
PUBLIC DOCUMENT

VSRV VSOS AUDIO SUBSYSTEM

VSRV1

All information in this document is provided as-is without warranty. Features are
subject to change without notice.

Revision History
Rev. Date Author Description

0.04 2025-06-17 HV Added auieth driver, first public prerelease.
0.03 2025-06-09 HH Initial internal prerelease.

Rev. 0.04 2025-06-17 Page 1(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

Contents

VSRV VSOS Audio Subsystem Front Page 1

Table of Contents 2

1 Introduction 6

2 Disclaimer 7

3 Definitions 7

4 Overview 8

5 Requirements 9

6 The VSRV VSOS Audio Subsystem 10
6.1 Standard Audio . 10
6.2 VSOS Audio Output Example Program . 11
6.3 VSOS Audio Input/Output Example Program 12

7 Audio Drivers 13
7.1 General . 13

7.1.1 Examples of Loading and Unloading Audio Drivers 15
7.2 Analog Output DAC Audio Driver . 16

7.2.1 Driver AUODAC.DR3 . 16
7.3 Analog Output Side Path Audio Driver . 17

7.3.1 Driver AUOOSET.DR3 . 17
7.4 Analog Input ADC Audio Driver . 18

7.4.1 Driver AUIADC.DR3 . 18
7.5 Ethernet Input Audio Driver . 20

7.5.1 Driver AUIETH.DR3 . 21
7.6 Slave Audio Input Synchronization Driver 23

7.6.1 Driver AUXSYNCS.DR3 . 23
7.7 Audio Input to Output Copying Drivers . 24

7.7.1 Loopback Driver AUXPLAY.DR3 24
7.7.2 Loopback Slave Driver AUXPLAYB.DR3 with Big Buffer 24

8 Audio Filter Drivers 25
8.1 Equalizer Filter Driver . 27

8.1.1 Driver FTOEQU.DR3 . 27
8.1.2 Control Program SETEQU.DR3 . 27

8.2 DC Offset / AGC Filter Drivers . 28
8.2.1 Driver FTIDCBL.DR3 . 29
8.2.2 Driver FTIAGC.DR3 . 29
8.2.3 Control Program SETAGC.DR3 . 29

8.3 Pitch Shifter / Speed Shifter Filter Driver 30
8.3.1 Driver FTOPITCH.DR3 . 30
8.3.2 Control Program SETPITCH.DR3 30

8.4 Reverb Generator Filter Drivers . 31

Rev. 0.04 2025-06-17 Page 2(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

8.4.1 Driver FTIREV.DR3 . 31
8.4.2 Driver FTOREV.DR3 . 31
8.4.3 Control Program SETREV.DR3 . 31

8.5 Noise Killer Filter Driver . 32
8.5.1 Driver FTINOISE.DR3 . 32
8.5.2 Control Program SETNOISE.DR3 32

8.6 Mono / Differential Filter Drivers . 33

9 Audio Control Programs 34
9.1 Control Program AUINPUT.DR3 . 34
9.2 Control Program AUOUTPUT.DR3 . 34

10 Configuration Examples 36
10.1 Minimal startup.txt for Playback . 36
10.2 Basic startup.txt for Recording . 36
10.3 Loading/Unloading Drivers Using the VSOS Shell 37

11 VSOS Audio ioctl() Controls 38
11.1 Resetting a Driver . 38

11.1.1 IOCTL_RESTART . 38
11.2 Controlling Sample Rate and Bit Width . 39

11.2.1 IOCTL_AUDIO_SET_RATE_AND_BITS 39
11.2.2 IOCTL_AUDIO_GET_IRATE, IOCTL_AUDIO_GET_ORATE 39
11.2.3 IOCTL_AUDIO_SET_IRATE, IOCTL_AUDIO_SET_ORATE 40
11.2.4 IOCTL_AUDIO_GET_BITS . 40
11.2.5 IOCTL_AUDIO_SET_BITS . 40

11.3 Controlling Number of Audio Channels . 41
11.3.1 IOCTL_AUDIO_GET_ICHANNELS, IOCTL_AUDIO_GET_OCHANNELS 41
11.3.2 IOCTL_AUDIO_SET_ICHANNELS, IOCTL_AUDIO_SET_OCHANNELS 41

