions for how to use each audio driver are provided in the README.TXT
or documentation .PDF files of the drivers, this document will provide an overview of
the capabilities of the drivers. However, for details, refer to documentation of the audio
drivers themselves.

Rev. 3.60 2020-10-13 Page 8(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

5 Requirements

To test the audio drivers in this document, you need to have the following building blocks:

• VS1005g Developer Board. The VS1005g BreakOut Board should also work, but
these instructions have been tested with the DevBoard.
• Latest version of VSOS installed (at least v3.23, released 2015-09-04).
• USB cable between DevBoard and PC for uploading new software.
• If you want to use the VSOS Shell environment, you will also need:

– UART or USB->UART cable connected between DevBoard and PC for using
the UART interface. Data speed is 115200 bps, format is 8N1.

– Your favorite UART Terminal Emulation program installed on the PC. Read
the “VS1005 VSOS Shell” for further details.

When all of this is in order, you are ready to test the VSOS Audio Subystem.

Rev. 3.60 2020-10-13 Page 9(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

6 The VS1005 VSOS Audio Subsystem

As a default, VSOS offers a simple audio output driver that lets the user output 16-bit
mono or stereo audio to the VS1005 analog output pins LEFT and RIGHT, and control
the sample rate.

VSOS Audio makes it very easy to produce sound with its standard-C-like standard
audio interface (Chapter 6.1, Standard Audio). Instead of being forced to use audio-
specific I/O routines, audio looks just like files.

More complex audio operations and redirections can be done using the audio drivers,
described Chapter 7, Audio Drivers.

6.1 Standard Audio

VSOS offers the user a standard audio source and destination, although the audio
source is only activated if an appropriate audio input driver is loaded (Chapter 7). Called
stdaudioin and stdaudioout, standard audio file handles are to sound much like stdin
and stdout are to standard input and output in standard C. It is not allowed for the user
to close standard audio input or output files, but the user may modify their parameters.

By default, stdaudioout is connected to analog output pins LEFT and RIGHT, although
this can be changed with appropriate audio drivers.

Both standard audio input and output open in stereo, 16-bit, 48 kHz mode. These pa-
rameters can be changed by the user, with driver and hardware dependent limitations.

The user may use all standard read and write operations to read from and write to
standard audio. It is, however, required that fread() / fwrite() functions are used instead
of character-based operations like fgetc() and fprintf(). It is also recommended to handle
larger chunks of samples, like 32, at a time.

Stereo samples are stored in an interleaved fashion. In 32-bit mode, the least significant
word is stored first. This is the same as the native VSDSP 32-bit word order.

Audio sample buffer 16-bit word order
Audio format Word 0 Word 1 Word 2 Word 3
16-bit stereo Left 0 Right 0 Left 1 Right 1
32-bit stereo Left 0 LSW Left 0 MSW Right 0 LSW Right 0 MSW

Rev. 3.60 2020-10-13 Page 10(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

6.2 VSOS Audio Output Example Program

The following audio program example creates a low-intensity sine wave to the left chan-
nel, then outputs the samples.

#include <vo_stdio.h>

#include <stdlib.h>

#include <math.h>

#include <saturate.h>

#include <apploader.h>

#define SIN_TAB_SIZE 96

#define SIN_AMPLITUDE 1000 /* Max 32767 */

static const s_int16 __y sinTab[SIN_TAB_SIZE];

int main(void) {

// Remember to never allocate buffers from stack space. So, if you

// allocate the space inside your function, never forget "static"!

static s_int16 myBuf[2*SIN_TAB_SIZE];

int i;

/* Build sine table */

for (i=0; i<SIN_TAB_SIZE; i++) {

sinTab[i] = (s_int16)(sin(i*2.0*M_PI/SIN_TAB_SIZE)*SIN_AMPLITUDE);

}

while (1) {

// Clear buffer

memset(myBuf, 0, sizeof(myBuf));

// Create sine wave to the left channel.

for (i=0; i<SIN_TAB_SIZE; i++) {

myBuf[i*2] = sinTab[i];

}

// Write result

fwrite(myBuf, sizeof(s_int16), 2*SIN_TAB_SIZE, stdaudioout);

}

// Not really needed because there was a while(1) before

return EXIT_SUCCESS;

}

Rev. 3.60 2020-10-13 Page 11(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

6.3 VSOS Audio Input/Output Example Program

The following audio program reads audio from the default input, and sends it to the
default output, until the user pushes Ctrl-C in the VSOS Shell Environment.

#include <vo_stdio.h>

#include <apploader.h> // Contains LoadLibrary() and DropLibrary()

#include <consolestate.h>

#define BUFSIZE 128

ioresult main(char *parameters) {

static s_int16 myBuf[BUFSIZE];

if (!stdaudioin || !stdaudioout) {

printf("E: NO AUDIO IN OR OUT!\n");

return S_ERROR;

}

while (!(appFlags & APP_FLAG_QUIT)) { /* Until Ctrl-C is pushed */

fread(myBuf, sizeof(s_int16), BUFSIZE, stdaudioin);

fwrite(myBuf, sizeof(s_int16), BUFSIZE, stdaudioout);

}

return S_OK;

}

Rev. 3.60 2020-10-13 Page 12(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7 Audio Drivers

VS1005g has multiple audio paths. This Chapter will explain which driver you will need
to attach each audio driver to your software.

7.1 General

Audio drivers are named using the following format:
AUdyyyyyz.DL3

where

Symbol Description
d Driver direction: I = input, O = output, X = Input+Output
yyyyy Driver name, max. 5 characters
z Optional M or S if e.g. I2S driver is Master or Slave

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

I2S_LEFT

I2S_RIGHT

SP_LDATA

SP_RDATA

24

24

24

24

24 24

24

24

24

DAC_VOL

32/16

SRC_CF

DAC +

output

drivers

I2S_CF

Analog

I2S_BCK,I2S_FRM

I2S_DO

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

RED:   Pin

BLUE: Register

SPDIF_OUT
encoder
S/PDIF

24/16

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

Figure 1: VS1005g playback (DA) audio paths

Figure 1 shows the VS1005 hardware output audio paths. Most of these have a driver
controlling them.

Rev. 3.60 2020-10-13 Page 13(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

FMR

FML

Mono

Right

Left

AD_CF_DEC6SEL

AD_CF_DEC6ENA

ANA_CF3
_GAIN2

ANA_CF0

ANA_CF0

ANA_CF3
_GAIN1

ANA_CF0

ANA_CF0

I

Q

BLUE: Register or register bit(s)

RED:   Pin

Digital
Analog and RF

18

18

AD_LEFT

DEC6_LEFT

DEC6_RIGHT

DIA1

LINE1_1

LINE2_1

LINE3_1

RF_N

RF_P

LINE1_2

LINE2_2

LINE3_2

LINE1_3 L

R
6

18

18

SP_LDATA

SP_RDATA
24

24

SPDIF_IN

24

AD_CF_ADFSADENA
AD_CF_

AD1

S/PDIF
decoder

demod.
FM

DIA2

DIA3

VCO

AD_RIGHT

AD_MONO

24

24

24

24

24

AD_CF_ADFS

FM_CF_UAD3

AD_CF_
AD3ENA

AD3

AD_CF_
ADENA

AD2

MIC2N

MIC2P

MIC1P

MIC1N

FM_CF_UAD1

FM_CF_UAD2

AD23_FLP

AD_CF_

AD_CF_AD3FS

Figure 2: VS1005g recording (AD, FM, etc) signal paths

Figure 2 shows the VS1005 hardware input audio paths. Many of these have a driver
controlling them.

Rev. 3.60 2020-10-13 Page 14(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.2 Analog Output DAC Audio Drivers

7.2.1 Driver AUODAC.DL3

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

I2S_LEFT

I2S_RIGHT

SP_LDATA

SP_RDATA

24

24

24

24

24 24

24

24

24

DAC_VOL

32/16

SRC_CF

DAC +

output

drivers

I2S_CF

Analog

I2S_BCK,I2S_FRM

I2S_DO

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

SPDIF_OUT
encoder
S/PDIF

24/16

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

RED text:   Pin

BLUE text: Register

Figure 3: AUODAC.DL3 signal paths shown in bold brown

Figure 3 shows the VS1005 high-quality, fully filtered analog output main audio path.

AUODAC.DL3 is the basic DAC output driver. It takes over the VSOS default driver
and offers a lot of funtionality over it, like 16-bit and 32-bit data transfers. It takes over
stdaudioout, so all software that writes to standard output will send audio to this driver.

The driver offers setting the sample rate with an approximately 0.09 Hz accuracy be-
tween 100 and 97500 Hz on VS1005g. On VS1005h, sample rate accuracy is generally
better. Audio is upconverted to an extremely high rate of 6.144 MHz by a high-quality
hardware sample rate upconverter.

Playback volume can be set with 0.5 dB accuracy between full level volume (-0 dB) and
-127 dB.

Note: On VS1005g, and using the standard 12.288 MHz crystal, some standard sample
rates can be played back accurately (or as accurately as the system clock crystal runs),
while some others have slight rounding errors. E.g. 96000, 48000, and 24000 Hz can
be played back exactly. However, 44100 Hz is played back at ≈44100.0366 Hz, and
8000 Hz is played back at ≈7999.9695 Hz. While these errors are of the same order
of magnitude as crystal speed errors and usually insignificant, intime they can break
internal sync between the ADC and DAC converters. When run on VS1005h, the driver
uses a “fractional sample rate” hardware feature that allows it to play such standard
sample rates as 8000, 16000, 32000, 11025, 22050, and 44100 accurately.

Rev. 3.60 2020-10-13 Page 15(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.3 Analog Side Path Audio Drivers

7.3.1 Driver AUOOSET.DL3

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

I2S_LEFT

I2S_RIGHT

SP_LDATA

SP_RDATA

24

24

24

24

24 24

24

24

24

DAC_VOL

32/16

SRC_CF

DAC +

output

drivers

I2S_CF

Analog

I2S_BCK,I2S_FRM

I2S_DO

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

SPDIF_OUT
encoder
S/PDIF

24/16

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

RED text:   Pin

BLUE text: Register

Figure 4: AUOOSET.DL3 signal paths shown in bold brown

Figure 4 shows the VS1005 analog output audio side path. This audio path is not filtered;
it is only put through a Sample and hold upconverter. As such, audible aliasing distortion
may be heard if low sample rates are used. This audio path is best suitable for different
kinds of alarm and effects sounds that may easily be independently overlayed on top of
the audio of the main audio path (see Chapter 7.2.1).