11.4 Controlling Audio Buffers . 42
11.4.1 IOCTL_AUDIO_GET_INPUT_BUFFER_FILL 42
11.4.2 IOCTL_AUDIO_GET_INPUT_BUFFER_SIZE 42
11.4.3 IOCTL_AUDIO_SET_INPUT_BUFFER_SIZE 42
11.4.4 IOCTL_AUDIO_GET_OUTPUT_BUFFER_FREE 42
11.4.5 IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE 43
11.4.6 IOCTL_AUDIO_SET_OUTPUT_BUFFER_SIZE 43

11.5 Volume Control . 44
11.5.1 IOCTL_AUDIO_GET_VOLUME . 44
11.5.2 IOCTL_AUDIO_SET_VOLUME . 44

11.6 Miscellaneous Controls . 45
11.6.1 IOCTL_AUDIO_GET_SAMPLE_COUNTER 45
11.6.2 IOCTL_AUDIO_GET_OVERFLOWS 45
11.6.3 IOCTL_AUDIO_GET_UNDERFLOWS 45

12 Controlling Audio from VSOS Shell with UiMessages 46
12.1 Setting Volume anywhere from VSOS Shell 46
12.2 Sending Equalizer Controls from VSOS Shell 46

13 Audio Decoders 47

Rev. 0.04 2025-06-17 Page 3(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

13.1 Decoder Loop Functionality . 50

14 Audio Encoders 51
14.1 ENCVORB.DR3 - Ogg Vorbis Encoder . 51
14.2 ENCMP3.DR3 - MP3 Encoder (VS1205 only) 51
14.3 ENCOPUS.DR3 - Opus Raw Encoder . 51
14.4 ENCFLAC.DR3 - FLAC Encoder . 51

15 Latest Document Version Changes 52

16 Contact Information 53

Rev. 0.04 2025-06-17 Page 4(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

List of Figures

1 VSRVES01 playback (DA) audio paths . 14
2 VSRVES01 recording (AD) signal paths 14
3 AUODAC.DR3 signal paths shown in bold brown 16
4 AUOOSET.DR3 signal paths shown in bold brown 17
5 Default AUIADC.DR3 input signal path shown in bold brown. Additional,

optional output path that goes through an additional decimator-by-6 shown
in bold green. 18

6 MEMS Mic AUIADC.DR3 input signal path shown in bold brown. Addi-
tional, optional output path that goes through an additional decimator-by-6
shown in bold green. 19

7 Simplified VSDSP audio capture hardware operation 20
8 An input filter driver connects to the stdaudioin chain 25
9 An output filter driver connects to the stdaudioout chain 25
10 Audio with exaggerated DC offset . 28
11 Audio with DC blocking . 28

Rev. 0.04 2025-06-17 Page 5(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

1 Introduction

There are two sides to the VSRVES01 prototype chip: the VSDSP6 side running VLSI
Solution’s own real-time operating system VSOS, and the RISC-V side capable of run-
ning Linux. VSDSP6 acts as the boot processor and can load Linux to the RISC-V side.

The audio subsystem on the VSRVES01 prototype chip is handled by the VSDSP6/VSOS
side. This document describes the versatile audio drivers that the VSPDSP6/VSOS of-
fers and explains how to use the drivers to your best advantage.

After the disclaimer and definitions in Chapters 2 and 3, an overview of the Audio sub-
system is given in Chapter 4, Overview, followed by requirements in Chapter 5, Require-
ments.

The VSRV VSOS audio subsystem is presented in Chapter 6, The VSRV VSOS Audio
Subsystem.

The currently existing audio drivers are presented in Chapter 7, Audio Drivers, followed
by a presentation of the currently existing filters in Chapter 8, Audio Driver Filters, and
control programs in Chapter 9, Audio Control Programs,

Some examples on how to start audio drivers from startup.txt or the VSOS Shell are
shown in Chapter 10, Configuration Examples.

Chapter 12 shows how to control some aspects on audio using UiMessages, even if the
program that is currently running doesn’t have any audio controls.

Audio Decoders are presented in Chapter 13, and Audio Encoders in Chapter 14.

The document ends with Chapter 15, Latest Document Version Changes, and Chap-
ter 16, Contact Information.

Rev. 0.04 2025-06-17 Page 6(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

2 Disclaimer

VLSI Solution makes everything it can to make this documentation as accurate as pos-
sible. However, no warranties or guarantees are given for the correctness of this docu-
mentation.

3 Definitions

DSP Digital Signal Processor.

I-mem Instruction Memory.

LSW Least Significant (16-bit) Word.

MSW Most Significant (16-bit) Word.

RISC Reduced Instruction Set Computer.

VS_DSP6 VLSI Solution’s DSP core.

VSIDE VLSI Solution’s Integrated Development Environment.

VSOS VLSI Solution’s Operating System.

X-mem X Data Memory.

Y-mem Y Data Memory.

Rev. 0.04 2025-06-17 Page 7(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

4 Overview

The VSOS Audio Subsystem provides numerous drivers to handle the many audio In-
put/Output options of VSRV. The audio drivers can be controlled either with ioctl() calls
from the C language, or from VSOS Shell control program.

While instructions for how to use each audio driver are provided in the README.TXT
or documentation .PDF files of the drivers, this document will provide an overview of
the capabilities of the drivers. However, for details, refer to documentation of the audio
drivers themselves.

Rev. 0.04 2025-06-17 Page 8(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

5 Requirements

To test the audio drivers in this document, you need to have the following building blocks:

• VSRV1 CAT Board or something similar.
• Latest version of VSOS files downloaded from the VSDSP Forum web site.
• UART or USB->UART cable connected between DevBoard and PC for using the

UART interface. Data speed is 115200 bps, format is 8N1.
• Your favorite UART Terminal Emulation program installed on the PC. Read the

document “VSRV VSOS Shell” for further details.

When all of this is in order, you are ready to test the VSOS Audio Subystem.

Rev. 0.04 2025-06-17 Page 9(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

6 The VSRV VSOS Audio Subsystem

At startup, and without loading any driver, VSOS does not offer audio capabilities. How-
ever, by loading drivers like AUIADC.DR3 (Chapter 7.4.1) and AUODAC.DR3 (Chap-
ter 7.2.1), it is easy to add audio capabilities to VSOS.

When audio drivers have been installed, VSOS Audio makes it very easy to produce
sound with its standard-C-like standard audio interface (Chapter 6.1, Standard Audio).
Instead of being forced to use audio-specific I/O routines, audio looks just like files.

More complex audio operations and redirections can be done using a combination of
audio drivers, described in Chapter 7, Audio Drivers.

6.1 Standard Audio

VSOS offers the user a standard audio source and destination, although the audio
source is only activated if an appropriate audio input driver is loaded (Chapter 7). Called
stdaudioin and stdaudioout, standard audio file handles are to sound much like stdin
and stdout are to standard input and output in standard C. It is not allowed for the user
to close standard audio input or output files, but the user may modify their parameters.

Both standard audio input and output open in stereo, 16-bit, 48 kHz mode. These pa-
rameters can be changed by the user, with driver and hardware dependent limitations.

The user may use all standard read and write operations to read from and write to stan-
dard audio. It is, however, required that fread() / fwrite() functions are used instead of
character-based operations like fgetc() and fprintf(). For efficiency reasons, it is recom-
mended to handle larger chunks of samples, like 32, at a time.

Stereo samples are stored in an interleaved fashion. In 32-bit mode, the least significant
word is stored first. This is the same as the native VSDSP 32-bit word order.

Audio sample buffer 16-bit word order
Audio format Word 0 Word 1 Word 2 Word 3
16-bit stereo Left Right
32-bit stereo Left LSW Left MSW Right LSW Right MSW

Rev. 0.04 2025-06-17 Page 10(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

6.2 VSOS Audio Output Example Program

The following audio program example creates a low-intensity sine wave to the left chan-
nel, then outputs the samples.

#include <vo_stdio.h>
#include <stdlib.h>
#include <math.h>
#include <saturate.h>
#include <apploader.h>

#define SIN_TAB_SIZE 96
#define SIN_AMPLITUDE 1000 /* Max 32767 */

static const s_int16 __y sinTab[SIN_TAB_SIZE];

int main(void) {
// Remember to never allocate buffers from stack space. So, if you
// allocate the space inside your function, never forget "static"!
static s_int16 myBuf[2*SIN_TAB_SIZE];
int i;

/* Build sine table */
for (i=0; i<SIN_TAB_SIZE; i++) {

sinTab[i] = (s_int16)(sin(i*2.0*M_PI/SIN_TAB_SIZE)*SIN_AMPLITUDE);
}

while (1) {
// Clear buffer
memset(myBuf, 0, sizeof(myBuf));

// Create sine wave to the left channel.
for (i=0; i<SIN_TAB_SIZE; i++) {

myBuf[i*2] = sinTab[i];
}

// Write result
fwrite(myBuf, sizeof(s_int16), 2*SIN_TAB_SIZE, stdaudioout);

}

// Not really needed because there was a while(1) before
return EXIT_SUCCESS;

}

Rev. 0.04 2025-06-17 Page 11(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

6.3 VSOS Audio Input/Output Example Program

The following audio program reads audio from the default input, and sends it to the
default output, until the user pushes Ctrl-C in the VSOS Shell Environment.