The sample rate of the side audio path is independent from the main audio path. While
it may be set to up to 192 kHz, all sample rates cannot be set accurately. While cer-
tain sample rates like 24, 48, and 96 kHz can be played accurately, some others, like
44.1 kHz, may have an up to 150 Hz error. While not a problem for effects sounds, this
may be create issue with accurate timing when playing longer audio passages.

While there is no hardware volume control for the side audio path, the driver offers an
equivalent software volume control.

Rev. 3.60 2020-10-13 Page 16(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.4 Analog Input ADC Audio Drivers

7.4.1 Driver AUIADC.DL3

FMR

FML

Mono

Right

Left

AD_CF_DEC6SEL

AD_CF_DEC6ENA

ANA_CF3
_GAIN2

ANA_CF0

ANA_CF0

ANA_CF3
_GAIN1

ANA_CF0

ANA_CF0

I

Q

Digital
Analog and RF

18

18

AD_LEFT

DEC6_LEFT

DEC6_RIGHT

DIA1

LINE1_1

LINE2_1

LINE3_1

RF_N

RF_P

LINE1_2

LINE2_2

LINE3_2

LINE1_3 L

R
6

18

18

SP_LDATA

SP_RDATA
24

24

SPDIF_IN

24

AD_CF_ADFSADENA
AD_CF_

S/PDIF
decoder

demod.
FM

DIA2

DIA3

VCO

AD_RIGHT

AD_MONO

24

24

24

24

24

AD_CF_ADFS

FM_CF_UAD3

AD_CF_
AD3ENA

AD3

AD_CF_
ADENA

AD2

MIC2N

MIC2P

MIC1P

MIC1N

FM_CF_UAD1

FM_CF_UAD2

AD23_FLP

AD_CF_

BLUE text: Register or register bit(s)

RED text:   Pin

AD1

AD_CF_AD3FS

Figure 5: AUIADC.DL3 selectable input signal paths shown in bold green for the left
channel, and bold brown for the right channel. Alternative RF audio path shown in
bold magenta

The AUIADC.DL3 driver lets the user select a stereo input from a multitude of analog
(and even some digital) sources. The sources used may be chosen at startup time, or
changed dynamically while the driver is running. Any brown source in Figure 5 may
be combined with any green source to form a stereo signal. However, if the magenta-
coloured RF input is selected, it takes over the whole stereo audio path.

Supported sample rates are 192, 96, 48, and 24 kHz. However, it is also possible to use
a high-quality down-by-6 decimator to create such sample rates as 32, 16, and 8 kHz.
When the decimator is selected, the driver automatically reads its samples from the
DEC6_LEFT/DEC6_RIGHT registers instead of the default AD_LEFT/AD_RIGHT.

Note that even if RF is selected for FM radio input, all of the FM hardware is not started
by the driver. So you will still need a dedicated FM Receiver program to e.g. tune the
FM radio. The only supported sample rate for the FM receiver is 32 kHz (using 192 kHz
main sample rate and putting the signal through the I/Q - FM demodulation - down-by-6

Rev. 3.60 2020-10-13 Page 17(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

decimator hardware).

Optionally, digital microphone inputs DIA1 and DIA2 may be used instead of the analog
inputs. The 1-bit signals in the megahertz domain from the microphones are fed to the
high-quality digital low-pass filtering path of VS1005.

On the VS1005 DevBoard, LINE1_1 and LINE1_3 are used as the default analog inputs.
On the VS1005 BreakOut Board, LINE1_1 and LINE1_2 are used.

The input can be controlled using the VSOS Shell environment using the AUINPUT
program (Chapter 9.1).

Rev. 3.60 2020-10-13 Page 18(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.5 I2S Audio Drivers

I2S Audio drivers allows for I2S operation in both master and slave mode. Whenever
possible, it is recommended to use master mode, because that way VS1005 has exact
control over the sample rate.

The sample rate and number of bits (16/32) may be controlled with ioctl() commands
IOCTL_AUDIO_SET_RATE_AND_BITS (recommended), IOCTL_AUDIO_SET_IRATE,
IOCTL_AUDIO_SET_ORATE, and IOCTL_AUDIO_SET_BITS. In master mode, sample
rates 24, 48, 96, and 192 kHz are supported.

In slave mode, the other end selects the sample rate, which is the same for both I2S
input and output. If the user wants to monitor audio using analog output, they need to
use the Slave Audio Input Synchronization Driver (Chapter 7.7).

With the exception of AUOI2SMA.DL3, all drivers connect to stdaudioin and/or stdau-
dioout if started with parameter “s”. Otherwise, the drivers need to be opened and
accessed manually.

7.5.1 Driver AUOI2SMA.DL3

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

I2S_LEFT

I2S_RIGHT

SP_LDATA

SP_RDATA

24

24

24

24

24 24

24

24

24

DAC_VOL

32/16

SRC_CF

DAC +

output

drivers

I2S_CF

Analog

I2S_BCK,I2S_FRM

I2S_DO

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

BLUE text: Register

SPDIF_OUT
encoder
S/PDIF

24/16

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

RED text:   Pin

Figure 6: AUOI2SMA.DL3 audio path shown in bold brown

Figure 6 shows the automatic audio path activated by the driver. The driver copies the
sum of the DAC and DAOSET drivers, with volume applied to the DAC contents, and
sends them to I2S. To function, it needs a DAC (e.g. AUODAC.DL3) and/or DAOSET
(e.g. AUOOSET.DL3) driver to be installed.

Rev. 3.60 2020-10-13 Page 19(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

The sample rate is set to a default of 96000 Hz / 32 bits. Anything played back through
VS1005’s analog audio path is converted to the target sample rate by VS1005 hardware.

7.5.2 Driver AUOI2SM.DL3

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

I2S_LEFT

I2S_RIGHT

SP_LDATA

SP_RDATA

24

24

24

24

24 24

24

24

24

DAC_VOL

32/16

SRC_CF

DAC +

output

drivers

I2S_CF

Analog

I2S_BCK,I2S_FRM

I2S_DO

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

SPDIF_OUT
encoder
S/PDIF

24/16

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

RED text:   Pin

BLUE text: Register

Figure 7: AUOI2SM.DL3 audio path shown in bold brown

If you need to send independent audio to the DAC and I2S, using AUOI2SM.DL3 is
required. Note, however, that that driver can only support the basic master mode sample
rates (e.g. not 44100 Hz).

Figure 7 shows the manual audio path activated by the AUOI2SM.DL3 driver.

7.5.3 Driver AUOI2SS.DL3

The AUOI2SS.DL3 is otherwise similar to AUOI2SM.DL3 (Chapter 7.5.2), except that
the driver operates in slave mode.

In slave mode the user has no control over sample rate, so the audio cannot be fed
anywhere else except the I2S output without resynchronization. Currently there does
not exist a driver to synchronize I2S slave output with DAC output. Also there is no
driver to synchronize inputs with I2S slave output.

Rev. 3.60 2020-10-13 Page 20(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.5.4 Driver AUII2SM.DL3

I2S_LEFT

I2S_RIGHT32/16 decoder

Digital

24

I2SI2S_BCK,I2S_FRM

I2S_DI

RED text:   Pin

BLUE text: Register

Figure 8: AUII2SM.DL3 audio path shown in bold brown

Figure 8 shows the audio path activated by the AUII2SM.DL3 driver, which is a master
mode input driver.

7.5.5 Driver AUII2SS.DL3

The AUII2SS.DL3 is otherwise similar to AUII2SM.DL3 (Chapter 7.5.4), except that the
driver operates in slave mode.

In slave mode the user has no control over sample rate, so the audio cannot be fed
anywhere else except the I2S output without resynchronization. To synchronize I2S
slave audio with the analog audio output driver AUODAC.DL3 (Chapter 7.2.1), use the
AUXSYNCS.DL3 synchronization driver (Chapter 7.7.1).

7.5.6 Driver AUXI2SM.DL3

The AUXi2SM.DL3 audio driver handles both I2S input and output in master mode, as
shown in Figures 7 and 8.

The I2S input and output are always kept in sync, so software using both the input and
output doesn’t need to do synchronization. Also, because the exact I2S sample rates
24 and 48 kHz are directly supported by VS1005’s analog audio output path, as well as
the analog audio input path, once in sync they will stay in sync.

7.5.7 Driver AUXI2SS.DL3

The AUXI2SS.DL3 is otherwise similar to AUXI2SM.DL3 (Chapter 7.5.6), except that the
driver operates in slave mode.

In slave mode the user has no control over sample rate, so the audio cannot be fed any-
where else in realtime, except the I2S output without resynchronization. To synchronize
I2S slave audio with the analog audio output driver AUODAC.DL3 (Chapter 7.2.1), use
the AUXSYNCS.DL3 synchronization driver (Chapter 7.7.1).

Rev. 3.60 2020-10-13 Page 21(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.6 S/PDIF Audio Drivers

S/PDIF drivers allow receiving and transmitting audio using a coaxial or optical S/PDIF
bus.

S/PDIF is a one-way channels, so the transmitter always controls the clocking of the
audio. For this reason, and for certain hardware resons, those drivers that need to either
support synchronizing S/PDIF output to input, or to support 44.1 ot 88.2 kHz sample
rates, need to set VS1005’s master clock to either 56.448 or 61.440 MHz.

With the exception of AUOXSPDA.DL3, all drivers connect to stdaudioin and/or stdau-
dioout if started with parameter “s”. Otherwise, the drivers need to be opened and
accessed manually.

Only one S/PDIF driver may be in use at any given time. It is not possible to run one
input and one output driver, and expect the system to do anything sensible.

All S/PDIF drivers are incompatible with USB operation, because USB requires that
CLKI = 60.000 MHz, and no standard sample rates can be implemented with this clock
rate.

Summary of S/PDIF drivers
Name Sample rates / kHz Modifies Exact Notes

44.1 48 88.2 96 SysClk1 rates2

AUOSPDA X X X 3 Automatic output
AUISPD X X X X X Generic input
AUXSPD X X X X X Generic I/O, sync in & out
AUXSPD48 X X X Limited I/O, sync in & out
AUOSP48S X X Output, sync with input
AUOSPD48 X X Output at exactly 48 kHz

1 The driver modifies System Clock either 56.448 MHz (for 44.1 or 88.2 kHz operation)
or 61.440 MHz (for 48 or 96 kHz operation). The driver is incompatible with FM receiver
software.

2 The driver sample rate is as accurate as the input clock’s 12.288 MHz is.

3 Audio sample rate may be anything up to 96 kHz. It is converted by hardware to the
target sample rate.

7.6.1 Driver AUOSPDA.DL3

AUOSPDA.DL3 captures audio that is being sent to the DAC audio path, and copies it
automatically to the S/PDIF output.