#include <vo_stdio.h>
#include <apploader.h> // Contains LoadLibrary() and DropLibrary()
#include <consolestate.h>

#define BUFSIZE 128

ioresult main(char *parameters) {
static s_int16 myBuf[BUFSIZE];

if (!stdaudioin || !stdaudioout) {
printf("E: NO AUDIO IN OR OUT!\n");
return S_ERROR;

}

while (!(appFlags & APP_FLAG_QUIT)) { /* Until Ctrl-C is pushed */
fread(myBuf, sizeof(s_int16), BUFSIZE, stdaudioin);
fwrite(myBuf, sizeof(s_int16), BUFSIZE, stdaudioout);

}

return S_OK;
}

Rev. 0.04 2025-06-17 Page 12(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

7 Audio Drivers

VSRV has multiple hardware audio paths, and software Audio Drivers that are meant to
interface between the user and hardware. The Audio Drivers offer a consistent interface
to the user so that most of the time the User Application doesn’t need to know which
audio driver it is interfacing with.

This Chapter will explain which driver you will need to attach each audio driver to your
software.

7.1 General

With few exceptions, VSRV VSOS audio drivers offer a 2-channel (stereo) input, and/or
a 2-channel (stereo) output.

Most if not all audio drivers may be set either to 16-bit or 32-bit mode. The default is 16
bits. If the driver cannot receive or send its word length status, it is operating in 16-bit
mode.

Many audio drivers allow for their sample rate to be set. If applicable for the audio driver,
48 kHz is typical default sample rate. If the driver cannot set or return its sample rate, it
is typically operating at 48 kHz.

Audio drivers are named using the following format:
AUdyyyyyz.DR3
where

Symbol Description
d Driver direction: I = input, O = output, X = Input+Output
yyyyy Driver name, max. 5 characters
z Optional M or S if e.g. I2S driver is Master or Slave

There may be more than one audio driver in use at the time. Most audio drivers may be
started as system drivers in which case they connect to file handles stdaudioin and/or
stdaudioout for easy access from the User Application. If not started as system drivers,
they must be accessed through explicit file handles.

Rev. 0.04 2025-06-17 Page 13(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT

GREEN: Sample rate / Hz

24

24

24

24

24

24

24

DAC_VOL

SRC_CF

DAC +

output

drivers

Analog

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT
DAC_SRC

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

DAOSET_CF

Digital

BLUE: Register

RED: Pin

Typ. 8−97.5k

Typ. 48−192k

6.144M

6.144M

6.144M

Typ. 8−96k

6.144M

Figure 1: VSRVES01 playback (DA) audio paths

Figure 1 shows the VSRV hardware output audio paths. Most of these have a driver
controlling them.

Digital

24 24

24 24

AD1

AD2

18

18

ADC_RIGHT

ADC_LEFT

ADC_CF_MEMSENA

ADC_CF_MEMSENA

ADC_CF_ADFS

ADC_CF_ADFS
ADC_CF_
ENABLE

ENABLE
ADC_CF_

L

R
6

18

18

Typ. 48/192k

Typ. 48/192k Right

Left ADC_D6LEFT

ADC_D6RIGHT

ADC_CF_DEC6ENA

6.144M

6.144M

24/48/96/192k

24/48/96/192k

Typ. 8/32k

MDIO

LINEINL

LINEINR

Typ. 1.536M

Analog

BLUE: Register or register bit(s)

GREEN: Sample rate / Hz

RED: Pin

Figure 2: VSRVES01 recording (AD) signal paths

Figure 2 shows the VSRV hardware input audio paths. Most of these have a driver
controlling them.

Rev. 0.04 2025-06-17 Page 14(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

7.1.1 Examples of Loading and Unloading Audio Drivers

To load and activate the Analog Output DAC Audio Driver AUODAC.DR3 (Chapter 7.2),
you may add the following line to S:STARTUP.TXT:
Driver +AUODAC s

Alternatively you may enter the same command on the VSOS Shell command line:
S:>driver +auodac s

Both of these methods will load and activate the audio driver. The parameter “s” stands
for system, and it will make the audio driver automatically connect to stdaudioout. If this
was an input driver, it would have connected to stdaudioin.