Figure 9 shows the automatic audio path built by the driver. The driver copies the audio
going to the DAC driver, and sends it through a software volume control to the S/PDIF
output. To function, it needs a DAC (e.g. AUODAC.DL3) driver to be installed.

Rev. 3.60 2020-10-13 Page 22(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

I2S_LEFT

I2S_RIGHT

SP_LDATA

SP_RDATA

24

24

24

24

24 24

24

24

24

DAC_VOL

32/16

SRC_CF

DAC +

output

drivers

I2S_CF

Analog

I2S_BCK,I2S_FRM

I2S_DO

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

SPDIF_OUT
encoder
S/PDIF

24/16

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

RED text:   Pin
BLUE text: Register

C
op

y 
w

it
h 

"V
" 

op
ti
on

In
di

vi
du

al
 c

on
tr

ol
 w

it
ho

ut

Figure 9: AUOSPDA.DL3 audio path shown in bold brown. Software driver connecting
to the filterless sample rate converter (bold green) shown in bold magenta

The sample rate is set by default to 96000 Hz, and anything played back is converted to
the target sample rate by the high-quality VS1005 Filterless sample rate downconverter,
then through a software volume control to the SP_LDATA/SP_RDATA registers. As long
as the audio that is being played back has a sample rate that is not higher than the
S/PDIF output sample rate, no aliasing will occur, and sound quality will remain good.

If the driver is started with parameter “48000”, it will use an output rate of 48 kHz. Only
use this option if no audio that you play back has a sample rate over 48 kHz.

The driver can be opened manually, in which case it has a separate volume control that
can be used. As a default, full output volume is used. However, if the driver is started
with parameter “v”, it will automatically copy any volume setting sent to stdaudioout.

If the driver has not started with the “v” option, the user may set the volume from C
by opening a file pointer to it, then calling stdio() to set the volume (see README.TXT
of the driver for details on how to do that), then finally closing the file pointer / driver.
Alternatively volume may be set from the VSOS Shell using AuOutput (Chapter 9.2), as
in the following example that sets volume to -12.5 dB of maximum level:
S:>auoutput -dauospda -l-12.5

7.6.2 Driver AUISPD.DL3

AUISPD.DL3 enables S/PDIF input. It supports 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz
sample rates.

Rev. 3.60 2020-10-13 Page 23(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

This driver automatically sets the VSDSP core clock to enable S/PDIF operation. It is
incompatible with any USB drivers or FM Radio receiver software.

Example of how to activate under VSOS Shell so that input from S/PDIF is automatically
played back to the DAC, and the DAC is kept synchronized with the input:
S:>driver +auodac s

S:>driver +auispd s

S:>driver +auxsyncs

S:>driver +auxplay

S:>auinput

stdaudioin: 0x23dc, auispd::audioFile=0x0c63(3171)

->Identify(): 0x43b7, auxsyncs::Identify returns "AUXSYNCS"

->op: 0x23e3, auispd::audioFileOps=0x0000(0)

->Ioctl(): 0x41ee, auxsyncs::AudioIoctl

->Read(): 0x40f6, auispd::AudioRead

Sample rate: 47995

Bits per sample: 16

Buffer size: 512 16-bit words (256 16-bit stereo samples)

Buffer fill: 84 16-bit words (42 16-bit stereo samples)

Sample counter: 1068008

Overflows: 4170

S:>

7.6.3 Driver AUXSPD.DL3

AUXSPD.DL3 enables S/PDIF input and output, and synchronizes the output with the
input. It supports 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz sample rates.

Because this driver automatically synchronizes its output with its input, there is no need
to run a separate synchronization driver like AUXSYNCS.DL3.

This driver automatically sets the VSDSP core clock to enable S/PDIF operation. It is
incompatible with any USB drivers or FM Radio receiver software.

Example of how to activate under VSOS Shell so that input from S/PDIF is automatically
played back to the S/PDIF output:
S:>driver +auxspd s

S:>driver +auxplay

S:>auinput

stdaudioin: 0x279f, auxspd::audioFile=0x0c63(3171)

->Identify(): 0x40ed, auxspd::Identify returns "AUXSPD"

->op: 0x27a7, auxspd::audioFileOps=0x0000(0)

->Ioctl(): 0x3f69, auxspd::AudioIoctl

->Read(): 0x4059, auxspd::AudioRead

Sample rate: 48010

Bits per sample: 16

Buffer size: 512 16-bit words (256 16-bit stereo samples)

Buffer fill: 82 16-bit words (41 16-bit stereo samples)

Rev. 3.60 2020-10-13 Page 24(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Sample counter: 654782

Overflows: 1320

S:>

7.6.4 Driver AUXSPD48.DL3

Like AUXSPD.DL3 (Chapter 7.6.3), but limited to 48 and 96 kHz, and for this reason
slightly smaller.

7.6.5 Driver AUOSP48S.DL3

AUOSPD48S.DL3 enables S/PDIF output, and synchronizes the output with an input of
another audio driver, which should nominally run at 48 kHz. An example use case for
this driver is when the input is I2S in slave mode (Chapter 7.5.5, Driver AUII2SS.DL3),
and when it is known beforehand that the nominal sample rate of the input is always
48 kHz.

Because this driver automatically synchronize its output with an input, there is no need
to run a separate synchronization driver like AUXSYNCS.DL3.

This driver automatically sets the VSDSP core clock to enable S/PDIF operation. It is
incompatible with any USB drivers or FM Radio receiver software.

Example of how to activate under VSOS Shell so that input from I2S (slave mode) is
automatically played back to the S/PDIF output (note: nothing is played through analog
audio): the input:
S:>driver +auii2ss s

S:>driver +auosp48s s

S:>driver +auxplay

S:>

7.6.6 Driver AUOSPD48.DL3

AUOSPD48.DL3 enables S/PDIF output at exactly 48 kHz.

Example of how to activate under VSOS Shell so that input from the ADC is automati-
cally played back to the S/PDIF output (note: nothing is played through analog audio):

S:>driver +auiadc s

S:>driver +auospd48 s

S:>driver +auxplay

S:>

Rev. 3.60 2020-10-13 Page 25(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.7 Slave Audio Input Synchronization Drivers

When inputting audio data in slave mode (using for example the I2S audio input slave
driver AUII2SS.DL3), the exact sample rate of the audio is usually not known. Even
if the nominal sample rate is known, mismatches between master transmitter and the
VS1005 receiver clock crystals causes there to always be a mismatch between them
(example: transmitter nominally sends 48000 Hz, but because of a clock mismatch the
receiver sees the data at 48002.3 Hz).

This speed mismatch will eventually cause an audio buffer underflow or overflow, which
may cause audible clicks or other kinds of distortion.

The slave audio input synchronization drivers are intended to remove the synchroniza-
tion issue.

7.7.1 Driver AUXSYNCS.DL3

The Slave Audio Input Synchronization Driver AUXSYNCS.DL3 synchronizes a slave
audio input driver with the analog Earphone/Line Out driver AUODAC.DL3.

Before starting the Sync Driver, the user must first load and connect a slave audio input
driver to stdaudioin, and the analog output driver to stdaudioout. When the driver is
loaded, it will automatically adjust the analog output sample rate according to the input.
The adjustment range is up to 97500 Hz, so standard sample rates up to 96 kHz can be
received. The Sync Driver can dynamically change its sample rate if the input sample
rate changes.

Example config.txt file clip:
# Load I2S Slave Input driver and make it stdaudioin

AUII2SS s

# Load Line Out / Earphone output driver and make it stdaudioout

AUODAC s

# Connect and synchronize stdaudioout with stdaudioin slave

AUXSYNCS

The same can be done using the VSOS Shell using the following commands:
S:>driver +auii2ss s

S:>driver +auodac s

S:>driver +auxsyncs

AUXSYNCS.DL3 has been tested with the I2S Slave Input drivers, but it is designed to
be usable with any generic slave input driver that offers a near-constant data rate. It
may not work properly with input drivers with large data bursts.

Rev. 3.60 2020-10-13 Page 26(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

7.8 Audio Input to Output Copying Driver

Sometimes it’s useful to play back audio data from an input to an output in the back-
ground. This can be done by an audio copying driver.

7.8.1 Driver AUXPLAY.DL3

The AUXPLAY.DL3 driver reads data from stdaudioin and copies it to stdaudioout. While
seemingly trivial, it does so in the background, allowing the user to do other operations
while sound is being played back.

Normally the driver reports to stdout if there are input buffer overflows or output buffer
underflows. The amount of the overflows/underflows are given in stereo samples (so
e.g. +4800 at a sample rate of 48000 means 1/10s). The reports use the following
format:
AUXSPLAY: In overflow +4088

AUXSPLAY: Out underflow +4034

To disable overflow and underflow reporting, give the ’q’ parameter to AUXSPLAY.DL3.

Rev. 3.60 2020-10-13 Page 27(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8 Audio Filter Drivers

Audio filter drivers connect to an audio source or sink, and offer additional functionality,
like filtering.

Audio filter drivers are named using the following format:
FTdyyyyy.DL3

where

Symbol Description
d Driver direction: I = input, O = output, X = Input/Output
yyyyy Driver name, max 5 characters

user

program
audio driver

user

program
audio driver

stdaudioin

stdaudioin

input filter
driver

driver
input filter

Figure 10: A filter input driver connects to the stdaudioin chain

All filter input drivers connect directly between the current stdaudioin program chain and
the user program, as shown in Figure 10. It is important to first start the base driver
responsible for stdaudioin before starting the filter driver!

driver

driver

user
program

audio driver

audio driver
user

program

stdaudioout

output filter

output filter

stdaudioout

Figure 11: A filter output driver connects to the stdaudioout chain

All filter output drivers connect directly between the user program and the current stdau-
dioout program chain, as shown in Figure 11. It is important to first start the base driver

Rev. 3.60 2020-10-13 Page 28(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

responsible for stdaudioout before starting the filter driver!

If the user wishes to remove an audio driver or some filters, they always have to removed
in reverse order as they were allocated. E.g. if AUODAC.DL3 and FTOEQU.DL3 have
been loaded, they must be released in order FTOEQU.DL3, AUODAC.DL3.

Rev. 3.60 2020-10-13 Page 29(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.1 Equalizer Audio Drivers

The Equalizer audio drivers allow for multiband equalization to be implemented to the
VS1005’s output audio path.

The package itself contains detailed PDF documentation; please read that for details.

8.1.1 Driver FTOEQU.DL3

FTOEQU.DL3 connects the equalizer driver to stdaudioout. Read the PDF documenta-
tion for FTEQU for more details.

8.1.2 Control Program SETEQU.DL3

Usage: SetEqu [-i|-o] [n [flags centerF gain qFactor]] [-h]

-i Set stdaudioin

-o Set stdaudioout (default)

n Use filter number n (1 ... MAX_FILTERS)

flags 1=left, 2=right

centerF Center frequency in Hz

gain Gain in dB (-12.0 ... 12.0)

qFactor Q Factor (0.1 ... 4.0)

-h Show this help

Examples:
setequ 1 3 400 -6.0 0.5 # Set filter 1, L+R, 400 Hz, -6 dB, Q 0.5

setequ 1 0 # Clear filter 1

setequ 1 # Show filter 1

setequ # Show all filters

SETEQU.DL3 is a program to set and/or display the equalizer parameters.

Note that the equalizer is a relatively expensive function, so more than a bass/treble
controller should only be used with care.

The full documentation for the software is in the PDF file for the FtEqu package.

Rev. 3.60 2020-10-13 Page 30(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.2 DC Offset/AGC Audio Drivers

When audio is digitized, two technical issues are DC Offset and Large Dynamic Range.

0 100 200 300 400

-1

-0.5

0

0.5

1

Figure 12: Audio with exaggerated DC offset

In an ideal world DC Offset wouldn’t happen. However, in the real world, signals almost
always have a slight DC offset. Note, how the sine wave in Figure 12 does not move
evenly around the center point, but has an offset of about +0.35. While the figure has
been greatly exaggerated, this is a real phenomenon caused by a myriad of different
reasons.

0 100 200 300 400

-1

-0.5

0

0.5

1

Figure 13: Audio with DC blocking

DC offset may cause many issues, including increased power consumption, audible
cracks and pops, waring down of speaker elements, and non-ideal audio compression.
Because of this, it is best to remove the audio offset with a DC Blocker algorithm, as
shown in Figure 13. Notice how the offset disappear after a little while (in this case, it

Rev. 3.60 2020-10-13 Page 31(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

has vanished practically completely by sample 150).

Another issue in audio is excessive dynamic range. This is not a problem when recording
well-mixed, pre-recorded music, but it may be a big issue when recording speech from
the microphone. To compensate for the audio level differences of close and faw away
speakers, and Automatic Gain Control (AGC) unit may often be useful. Note, however,
that AGC should not be used for HiFi recording applications!

8.2.1 Driver FTIDCBL.DL3

The DC Block driver FTIDCBL.DL3 connects to stdaudioin as shown in Figure 10 on
page 28.

The driver may be controlled either through C ioctl() function calls as described in the
README.TXT file for the driver itself, or from the VSOS Shell using the SETAGC.DL3
command.

8.2.2 Driver FTIAGC.DL3

In addition to the DC Block driver described in 8.2.1, the AGC driver offers an Automatic
Gain Control function.

The driver may be controlled either through C ioctl() function calls as described in the
README.TXT file for the driver itself, or from the VSOS Shell using the SETAGC.DL3
command.

8.2.3 Control Program SETAGC.DL3

Usage: SetAgc [-i|-o] [-a x|-d x|-t x|-max x|-min x|-d x] [-h]

-i Set stdaudioin (default)

-o Set stdaudioout

-a x Set attack (ms)

-d x Set decay (ms)

-t x Set target level (dB)

-max x Set maximum gain (dB)

-min x Set minimum gain (dB)

-b x Set DC Block Filter (0x4000 = HiFi, 0x8000 = Speech,

0x0 = Auto, 0xC00x = Set to x)

-h Show this help

With no parameters SetAgc will show current values

Sets/Prints AGC and/or DC Block Filter parameters. For the DC Block Filters only the -b
setting option is available.

Rev. 3.60 2020-10-13 Page 32(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.3 Pitch Shifter / Speed Shifter Audio Drivers

The FtPitch package offers a pitch and speed shifter that connects to stdout. The speed
shifter can nominally be controlled to speeds between 0.68x and 1.64x of realtime, and
the pitch shifter can nominally be controlled between 0.61x and 1.47x of normal pitch.

Features and limitations:

• Speed divided by pitch (speed/pitch) must be between 0.68 and 1.64.

• Pitch shifting alters sample rate. If the resulting sample exceeds 96 kHz, playback
will be at incorrect speed.

• The shifter has been optimized to work best for audio where sample rate is be-
tween 32 and 48 kHz.

8.3.1 Driver FTOPITCH

The Pitch shifter driver FTOPITCH.DL3 connects to stdaudioout as shown in Figure 11
on page 28.

The driver may be controlled either through C ioctl() function calls as described in the
README.TXT file for the driver itself, or from the VSOS Shell using the SETPITCH.DL3
command.

8.3.2 Control Program SETPITCH

Usage: SetPitch [-i|-o] [-sx] [-px] [-h]

-i Set stdaudioin

-o Set stdaudioout (default)

-sx Set speed to x times normal (0.68 - 1.64 if pitch=1.0)

-px Set pitch to x times normal (0.61 - 1.47 if speed=1.0)

-h Show this help

Note:

Correct playback requires that 0.68 <= speed/pitch <= 1.644.

Sets/Prints Pitch and Speed Shifter parameters. Example:

S:>driver +ftopitch

S:>setpitch

Pitch 1.000

Speed 1.000

S:>setpitch -p1.1 -s0.9

S:>setpitch

Pitch 1.100

Speed 0.900

Rev. 3.60 2020-10-13 Page 33(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.4 Reverb Generator Audio Drivers

The FtRev package offers a reverb-style echo generator that connects to stdout. Many
parameters of the Reverb Generator may be modified.

8.4.1 Driver FTOREV

Features and limitations:

• Works up to 48 kHz 32 bits.

• Requires about 32 MIPS when running at 48 kHz 16 bits.

Audio

Driver

Dry Gain

Wet Gain

Generator

Reverb

stdaudioout

Reverb Generator driver

Figure 14: Reverb Generator FTOREV signal paths

The Reverb Generator driver FTOREV.DL3 connects to stdaudioout as shown in Fig-
ure 11 on page 28. The Reverb Generator signal paths are shown in Figure 14.

The driver may be controlled either through C ioctl() function calls as described in the
README.TXT file for the driver itself, or from the VSOS Shell using the SETREV.DL3
command.

Note: To easily test how modifying parameters affects sound, you can start the automatic
playback driver AUXPLAY (Chapter 7.8.1) as follows:

S:>driver +ftorev

S:>driver +auxplay

S:>setrev -v -s600 -d0 -w1024 -t65535 -f25000 -r85

ROOM:

(-r) First reflection: 85 ms

(-s) Room size : 600 cm (1-32767)

(-t) Reverb time : 65535 ms (1-65535)

(-f) Room softness : 25000 (0=hard-65535=soft)

(-d) Dry gain : 0 (0-32767, 1024=1)

(-w) Wet gain : 1024 (0-32767, 1024=1)

Sample rate : 48000 Hz

Rev. 3.60 2020-10-13 Page 34(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Delay pairs : 7

Ext. mem. size : 0 bytes

Ext. mem. read : 0x0000

Ext. mem. write : 0x0000

S:>

8.4.2 Driver FTOREV23

Features and limitations:

• FTOREV23 is like FTOREV (Chapter 8.4.1), but makes it possible to create larger
rooms.

• Uses VS23S010 or VS23S040 S-RAM IC for buffering.

• Optimized for 48 kHz, but works up to 96 kHz mode.

• Requires about 48 MIPS when running at 48 kHz 16 bits.

• Requires about 59 MIPS when running at 96 kHz 32 bits.

• If sample rate is greater than 48 kHz (typ. 96 kHz), the first reflection option (-f in
SETREV, Chapter 8.4.3) is not available.

Audio

Driver

Dry Gain

Wet Gain

Generator

Reverb

stdaudioout

Reverb Generator driver

VS23S0X0
S−RAM

Figure 15: Reverb Generator FTOREV23 signal paths

The Reverb Generator driver FTOREV23.DL3 is like FTOREV.DL3 except that it uses an
external VS23S010 or VS23S040 S-RAM IC for buffering, making it possible to create
larger rooms than with FTOREV.DL3. The Reverb Generator signal paths are shown in
Figure 15.

Running FTOREV23 at 96 kHz 32 bits

The FTOREV23 Reverb Generator supports sample rates up to 96 kHz and bit depths
up to 32 bits. However, if used at these parameters, it requires lots of calculating power,

Rev. 3.60 2020-10-13 Page 35(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

and when system overhead (typically 20 MIPS) is counted in, the clock requirement is
typically around 80 MHz.

An example of how to start the driver in 96 kHz 32-bit mode succesfully from config.txt
is shown below:

RUN SETCLOCK -l93 80

AUODAC s

AUIADC s

RUN AUOUTPUT -b32 -r96000 -s2048

RUN AUINPUT -b32 -r96000 -s2048

FTOREV23

AUXPLAY

The same can be achieved from the command line as follows. Here you can also see
that the system requires almost 79 MHZ to run:

S:>setclock -l93 80

S:>driver +auodac s

S:>driver +auiadc s

S:>auoutput -b32 -r96000 -s2048

S:>auinput -b32 -r96000 -s2048

S:>driver +ftorev23

S:>driver +auxplay

S:>setclock -t

CPU speed: effective speed 7.33/86.02 MHz = 8.5%, overhead 78.68 MHz

S:>

8.4.3 Control Program SETREV

Usage: SetRev [-i|-o] [-v|+v] [-sx|-tx|-fx|-dx|-wx] [-h]

-i Set stdaudioin

-o Set stdaudioout (default)

-rx Set first reflection time in milliseconds

-sx Set room size to x cm (200-1200 recommended)

-tx Set reverb Time to x ms (100-5000 recommended)

-fx Set room wall soFtness (0 = hard, 65535 = soft)

-dx Set Dry gain (0-65535, 1024 = 1)

-wx Set Wet gain (0-65535, 1024 = 1)

-v|+v Verbose on/off

-h Show this help

Note:

It is recommended that Dry gain + Wet gain would not be much

over 1024 to avoid distortion.

Rev. 3.60 2020-10-13 Page 36(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

S:>setrev

ROOM:

(-r) First reflection: 20 ms

(-s) Room size : 600 cm (1-32767)

(-t) Reverb time : 1000 ms (1-65535)

(-f) Room softness : 32767 (0=hard-65535=soft)

(-d) Dry gain : 1024 (0-32767, 1024=1)

(-w) Wet gain : 256 (0-32767, 1024=1)

Sample rate : 48000 Hz

Delay pairs : 7

The user-adjustable parameters are as follows.