To verify that the driver has actually loaded and is running, you may run the following
command on the VSOS Shell command line:
S:>auoutput
stdaudioout: 0x2056, auodac::audioFile=0x0c43(3139)

->Identify(): 0x3c4f, auodac::Identify returns "AUODAC"
->op: 0x205f, auodac::audioFileOps=0x0000(0)

->Ioctl(): 0x3b06, auodac::AudioIoctl
->Write(): 0x3c05, auodac::AudioWrite

Sample rate: 48000
Bits per sample: 16
Channels: unknown (assuming 2)
Buffer size: 512 16-bit words (256 16-bit stereo samples)
Buffer fill: 4 16-bit words (2 16-bit stereo samples)
Sample counter: 2102830
Underflows: 2100532
Volume: +0.0 dB of maximum level

If you need to load another output audio driver, you can do it and check its status sep-
arately. Note that we already have a system driver for stdaudioout, so this driver will be
started without the “s” system option. Below is a VSOS Shell command line example:
S:>driver +auooset
S:>auoutput -dauooset
audioFP: 0x241c, auooset::audioFile=0x0c43(3139)

->Identify(): 0x436a, auooset::Identify returns "AUOOSET"
->op: 0x2423, auooset::audioFileOps=0x0000(0)

->Ioctl(): 0x423c, auooset::AudioIoctl
->Write(): 0x4311, auooset::AudioWrite

Sample rate: 48000
Bits per sample: 16
Channels: unknown (assuming 2)
Buffer size: 512 16-bit words (256 16-bit stereo samples)
Buffer fill: 4 16-bit words (2 16-bit stereo samples)
Sample counter: 351032
Underflows: 350780
Volume: +0.0 dB of maximum level

To remove the previous driver, you may enter the following command:
S:>driver -auooset
S:>auoutput -dauooset
E: Library auooset was not already in memory

More examples on how to load and unload audio driver are provided in Chapter 10,
Configuration Examples.

Rev. 0.04 2025-06-17 Page 15(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

7.2 Analog Output DAC Audio Driver

7.2.1 Driver AUODAC.DR3

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT 24

24

24

24

24 24

24

DAC_VOL

SRC_CF

DAC +

output

drivers

Analog

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

sample rate

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

BLUE text: Register

RED text: Pin

Figure 3: AUODAC.DR3 signal paths shown in bold brown

Figure 3 shows the VSRV high-quality, fully filtered analog output main audio path.

AUODAC.DR3 is the basic DAC output driver. It takes over the VSOS default driver
and offers a lot of funtionality over it, like 16-bit and 32-bit data transfers. It takes over
stdaudioout, so all software that writes to standard output will send audio to this driver.

The driver offers setting the sample rate with an approximately 0.01 Hz accuracy be-
tween 100 and 97500 Hz on VSRV. Audio is upconverted to an extremely high rate of
6.144 MHz by a high-quality hardware sample rate upconverter.

Playback volume can be set with 0.5 dB accuracy between full level volume (-0 dB) and
-127 dB.

Rev. 0.04 2025-06-17 Page 16(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

7.3 Analog Output Side Path Audio Driver

7.3.1 Driver AUOOSET.DR3

DAOSET_LEFT

DAOSET_RIGHT

DAC_LEFT

DAC_RIGHT 24

24

24

24

24 24

24

DAC_VOL

SRC_CF

DAC +

output

drivers

Analog

SRC_LEFT

SRC_RIGHT

CBUF

RIGHT

LEFT

DAOSET_CF

DAC_SRC

Digital

upconverter

upconverter

Sample rate

with filters

and hold

Sample

Filterless

down−
converter

RED text: Pin

BLUE text: Register

sample rate

Figure 4: AUOOSET.DR3 signal paths shown in bold brown

Figure 4 shows the VSRV analog output audio side path. This audio path is not filtered;
it is only put through a Sample and hold upconverter. As such, audible aliasing distortion
may be heard if low sample rates are used. This audio path is best suitable for different
kinds of alarm and effects sounds that may easily be independently overlayed on top of
the audio of the main audio path (see Chapter 7.2.1).

The sample rate of the side audio path is independent from the main audio path. While
it may be set to up to 192 kHz, all sample rates cannot be set accurately. While cer-
tain sample rates like 24, 48, and 96 kHz can be played accurately, some others, like
44.1 kHz, may have an up to 150 Hz error. While not a problem for effects sounds, this
may be create issue with accurate timing when playing longer audio passages.

While there is no hardware volume control for the side audio path, the driver offers an
equivalent software volume control.

Rev. 0.04 2025-06-17 Page 17(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

7.4 Analog Input ADC Audio Driver

7.4.1 Driver AUIADC.DR3

Digital

24 24

24 24

AD1

AD2

18

18

ADC_RIGHT

ADC_LEFT

ADC_CF_ADFS

ADC_CF_ADFS
ADC_CF_
ENABLE

ENABLE
ADC_CF_

L

R
6

18

18

Typ. 48/192k

Typ. 48/192k Right

Left ADC_D6LEFT

ADC_D6RIGHT

ADC_CF_DEC6ENA

6.144M

6.144M

24/48/96/192k

24/48/96/192k

Typ. 8/32k

MDIO

LINEINL

LINEINR

Typ. 1.536M

BLUE: Register or register bit(s)

GREEN: Sample rate / Hz

RED: Pin

ADC_CF_MEMSENA=0

ADC_CF_MEMSENA=0

Analog

Figure 5: Default AUIADC.DR3 input signal path shown in bold brown. Additional, op-
tional output path that goes through an additional decimator-by-6 shown in bold green.

By default, the AUIADC.DR3 driver reads an analog input, outputs its data to either one
or two destinations, as shown in Figure 5.

Supported sample rates are 192, 96, 48, and 24 kHz. However, it is also possible to use
a high-quality down-by-6 decimator for sample rates 32, 16, 8, and 4 kHz. When such
a sample rate is selected, the driver automatically redirects itself to read its samples from
registers ADC_D6LEFT/ADC_D6RIGHT instead of the default ADC_LEFT/ADC_RIGHT.

Rev. 0.04 2025-06-17 Page 18(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

Digital

24 24

24 24

AD1

AD2

18

18

ADC_RIGHT

ADC_LEFT

ADC_CF_ADFS

ADC_CF_ADFS
ADC_CF_
ENABLE

ENABLE
ADC_CF_

L

R
6

18

18

Typ. 48/192k

Typ. 48/192k Right

Left ADC_D6LEFT

ADC_D6RIGHT

ADC_CF_DEC6ENA

6.144M

6.144M

24/48/96/192k

24/48/96/192k

Typ. 8/32k

MDIO

LINEINL

LINEINR

Typ. 1.536M

BLUE: Register or register bit(s)

GREEN: Sample rate / Hz

RED: Pin

ADC_CF_MEMSENA=1

ADC_CF_MEMSENA=1

Analog

Figure 6: MEMS Mic AUIADC.DR3 input signal path shown in bold brown. Addi-
tional, optional output path that goes through an additional decimator-by-6 shown in
bold green.

Alternatively, the driver can take its input from digital MEMS microphones, as shown in
Figure 6. Selecting the MEMS input is not supported by the driver, but must be set by
the user program by setting or clearing register ADC_CF bit ADC_CF_MEMSENA.

Input parameters can be controlled using the AUINPUT program (Chapter 9.1).

AUIADC.DR3 Command Line Parameters

If “s” is provided as the first command line parameter, then the driver will become a
system driver, i.e. it will connect to the standard file handle stdaudioin so that all software
may automatically connect to it.

Example; Start the driver and connect it to stdaudioin:
S:>Driver +AUIADC s

Rev. 0.04 2025-06-17 Page 19(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

7.5 Ethernet Input Audio Driver

VSRVES01

Audio
packets

Ethernet

Configures
maccfg

Other
packets

VSRV1
Linux

Audio
samples

VSDSP
Audio capture

Hardware

Interrupt reads
auieth

Ethernet
memory

Internal
serial port

term
VSDSP
VSOS

RTP audio
vlc

telnet

VSIDE
Serial cable

Computer

VSDSP
UART

Figure 7: Simplified VSDSP audio capture hardware operation

The ethernet audio input requires co-operation from Linux side. Linux has to configure
the ethernet hardware to pass specific packets as audio packets to VSDSP. The opera-
tion of the ethernet hardware is shown in figure 7. The computer to control the chip is
also shown.

The usage process is

1. Load auieth driver

2. Load Linux using DDRLoad

3. Get access to Linux side of the chip

4. Configure ethernet on Linux side

5. Consume receiver audio

The first thing is to load the auieth driver with the Driver program before loading Linux.