First Reflection Time (-r, 1. . . 200)

First Reflection Time tells how many milliseconds it takes before the first reflection
reaches the listener. By making this number large, the user can simulate a stadium-
like environment or a hall where lots of reverberation comes from the other end of the
hall.

Room Size (-s, 1. . . 32767)

Room Size is the approximate room size in centimeters. The larger the room, the more
indistinct, or hall-like, the reverb is.

Note that room size is limited by the amount of free data memory there is available in
the system. When you run SetRev, the displayed parameter “Delay pairs” tells how well
the reverb driver has been able to set its filters. In an ideal case, “Delay pairs” should be
8. Anything below 4 usually gives a somewhat artificial result. Also, if you define a room
that is way too large to being implemented, it will automatically be resized.

In the example below, we try to make a “room” 300 meters wide and the first echo
should come only after 500 milliseconds. But, depending on the driver we may end up
with a room that is smaller, and with a shorter pre-echo time. Note also the “Delay pair”
counter: it prefably be 8, and anything below 4 usually isn’t enough to create a natural
result. Note that the driver FTOREV23.DL3 doesn’t have the room size limitation.

S:>setrev -s30000 -r500 -v

ROOM:

(-r) First reflection: 85 ms

(-s) Room size : 9842 cm (1-32767)

(-t) Reverb time : 1000 ms (1-65535)

(-f) Room softness : 32767 (0=hard-65535=soft)

(-d) Dry gain : 1024 (0-32767, 1024=1)

(-w) Wet gain : 256 (0-32767, 1024=1)

Rev. 3.60 2020-10-13 Page 37(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Sample rate : 48000 Hz

Delay pairs : 1

Reverb Time (-t, 1. . . 65535)

Reverb Time tells how many milliseconds it will take for the reverberation to fade -60 dB
from the original level. For some insane effects, try to set the reverb time to 10 or 60
seconds!

Room Softness (-f, 0. . . 65535)

Room Softness defines the softness of the wall material in the room. In a soft room,
higher frequencies will attenuate faster than low frequencies, making the room feel
warmer.

Dry Gain (-d, 0. . . 32768)

Dry Gain is the gain setting for the direct input to output audio path. 1024 is the nominal
gain: the original sound is passed through with no volume change.

To avoid distortion, it is recommended that Dry Gain + Wet Gain <= 1024, or at least not
much over 1024.

Wet Gain (-w, 0. . . 32768))

Wet Gain is the gain setting for the reverb signal. 1024 is the nominal gain.

To avoid distortion, it is recommended that Dry Gain + Wet Gain <= 1024, or at least not
much over 1024.

Rev. 3.60 2020-10-13 Page 38(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

8.5 Noise Killer Audio Drivers

Because of the way stereo information is transmitted on FM radio, stereo reception is
always more suscept to white noise and other artifacts than mono reception. A way to
reduce or remove the noise is to either dampen the stereo effect at the receiver, or to just
turn FM stereo reception off. The FtNoiseKiller package offers an adaptive FM stereo
radio noise killer algorithm that doesn’t destroy the stereo image.

8.5.1 Driver FTINOISE

Features and limitations:

• Optimized for 32 kHz operation.

• Requires about 25 MIPS at 32 kHz 16 bits.

• Can only handle 16-bit audio (if audio is set to 32 bits, the noise killer is disabled).

The noise killer driver FTINOISE.DL3 connects to stdaudioin as shown in Figure 10 on
page 28.

The driver may be controlled either through C ioctl() function calls as described in the
README.TXT file for the driver itself, or from the VSOS Shell using the SETNOISE.DL3
command.

Note: To easily test how the algorithm works, you can start the RDS Radio receiver
(v1.05 or higher) after activating the noise killer driver:

S:>driver +ftinoise

S:>rdsradio

Now you can turn the noise killer off by pushing ’0’, and back on by pushing ’5’ (or ’4’ or
’3’ if reception is poor).

8.5.2 Control Program SETNOISE

Usage: SetNoise [-i|-o] [-v|+v] [-nx] [-h]

-i Set stdaudioin (default)

-o Set stdaudioout

-nx Set noise killer level (default: 50 dB, 0 = off)

-v|+v Verbose on/off

-h Show this help

S:>setnoise

Rev. 3.60 2020-10-13 Page 39(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Noise killer at 50 dB

S:>setnoise -n0 -v

Noise killer at 0 dB

S:>

The default for the noise killer is a signal-to-noise ratio of 50 dB. If the reception is poor,
lower numbers may be required. Note that by the value of 30 dB, the stereo image
mostly disappears. Setting the noise killer to 0 dB will disable it.

Rev. 3.60 2020-10-13 Page 40(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

9 Audio Control Programs

These programs are useful for displaying and changing audio parameters, as well as
debugging audio interfaces. They are parts of the AuControl solution.

9.1 Control Program AUINPUT.DL3

Usage: AuInput [-ddrv|-pfp|-rrate|-bbits|-sbufsize|chconf|-v|+v|-h]

-ddrv Connect to audio driver DRV.DL3

-pfp Set output audio driver pointer to fp (use with caution!)

-rrate Set sample rate to rate

-bbits Number of bits (16 or 32)

-sbufSz Set buffer size to bufSz 16-bit words

-v|+v Verbose on|off

chconf Audio channel config (only with AUIADC driver, see definitions below)

-h Show this help

chconf needs either one stereo element, or one left and one right element.

Stereo elements:

- fm

Left elements:

- line1_1, line2_1, line3_1, mic1, dia1

Right elements:

- line1_2, line2_2, line3_2, line1_3, mic2, dia2, dia3

Example:

auinput line1_1 line1_3

AUINPUT lets the user display control several parameters of stdaudioin, or any unlocked
audio input driver, or file pointer if it is known. If used with the analog input driver
AUIADC (Chapter 7.4.1), AUINPUT can also be used to configure the input channels’
multiplexers.

If called without any command line arguments that change a value, AUINPUT will display
the status of the audio driver as shown below

S:>auinput

stdaudioin: 0x203a, auii2ss::audioFile=3171(0xc63)

->Identify(): 0x3b4f, auxsyncs::Identify returns "AUXSYNCS"

->op: 0x2041, auii2ss::audioFileOps=0(0x0)

->Ioctl(): 0x3992, auxsyncs::AudioIoctl

->Read(): 0x38cf, auii2ss::AudioRead

Sample rate: 48000

Bits per sample: 16

Buffer size: 512 16-bit words (256 16-bit stereo samples)

Buffer fill: 508 16-bit words (254 16-bit stereo samples)

Rev. 3.60 2020-10-13 Page 41(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Sample counter: 235803492

Overflows: 123022

In this example, slave audio synchronization driver AUXSYNCS.DL3 (Chapter 7.7.1)
has been loaded on top of AUII2SS.DL3 (Chapter 7.5.5), replacing two of its methods,
Identify() and Ioctl().

9.2 Control Program AUOUTPUT.DL3

Usage: AuOutput [-ddrv|-pfp|-rrate|-bbits|-sbufSize|-lvol|-v|+v|-h]

-ddrv Connect to audio driver DRV.DL3

-pfp Set output audio file pointer to fp (use with caution!)

-rrate Set sample rate to rate

-bbits Number of bits (16 or 32)

-sbufSz Set buffer size to bufSz 16-bit words

-lvol Volume Level of maximum (vol = -128 .. 127.5)

-v|+v Verbose on|off

-h Show this help

AUOUTPUT lets the user display control several parameters of stdaudioout, or any un-
locked audio input driver, or file pointer if it is known.

If called without any command line arguments that change a value, AUOUTPUT will
display the status of the audio driver as shown below

S:>auoutput

stdaudioout: 0x1fea, auodac::audioFile=3139(0xc43)

->Identify(): 0x3b4f, auxsyncs::Identify returns "AUXSYNCS"

->op: 0x1ff1, auodac::audioFileOps=0(0x0)

->Ioctl(): 0x355b, auodac::AudioIoctl

->Write(): 0x39fb, auxsyncs::AudioWrite

Sample rate: 47793

Bits per sample: 16

Buffer size: 4096 16-bit words (2048 16-bit stereo samples)

Buffer fill: 4 16-bit words (2 16-bit stereo samples)

Sample counter: 235977115

Underflows: 177796

Volume: +0.0 dB of maximum level

In this example, slave audio synchronization driver AUXSYNCS.DL3 (Chapter 7.7.1)
has been loaded on top of AUODAC.DL3 (Chapter 7.2.1), replacing two of its methods,
Identify() and Write().

Note: To display symbol information, AUINPUT requires library TRACE.DL3.

Rev. 3.60 2020-10-13 Page 42(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

10 Configuration Examples

Here are some configuration examples for loading different audio drivers.

For full options for each of these programs, have a look at the README.TXT / PDF file
for each of the drivers.

10.1 Minimal config.sys for Playback

# New 2015 audio DAC out driver

AUODAC s

10.2 config.sys for Playback with Bass/Treble Controls and I2S + S/PDIF
Outputs

# New 2015 audio DAC out driver

AUODAC s

# I2S automatic out; automatic is hardware, so doesn't require CPU

AUOI2SMA

# S/PDIF automatic out, parameter can be either 48000 or 96000 (default)

# If "v" is defined, stdaudioout volume control is copied to S/PDIF,

# otherwise it needs to be controlled manually (otherwise it stays at

# maximum level)

AUOSPDA 96000 v

# Equalizer, set 100 and 10000 Hz to +6 dB with Q Factor 0.7

FTOEQU

RUN SETEQU 1 3 100 +6 0.7

RUN SETEQU 2 3 10000 -6 0.7

10.3 Basic config.sys for Recording

# New 2015 audio DAC out driver

AUODAC s

# New 2015 audio ADC in driver

AUIADC s 48000 line1_1 line1_3

# DC Block; use at least this with analog input even if not using AGC

FTIDCBL

Rev. 3.60 2020-10-13 Page 43(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

10.4 Versatile config.sys for Recording with AGC and I2S + S/PDIF Out-
puts

# New 2015 audio DAC out driver

AUODAC s

# New 2015 audio ADC in driver

AUIADC s 48000 line1_1 line1_3

# I2S automatic out; automatic is hardware, so doesn't require CPU

AUOI2SMA

# S/PDIF automatic out, parameter can be either 48000 or 96000 (default)

# If "v" is defined, stdaudioout volume control is copied to S/PDIF,

# otherwise it needs to be controlled manually (otherwise it stays at

# maximum level)

AUOSPDA 96000 v

# DC Block + AGC unit to stdaudioin

FTIAGC

10.5 config.sys for Playback/Recording from I2S in Slave Mode, and Mon-
itoring to DAC with Automatic Synchronization

# Load I2S Slave Input driver and make it stdaudioin

AUII2SS s

# Load Line Out / Earphone output driver and make it stdaudioout

AUODAC s

# Connect and synchronize stdaudioout with stdaudioin slave

AUXSYNCS

# Copy stdaudioin to stdaudioout

# If loaded 'q' parameter, buffer under-/overflows are NOT reported

AUXPLAY

10.6 Loading/Unloading Drivers Using the VSOS Shell

Using the VSOS Shell Environment, you can use the DRIVER.DL3 program to load
drivers to memory, and to later unload them.