Rev. 0.04 2025-06-17 Page 20(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

After Linux has loaded, connect to it for example with telnet or Term and as a root user
configure the ethernet with maccfg

Consult RISC-V Linux documentation how to configure the network to work with VSDP.
For a usage example please refer to VSRV User’s Guide section Running demo pro-
grams on the CAT Board.

7.5.1 Driver AUIETH.DR3

Initialization parameters

If “s” is provided as the first command line parameter, then the driver will become a
system driver, i.e. it will connect to the standard file handle stdaudioin so that all software
may automatically connect to it.
S:>Driver +AUIETH s

Monitor parameters

The auieth driver has some debugging aids. After it has been loaded into memory as a
driver, you can also run it on the command line with different command line parameters
and get information what is happening if audio playback has problems.

The monitor parameters are opionated order from user friendly to hard problem solving.

-v Print reception statistics once and exit

-m Monitor statistics counter.

-l Read and calculate packets as they are received. Consume the audio and calculate
samplerate.

-d Dump the latest packets information

-r Dump the header in raw words in a loop

-w Write the output to s:pckts.txt file

The -w parameter is used in combination with -d and -r usually.

The statistics fields on the line are:

IC interrupt count

S sample count

Bad Not good packets

Rev. 0.04 2025-06-17 Page 21(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

LE Last error in packet

ROF Receiver over flow

OF Input buffer overflow

IH Interrupt to handler clock cycle delay (interrupt duration in COPY_AUDIO_INTERRUPT
configuration)

CT Receiver to buffer copy time in clock cycles

F Input buffer fill

The -l parameter prints little bit different information giving calculated samplerate, ad-
justment to it and how many RTP packets are received out of order.

Out of order packets are sent to audiobuffer in the order they are receivede and will
make noise if there are plenty of them.

Known issues

2025-06-16

Receiving audio packets while auieth driver hasn’t been loaded, can stop the ethernet
audio reception. The sympton of this problem is that only two interrupts are received
and then the ethernet hardware jams. A workaround is to load the auieth driver when
starting up (for example in startup.txt) and keep it in memory.

Dependencies

The auieth driver uses ParamSpl program to handle its parameters.

The auieth driver also requires running Linux system on VSRV. After the audio path has
been set up, Linux is not actively needed.

Rev. 0.04 2025-06-17 Page 22(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

7.6 Slave Audio Input Synchronization Driver

When inputting audio data in slave mode (using for example the I2S audio input slave
driver AUII2SS.DR3 (not available on VSRVES01)), the exact sample rate of the audio
is usually not known. Even if the nominal sample rate is known, mismatches between
master transmitter and the VSRV receiver clock crystals causes there to always be a
mismatch between them (example: transmitter nominally sends 48000 Hz, but because
of a clock mismatch the receiver sees the data at 48002.3 Hz).

This speed mismatch will eventually cause an audio buffer underflow or overflow, which
may cause audible clicks or other kinds of distortion.

The slave audio input synchronization drivers are intended to remove the synchroniza-
tion issue.

7.6.1 Driver AUXSYNCS.DR3

The Slave Audio Input Synchronization Driver AUXSYNCS.DR3 synchronizes a slave
audio input driver with the analog Earphone/Line Out driver AUODAC.DR3.

Before starting the Sync Driver, the user must first load and connect a slave audio input
driver to stdaudioin, and the analog output driver to stdaudioout. When the driver is
loaded, it will automatically adjust the analog output sample rate according to the input.
The adjustment range is up to 97500 Hz, so standard sample rates up to 96 kHz can be
received. The Sync Driver can dynamically change its sample rate if the input sample
rate changes.

Example startup.txt file clip (AUII2SS.DR3 not available on VSRVES01):
Load I2S Slave Input driver and make it stdaudioin
driver +AUII2SS s
Load Line Out / Earphone output driver and make it stdaudioout
driver +AUODAC s
Connect and synchronize stdaudioout with stdaudioin slave
driver +AUXSYNCS

The same can be done using the VSOS Shell using the following commands:
S:>driver +auii2ss s
S:>driver +auodac s
S:>driver +auxsyncs

AUXSYNCS.DR3 has been tested with the I2S Slave Input drivers, but it is designed to
be usable with any generic slave input driver that offers a near-constant data rate. It may
not work properly with input drivers with large data bursts, like what for example VLC
creates when in Ethernet streaming mode. For that, there exists AuXPlayB, presented
in Chapter 7.7.2.