If possible, you should always unload drivers in the reverse order of loading them. This
is particularly true with drivers that connect to other drivers, like AUXSYNCS which con-
nects to both the stdaudioin and stdaudioout drivers (in this case AUII2SS and AUODAC,
respectively), and AUXPLAY which also uses stdaudioin and stdaudioout

Example: to load the drivers in Chapter 10.5, run the following commands:
S:>driver +auii2ss s

S:>driver +auodac s

S:>driver +auxsyncs

S:>driver +auxplay

Rev. 3.60 2020-10-13 Page 44(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

To unload the drivers, enter the following commands:
S:>driver -auxplay

S:>driver -auxsyncs

S:>driver -auodac

S:>driver -auii2ss

Rev. 3.60 2020-10-13 Page 45(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11 VSOS Audio ioctl() Controls

VSOS Audio Drivers can be controlled from C language using ioctl() controls declared
in <aucommon.h>.

There are many more definitions in the #include file <aucommon.h>. Refer to the doc-
umentation of the specific drivers you use for exact details on what of these functions
they support and how to get access to a file pointer for that driver.

The ioctl() function prototype is
s_int16 ioctl(void *p, register int request, register char *arg);

where p is the file or device pointer (e.g. stdaudioin or stdaudioout), request is the
type of the request, and arg is the optional argument.

ioctl() returns S_ERROR (-1) for an error (there was an error in the parameters, or the
ioctl() for the request doesn’t exist in this driver), any other value for success.

Generally, for functions that set a value, if arg is a pointer or a 16-bit calue, it is casted to
c char * and passed to the function (e.g. IOCTL_AUDIO_SET_BITS in Chapter 11.2.5).
If arg is a larger entity (e.g. 32-bit number), a pointer to the value is passed instead (e.g.
IOCTL_AUDIO_SET_ORATE in Chapter 11.2.3).

Again, generally, for functions that return a 16-bit value where S_ERROR (-1) isn’t included
in the valid value range, the value is returned directly (e.g. IOCTL_AUDIO_GET_BITS
in Chapter 11.2.4). Otherwise, the user needs to transmit a pointer to the return value in
arg (e.g. IOCTL_AUDIO_GET_ORATE in Chapter 11.2.2). Not that in both cases ioctl()
returns S_ERROR (-1) if there was an error in the call.

11.1 Resetting a Driver

11.1.1 IOCTL_RESTART

Restart driver. Normally this needs never be done.

Example:
ioctl(fp, IOCTL_RESTART, NULL);

Rev. 3.60 2020-10-13 Page 46(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.2 Controlling Sample Rate and Bit Width

11.2.1 IOCTL_AUDIO_SET_RATE_AND_BITS

Set sample rate and number of bits. This is the recommended way of setting the sample
rate and bit width with drivers like e.g I2S where there is a limit to sample rate and bit
width combinations. Note that the sample rate / bit width argument may be larger than
what can be fit into 16 bits, so it needs to be passed through a pointer.

Some drivers have very restricted number of sample rates supported. If you want to
see what sample rate actually was set by the hardware, it is recommended to do a
IOCTL_AUDIO_GET_IRATE or IOCTL_AUDIO_GET_ORATE call to see what you ac-
tually got.

• labs(rateBits) = sampleRate, may be in fractional sample rate format (Chapter 11.6).
• if rateBits < 0, then use 32-bit I/O
• Sets both input and output sample rate, if applicable
• Not available with Slave Mode drivers

Example:
s_int32 rateBits = -48000; /* Set to 48000 Hz, 32 bits */

if (ioctl(fp, IOCTL_AUDIO_SET_RATE_AND_BITS, (char *)(&rateBits))) {

printf("Couldn't set sample rate and bits\n");

}

11.2.2 IOCTL_AUDIO_GET_IRATE, IOCTL_AUDIO_GET_ORATE

Get integer part of the current sample rate. Note that sample rate may be larger than
what can fit into 16 bits, so it needs to be passed through a 32-bit pointer.

Some drivers have very restricted number of sample rates supported. If you want to
see what sample rate actually was set by the hardware, it is recommended to do a
IOCTL_AUDIO_GET_IRATE or IOCTL_AUDIO_GET_ORATE call to see what you ac-
tually got.

• Not available with Slave Mode drivers

Example for driver with input:
s_int32 sampleRate;

if (ioctl(fp, IOCTL_AUDIO_GET_IRATE, (char *)(&sampleRate))) {

printf("Couldn't get sample rate\n");

}

Example for driver with output:
s_int32 sampleRate;

if (ioctl(fp, IOCTL_AUDIO_GET_ORATE, (char *)(&sampleRate))) {

printf("Couldn't get sample rate\n");

}

Rev. 3.60 2020-10-13 Page 47(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.2.3 IOCTL_AUDIO_SET_IRATE, IOCTL_AUDIO_SET_ORATE

Set sample rate, which may be in fractional sample rate format (Chapter 11.6). Note
that sample rate may be larger than what can fit into 16 bits, so it needs to be passed
through a 32-bit pointer.

• Only for Master Mode drivers
• It is recommended to use IOCTL_AUDIO_SET_RATE_AND_BITS instead

Example for driver with input:
s_int32 sampleRate = 48000;

if (ioctl(fp, IOCTL_AUDIO_SET_IRATE, (char *)(&sampleRate))) {

printf("Couldn't set sample rate\n");

}

Example for driver with output:
s_int32 sampleRate = 48000;

if (ioctl(fp, IOCTL_AUDIO_SET_ORATE, (char *)(&sampleRate))) {

printf("Couldn't set sample rate\n");

}

11.2.4 IOCTL_AUDIO_GET_BITS

Get number of bits for driver.

Example:
bits = ioctl(fp, IOCTL_AUDIO_GET_BITS, NULL);

11.2.5 IOCTL_AUDIO_SET_BITS

Set number of bits for driver.

Example:
• bits may be 16 or 32
• With Master Mode drivers it is recommended to use

IOCTL_AUDIO_SET_RATE_AND_BITS instead

Example:
if (ioctl(fp, IOCTL_AUDIO_SET_BITS, (char *)(32))) {

printf("Couldn't set bits\n");

}

Rev. 3.60 2020-10-13 Page 48(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.3 Controlling Audio Buffers

11.3.1 IOCTL_AUDIO_GET_INPUT_BUFFER_FILL

Get input buffer fill state in 16-bit words.

• Only for drivers with input capability

Example:
iBufFill = ioctl(fp, IOCTL_AUDIO_GET_INPUT_BUFFER_FILL, NULL);

11.3.2 IOCTL_AUDIO_GET_INPUT_BUFFER_SIZE

Get input buffer size in 16-bit words.

• Only for drivers with input capability

Example:
iBufSize = ioctl(fp, IOCTL_AUDIO_GET_INPUT_BUFFER_SIZE, NULL);

11.3.3 IOCTL_AUDIO_SET_INPUT_BUFFER_SIZE

Set input buffer size in 16-bit words.

• Only for drivers with input capability

Example:
if (ioctl(fp, IOCTL_AUDIO_SET_INPUT_BUFFER_SIZE, (char *)(1024))) {

printf("Couldn't set input buffer size\n");

}

11.3.4 IOCTL_AUDIO_GET_OUTPUT_BUFFER_FREE

Get how many 16-bit words there are free in the output buffer.

• Only for drivers with DSP output capability

Example:
iBufFill = ioctl(fp, IOCTL_AUDIO_GET_OUTPUT_BUFFER_FREE, NULL);

Rev. 3.60 2020-10-13 Page 49(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.3.5 IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE

Get output buffer size in 16-bit words.

• Only for drivers with DSP output capability

Example:
oBufSize = ioctl(fp, IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE, NULL);

11.3.6 IOCTL_AUDIO_SET_OUTPUT_BUFFER_SIZE

Set output buffer size in 16-bit words.

• Only for drivers with DSP output capability

Example:
if (ioctl(fp, IOCTL_AUDIO_SET_OUTPUT_BUFFER_SIZE, (char *)(1024))) {

printf("Couldn't set output buffer size\n");

}

Rev. 3.60 2020-10-13 Page 50(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.4 Volume Control

11.4.1 IOCTL_AUDIO_GET_VOLUME

Get volume. Volume is a number between 0 - 511 where 256 is full-scale, and each
successive number represents a volume gain step of -0.5 dB. See table below:

IOCTL_AUDIO_GET_VOLUME argument table
Argument Amplification Description

0 +128.0 dB Insane amplification
1 +127.5 dB Insane amplification minus 0.5 dB
... ... ...

255 +0.5 dB Slightly louder than full-scale volume
256 0.0 dB Full-scale volume
257 -0.5 dB Almost full-scale volume

... ... ...
509 -126.0 dB Very silent
510 -∞dB No sound, may not turn off driver
511 -∞dB No sound, may turn off driver

A driver may limit the range it actually accepts for its volume settings. E.g. the analog
output driver AUODAC only supports the range between 256 (0.0 dB) and 511 (analog
driver power-down). As another example, the S/PDIF driver supports the range between
208 (+24.0 dB) and 511 (silence). If a driver does not support the whole range, it will
automatically limit itself so you can still call it with the extreme values.

511 is a special value that allows e.g. the audio driver to turn itself off (supported by e.g.
AUODAC). Use with caution!

Example:
volume = ioctl(fp, IOCTL_AUDIO_GET_VOLUME, NULL);

11.4.2 IOCTL_AUDIO_SET_VOLUME

Set volume. Scale for volume is the same as for IOCTL_AUDIO_GET_VOLUME (Chap-
ter 11.4.1).

Example:
/* Set full scale volume */

if (ioctl(fp, IOCTL_AUDIO_SET_VOLUME, (char *)(256))) {

printf("Couldn't set volume\n");

}

Rev. 3.60 2020-10-13 Page 51(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.5 Miscellaneous Controls

11.5.1 IOCTL_AUDIO_GET_SAMPLE_COUNTER

Get sample counter. This value may be used to synchronize input and output (e.g. by
the driver AUXSYNCS, Chapter 7.7.1).

Example:
s_int32 sampleCounter;

if (ioctl(fp, IOCTL_AUDIO_GET_SAMPLE_COUNTER, (char *)(&sampleCounter))) {

printf("Couldn't get sample counter\n");

}

11.5.2 IOCTL_AUDIO_GET_OVERFLOWS

Get overflow sample counter for the input buffer.

If this number changes while an audio input program is running, this is an indication of
a program performance or input/output buffer size issue.

If nobody cosumes samples from the input audio driver, this value increases at the rate of
the sample counter that can be read with IOCTL_AUDIO_GET_SAMPLE_COUNTER.
• Only for drivers with input

Example:
s_int32 overFlow;

if (ioctl(fp, IOCTL_AUDIO_GET_OVERFLOWS, (char *)(&overFlow))) {

printf("Couldn't get overflow counter\n");

}

11.5.3 IOCTL_AUDIO_GET_UNDERFLOWS

Get underflow sample counter for the output buffer.

If this number changes while an audio output program is running, this is an indication of
a program performance or input/output buffer size issue.

If nobody produces samples for the output audio driver, this value increases at the rate of
the sample counter that can be read with IOCTL_AUDIO_GET_SAMPLE_COUNTER.
• Only for drivers with output

Example:
s_int32 underFlow;

if (ioctl(fp, IOCTL_AUDIO_GET_UNDERFLOWS, (char *)(&underFlow))) {

printf("Couldn't get underflow counter\n");

}

Rev. 3.60 2020-10-13 Page 52(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.5.4 IOCTL_AUDIO_SELECT_INPUT

Select analog input. Parameter bitmask must have one stereo element, or one left and
one right element. Definitions can be found in <aucommon.h>

Stereo elements:
• AID_FM

Left elements:
• AID_LINE1_1, AID_LINE3_1, AID_LINE2_1, AID_MIC1, AID_DIA1

Right elements:
• AID_LINE1_2, AID_LINE3_2, AID_LINE2_2, AID_MIC2, AID_DIA2, AID_DIA3,

AID_LINE1_3

• This ioctl() is only applicable for the AUODAC driver.
• Optionally, AID_DEC6 may also be defined. It activates the high-quality down-by-6

decimator.

Example:
s_int32 sampleCounter;

if (ioctl(fp,IOCTL_AUDIO_SELECT_INPUT,(char *)(AID_LINE1_1|AID_LINE1_3))) {

printf("Couldn't select input\n");

}

Rev. 3.60 2020-10-13 Page 53(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

11.6 Fractional Sample Rates

For most audio drivers, setting the sample rate with an accuracy of 1 Hz is enough. How-
ever, some drivers are internally capable of setting the sample rate with better accuracy.
As an example the analog output driver AUODAC.DL3 can set the sample rate with an
accuracy of approximately 0.09 Hz. This makes a driver more useful when streaming
audio in slave mode, e.g. when using the AUXSYNCS.DL3 synchronization driver.

Because being able to set the sample rate with higher than 1 Hz accuracy was a new
VSOS feature for 2016, it was important to maintain compatibility with older software
that is incapable of setting the sample rate with sub-hertz accuracy.

To set a fractional sample rate, ioctl()’s IOCTL_AUDIO_SET_RATE_AND_BITS,
IOCTL_AUDIO_SET_IRATE, and IOCTL_AUDIO_SET_ORATE all can take their pa-
rameters in a 32-bit integer-compatible fractional representation, where bits 30:24 of
the sample rate parameter represent 1/128 Hz increments, as shown in the following
table.

32-bit fractional sample rate representation
Bits Range Description

31 0 Not used, set to 0
30:24 0..127 Sample rate fractions in 1/128 Hz

23:0 0..16777215 Sample rate integer part in Hz

32-bit fractional sample rate examples
Sample rate Representation

44100 Hz 0x0000ac44
44100 1

128 Hz 0x0100ac44
44100.5 Hz 0x4000ac44

44100127
128 Hz 0x7f00ac44

Audio drivers which are not interested in the sample rate’s fractional part, mask away
bits 30:24 from ioctl() sample rate setting parameters.

To maintain compatilibity with software unaware of the fractional sample rate presenta-
tion format, IOCTL_AUDIO_GET_IRATE and IOCTL_AUDIO_GET_ORATE only return
the integer portion of the sample rate.

Rev. 3.60 2020-10-13 Page 54(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

12 Controlling Audio from VSOS Shell with UiMessages

When using the VSOS Shell, some audio functions may be controlled even if running
a VSOS program that doesn’t take audio controls. If the TTY is not in RAW mode, the
following escape sequences defined in <uimessages.h> may be sent to the shell.

12.1 Setting Volume anywhere from VSOS Shell

Note that <B> here means sending ASCII code 1, invoked in most terminal emulation
programs by pushing Ctrl-B.

Volume up by 1/2 dB:
<B>111ms

Volume down by 1/2 dB:
<B>112ms

Set attenuation to -HH/2 dB, where HH is a hexadecimal number:
<B>206mHHs

Example:
To set volume to -20 dB, you need to send 40 = 0x28:
<B>206m28s

12.2 Sending Equalizer Controls from VSOS Shell

The filters are accessed with UiMessages that have the following format, where X is the
filter number (0..f), and YY is the 16-bit signed value presented as an unsigned 16-bit
hexadecimal number. <B>21XmYYs

Example:
Let’s assume we have the following configuration lines in config.txt:

RUN SETEQU 1 3 100 0 0.7

RUN SETEQU 2 3 10000 0 0.7

Now, to set bass (filter channel 1) to +6 dB (6), send the following command:
<B>210m6s

To set treble (filter channel 2) to -12 dB (0xfff4), send the following command:
<B>211mfff4s

Up To 16 channels may be accesses with messages ranging from 0x210 to 0x21f.

Rev. 3.60 2020-10-13 Page 55(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

13 Audio Decoders

Library audiodec automatically chooses between many Audio Decoders when presented
an audio file. The libraries, their respective decode audio formats, and their clock rate
requirements, are presented below.

NOTE: The clock speeds have been tested with a Class 4 SD card and “typical test
files”. While VLSI believes the information to be accurate, clock rates should still be
interpreted as estimations. The estimations are given for a system with a typical inter-
rupt load and with a 8 KiW audio output buffer. An example alternative configuration
file that sets the system up for best playback audio performance is provided in file con-
fig_audio_decoders.txt in the VSOS Root and Libraries Source Code package.

Audio Decoders
LibName Format Description
decaac AAC AAC in ADTS and MP4 containers (.aac, .m4a, .mp4, .3gpp)
decaiff AIFF Apple uncompressed PCM format
decalac ALAC Apple lossless in MP4 (.mp4, .m4a) or CAFF (.caf) container
decalac APE Monkey’s audio
decdsd DSD DSD bitstream files in .DSF and .DFF container, LSb first only
decflac FLAC Free Lossless Audio Codec
decmp3 MP3 MPEG audio layer 3
decvorb Ogg Vorbis Vorbis audio in Ogg container
decwav RIFF WAV Many RIFF WAV subformats
decwma WMA Windows Media Audio
mp4file - Determines if MP4 file contains ALAC or AAC

NOTE: For formats where there may be more than 2 audio channels, only files up to 2
audio channels are supported.

Library decaac subformats and clock requirements
Clock Description
30 MHz AAC up to 48 kHz, 280 kbit/s

Library decaiff subformats and clock requirements
Clock Description
12 MHz AIFF up to 96 kHz 16-bit
18 MHz AIFF up to 96 kHz 24-bit
37 MHz AIFF up to 192 kHz 24-bit
61 MHz AIFF up to 352 kHz 24-bit

Library decalac subformats and clock requirements
Clock Description
37 MHz Apple lossless up to 48 kHz 16-bit
74 MHz Apple lossless up to 96 kHz 24-bit

Rev. 3.60 2020-10-13 Page 56(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Library decape subformats and clock requirements
Clock Description
61 MHz Monkey’s Audio up to 48 kHz 24-bit, profile Fast
67 MHz Monkey’s Audio up to 48 kHz 24-bit, profile Normal
79 MHz Monkey’s Audio up to 48 kHz 24-bit, profile High
N/A Monkey’s Audio, profiles Extra High and Insane

Library decdsd subformats and clock requirements
Clock Description
49 MHz DSD64 (2.8 MHz, 1-bit)
86 MHz DSD128 (5.6 MHz, 1-bit)
92 MHz DSD256 (11.3 MHz, 1-bit)

Library decflac subformats and clock requirements
Clock Description
12 MHz FLAC up to 16 kHz, 16-bit
18 MHz FLAC up to 32 kHz, 16-bit
25 MHz FLAC up to 48 kHz, 16-bit
37 MHz FLAC up to 96 kHz, 16-bit
43 MHz FLAC up to 96 kHz, 24-bit

Library decmp3 subformats and clock requirements
Clock Description
12 MHz MP3 at 8 kHz, 8 kbit/s
31 MHz MP3 up to 48 kHz, 320 kbit/s

Library decvorb subformats and clock requirements
Clock Description
12 MHz Ogg Vorbis up to 16 kHz, 73 kbit/s
18 MHz Ogg Vorbis up to 32 kHz, 151 kbit/s
37 MHz Ogg Vorbis up to 48 kHz, 346 kbit/s
55 MHz Ogg Vorbis up to 96 kHz, 362 kbit/s

Library decwav subformats and clock requirements
Clock Description
12 MHz RIFF WAV up to 96 kHz 16-bit
18 MHz RIFF WAV up to 96 kHz 24-bit
31 MHz RIFF WAV up to 192 kHz 24-bit (e.g. DXD format)
55 MHz RIFF WAV up to 352 kHz 24-bit (e.g. DXD format)
68 MHz RIFF WAV up to 352 kHz 32-bit floating-point (e.g. DXD format)

Library decwma subformats and clock requirements
Clock Description
61 MHz All WMA files in VLSI Solution’s internal test suite

Rev. 3.60 2020-10-13 Page 57(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

13.1 Decoder Loop Functionality

Some of the audio decoders include a chance to play a part of the audio file in a loop.

Depending on the decoder, there may or may not be support for the

The list of audio decoders that contains loop functionality, and the level of support, is
provided in the following table:

Audio decoders with loop functionality
LibName Set Sample Smooth3 Comments

timing1 accurate2

decvorb Yes Yes No -
decwav Yes Yes4 No -

1 If this feature is not available, the decoder is only able to loop the complete audio file.
To make sure user software is compatible with potential future versions of the driver
which may start supporting the Set Timing feature, Loop structure should be set as
follows:
loop->startSeconds = loop->endSeconds = loop->endSamples = 0;

loop->endSeconds = 0xFFFFFFFFU;

2 If this feature is available, looping is sample-accurate. If not available, loop start and
stop points may vary slightly.
3 If this feature is available, loop supports the CFL_DECLICK flag which declicks the loop
but is not sample accurate. If this feature is missing from the decoder, flag CFL_DECLICK
is ignored.
4 Exception: IMA ADPCM is not sample accurate.

An example of how to use the loop feature is provided in solution PlayFileLoop in the
VSOS Root and Libraries Source Code package. Read the README.TXT file for details.

Rev. 3.60 2020-10-13 Page 58(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

14 Audio Encoders

There are currently two Audio Encoders. They are for Ogg Vorbis and MP3 formats.
Both are intended to operate properly at the 60 MHz standard operating speed. For
details of how to use them, see the source code for the VSIDE solution Rec (more
information for Rec is available in the VSOS Shell document).

14.1 ENCVORB.DL3 - Ogg Vorbis Encoder

ENCVORB.DL3 offers a high-quality encoder for the free end open Ogg Vorbis audio
format. This is the recommended format for those users that don’t specifically need the
MP3 format, and for whom the variable bitrate property of Ogg Vorbis is not a problem.

The Ogg Vorbis encoder is a Variable BitRate encoder, and works best when given an
encoding quality value. The range for the quality is from 0 and 10 (10 is the best; qualities
above 6 may require a higher clock speed than 60 MHz). If set to Constant bitrate, the
encoder will convert that to an approximate quality value, and still use Variable BitRate.

14.2 ENCMP3.DL3 - MP3 Encoder (VS1205 only)

ENCMP3.DL3 offers a high-quality encoder for the popular MP3 audio format. While
not capable of getting quite the same quality as Ogg Vorbis when using similar bit-rates,
the MP3 encoder still offers high fidelity sound at bit-rates between 160-192 kbit/s, and
acceptable speech quality at very much lower bitrates.

The MP3 encoder can operate either with a Variable BitRate or Constant BitRate en-
coder depending on whether a quality or bitrate value is set. For best quality per bit,
Variable BitRate is recommended.

14.3 ENCFLAC.DL3 - FLAC Encoder

ENCFLAC.DL3 offers a lossless encoder for 16-bit audio up to 48 kHz. Typically a 48 kHz
16-bit stream is compressed from 1.536 Mbit/s to 0.8-1.3 Mbit/s. Because encoding is
lossless, compression efficiency depends on the audio data.

Because the bitrates are much higher than for the Ogg Vorbis or MP3 encoders, storing
the result to e.g. an SD card may require a separate buffer memory.

Rev. 3.60 2020-10-13 Page 59(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

15 Latest Document Version Changes

This chapter describes the latest changes to this document.

Version 3.60, 2020-10-13

• Better explanation of sample rate availability for driver AUODAC.DL3 in Chap-
ter 7.2.1, Driver AUODAC.DL3.

• Added mention of new volume control for driver AUOOSET.DL3 in Chapter 7.3.1,
Driver AUOOSET.DL3.

• Other, minor modifications and typo corrections.

Version 3.58, 2019-08-24

• Added mention that all S/PDIF drivers are incompatible with USB in Chapter 7.6,
S/PDIF Audio Drivers.

• Replaced incorrect text IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE with
IOCTL_SET_OUTPUT_BUFFER_SIZE in Chapter 11.3.6,
IOCTL_SET_OUTPUT_BUFFER_SIZE.

Version 3.57, 2019-04-10

Minor corrections, updated for VSOS 3.57.

Version 3.55b, 2018-06-12

Added Chapter 8.5, Noise Killer Drivers.

Version 3.55a, 2018-04-05

• Added new first reflection flag “-f” to Reverb Generators in Chapter 8.4, Reverb
Generator Audio Drivers.

• Added another Reverb Generator Driver and Chapter 8.4.2, Driver FTOREV23.

Version 3.55, 2018-04-05

Added Chapter 8.4, Reverb Generator Audio Drivers.

Rev. 3.60 2020-10-13 Page 60(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

Version 3.52, 2018-01-22

Release for VSOS 3.52, no major changes.

Version 3.42, 2017-05-18

Release for VSOS 3.42.

• Added several new S/PDIF drivers to Chapter 7.6, S/PDIF Audio Drivers.

• Added Chapter 14.3, ENCFLAC.DL3 - FLAC Encoder.

• Added Chapter 8.3, Pitch Shifter / Speed Shifter Audio Drivers.

Version 3.40, 2016-11-03

Release for VSOS 3.40.

Version 3.30a, 2016-07-14

This is a bug patch release for VSOS 3.30.

• Added comment for audio buffer size for speed measurements made in Chap-
ter 14.

• Ctrl-A (ASCII code 1) change to Ctrl-B (ASCII code 2) for invoking UI messages
in Chapter 12, Controlling Audio from VSOS Shell with UiMessages didn’t work
properly in release 3.30. Fixed.

Version 3.30, 2016-06-22

This is a release for VSOS 3.30.

• Added Chapter 13, Audio Decoders, and Chapter 14, Audio Encoders.

• Added new HiRes audio decoders to the system, like DSD, ALAC and AIFF, and
extended some decoders to the HiRes domain, like WAV and FLAC.

• Changed version numbering to reflect on the VSOS release this document is writ-
ten for.

• Ctrl-A (ASCII code 1) changed to Ctrl-B (ASCII code 2) for invoking UI messages
in Chapter 12, Controlling Audio from VSOS Shell with UiMessages.

Rev. 3.60 2020-10-13 Page 61(62)



HH

VS1005 VSOS AUDIO SUBSYSTEM VS1005g

16 Contact Information

VLSI Solution Oy
Entrance G, 2nd floor

Hermiankatu 8
FI-33720 Tampere

FINLAND

URL: http://www.vlsi.fi/
Phone: +358-50-462-3200

Commercial e-mail: sales@vlsi.fi

For technical support or suggestions regarding this document, please participate at
http://www.vsdsp-forum.com/

For confidential technical discussions, contact
support@vlsi.fi

Rev. 3.60 2020-10-13 Page 62(62)


	VS1005 VSOS Audio Subsystem Front Page
	Table of Contents
	Introduction
	Disclaimer
	Definitions
	Overview
	Requirements
	The VS1005 VSOS Audio Subsystem
	Standard Audio
	VSOS Audio Output Example Program
	VSOS Audio Input/Output Example Program

	Audio Drivers
	General
	Analog Output DAC Audio Drivers
	Driver AUODAC.DL3

	Analog Side Path Audio Drivers
	Driver AUOOSET.DL3

	Analog Input ADC Audio Drivers
	Driver AUIADC.DL3

	I2S Audio Drivers
	Driver AUOI2SMA.DL3
	Driver AUOI2SM.DL3
	Driver AUOI2SS.DL3
	Driver AUII2SM.DL3
	Driver AUII2SS.DL3
	Driver AUXI2SM.DL3
	Driver AUXI2SS.DL3

	S/PDIF Audio Drivers
	Driver AUOSPDA.DL3
	Driver AUISPD.DL3
	Driver AUXSPD.DL3
	Driver AUXSPD48.DL3
	Driver AUOSP48S.DL3
	Driver AUOSPD48.DL3

	Slave Audio Input Synchronization Drivers
	Driver AUXSYNCS.DL3

	Audio Input to Output Copying Driver
	Driver AUXPLAY.DL3


	Audio Filter Drivers
	Equalizer Audio Drivers
	Driver FTOEQU.DL3
	Control Program SETEQU.DL3

	DC Offset/AGC Audio Drivers
	Driver FTIDCBL.DL3
	Driver FTIAGC.DL3
	Control Program SETAGC.DL3

	Pitch Shifter / Speed Shifter Audio Drivers
	Driver FTOPITCH
	Control Program SETPITCH

	Reverb Generator Audio Drivers
	Driver FTOREV
	Driver FTOREV23
	Control Program SETREV

	Noise Killer Audio Drivers
	Driver FTINOISE
	Control Program SETNOISE


	Audio Control Programs
	Control Program AUINPUT.DL3
	Control Program AUOUTPUT.DL3

	Configuration Examples
	Minimal config.sys for Playback
	config.sys for Playback with Bass/Treble Controls and I2S + S/PDIF Outputs
	Basic config.sys for Recording
	Versatile config.sys for Recording with AGC and I2S + S/PDIF Outputs
	config.sys for Playback/Recording from I2S in Slave Mode, and Monitoring to DAC with Automatic Synchronization
	Loading/Unloading Drivers Using the VSOS Shell

	VSOS Audio ioctl() Controls
	Resetting a Driver
	IOCTL_RESTART

	Controlling Sample Rate and Bit Width
	IOCTL_AUDIO_SET_RATE_AND_BITS
	IOCTL_AUDIO_GET_IRATE, IOCTL_AUDIO_GET_ORATE
	IOCTL_AUDIO_SET_IRATE, IOCTL_AUDIO_SET_ORATE
	IOCTL_AUDIO_GET_BITS
	IOCTL_AUDIO_SET_BITS

	Controlling Audio Buffers
	IOCTL_AUDIO_GET_INPUT_BUFFER_FILL
	IOCTL_AUDIO_GET_INPUT_BUFFER_SIZE
	IOCTL_AUDIO_SET_INPUT_BUFFER_SIZE
	IOCTL_AUDIO_GET_OUTPUT_BUFFER_FREE
	IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE
	IOCTL_AUDIO_SET_OUTPUT_BUFFER_SIZE

	Volume Control
	IOCTL_AUDIO_GET_VOLUME
	IOCTL_AUDIO_SET_VOLUME

	Miscellaneous Controls
	IOCTL_AUDIO_GET_SAMPLE_COUNTER
	IOCTL_AUDIO_GET_OVERFLOWS
	IOCTL_AUDIO_GET_UNDERFLOWS
	IOCTL_AUDIO_SELECT_INPUT

	Fractional Sample Rates

	Controlling Audio from VSOS Shell with UiMessages
	Setting Volume anywhere from VSOS Shell
	Sending Equalizer Controls from VSOS Shell

	Audio Decoders
	Decoder Loop Functionality

	Audio Encoders
	ENCVORB.DL3 - Ogg Vorbis Encoder
	ENCMP3.DL3 - MP3 Encoder (VS1205 only)
	ENCFLAC.DL3 - FLAC Encoder

	Latest Document Version Changes
	Contact Information