Rev. 0.04 2025-06-17 Page 23(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

7.7 Audio Input to Output Copying Drivers

Sometimes it’s useful to play back audio data from an input to an output in the back-
ground. This can be done by an audio copying driver.

7.7.1 Loopback Driver AUXPLAY.DR3

The AUXPLAY.DR3 driver reads data from stdaudioin and copies it to stdaudioout. While
seemingly trivial, it does so in the background, allowing the user to do other operations
while sound is being played back.

Normally the driver reports to stdout if there are input buffer overflows or output buffer
underflows. The amount of the overflows/underflows are given in stereo samples (so
e.g. +4800 at a sample rate of 48000 means 1/10s). The reports use the following
format:
AUXPLAY: In overflow +4088
AUXPLAY: Out underflow +4034

To disable overflow and underflow reporting, give the ’q’ parameter when loading and
starting AUXPLAY.DR3.

7.7.2 Loopback Slave Driver AUXPLAYB.DR3 with Big Buffer

Like the AUXPLAY.DR3 driver (Chapter 7.7.1), AUXPLAYB.DR3 reads data from stdau-
dioin and copies it to stdaudioout. However, at startup it will allocate itself large read
and write buffers so as to be able to play audio back from a source that is not continu-
ous. The buffer allocated is 49152 16-bit words, or just over 0.5 seconds when playback
parameters are 48 kHz, stereo, 16-bit.

The driver always starts with a nominal sample rate of 48 kHz. Then, depending on the
fill state of its audio buffer, it will minutely adjust the sample rate so as not to cause
underflows or overflows. This adjustment is done in such small steps, with an accuracy
of around 1/100 Hz, that it is absolutely beyond anyone’s hearing threshold.

Normally the driver reports to stdout if there are input buffer overflows or output buffer
underflows. The amount of the overflows/underflows are given in stereo samples (so
e.g. +4800 at a sample rate of 48000 means 1/10s). The reports use the following
format:
AUXPLAYB: In overflow +4088
AUXPLAYB: Out underflow +4034

To disable overflow and underflow reporting, give the ’q’ parameter when loading and
starting AUXPLAYB.DR3.

Rev. 0.04 2025-06-17 Page 24(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

8 Audio Filter Drivers

Audio filter drivers connect to an audio source or sink, and offer additional functionality,
like filtering.

Audio filter drivers are named using the following format:
FTdyyyyy.DR3
where

Symbol Description
d Driver direction: I = input, O = output, X = Input/Output
yyyyy Driver name, max 5 characters

application

VSOS

application

VSOS

stdaudioin

stdaudioininput filter

driver

audio input

audio input

driver

driver

Figure 8: An input filter driver connects to the stdaudioin chain

All filter input drivers connect directly between the current stdaudioin program chain and
the user program, as shown in Figure 8. The base driver responsible for stdaudioin (e.g.
AUIADC.DR3) must be loaded before the filter driver.

application

VSOS

driver

stdaudioout

stdaudioout output filter

audio output

driver

audio output

driver

VSOS

application

Figure 9: An output filter driver connects to the stdaudioout chain

All filter output drivers connect directly between the user program and the current stdau-
dioout program chain, as shown in Figure 9. The base driver responsible for stdaudioout
(e.g. AUODAC.DR3) must be loaded before the filter driver.

Audio filters must be removed in the reverse order of loading.

Rev. 0.04 2025-06-17 Page 25(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

Below is a command line example of audio and filter driver allocation and removal:

S:>auinput
E: No stdaudioin or NULL ptr
S:>driver +auiadc s
S:>auinput
stdaudioin: 0x2392, auiadc::audioFile=0x0c63(3171)

->Identify(): 0x414e, auiadc::Identify returns "AUIADC"
->op: 0x2399, auiadc::audioFileOps=0x0000(0)

->Ioctl(): 0x4023, auiadc::AudioIoctl
->Read(): 0x4104, auiadc::AudioRead

Sample rate: 48000
Bits per sample: 16
Channels: unknown (assuming 2)
Buffer size: 512 16-bit words (256 16-bit stereo samples)
Buffer fill: 508 16-bit words (254 16-bit stereo samples)
Sample counter: 51484
Overflows: 51232
S:>driver +ftiagc
S:>auinput
stdaudioin: 0x2541, FTIAGC::audioFile=0x0863(2147)

->Identify(): 0x4644, FTIAGC::Identify returns "FTIAGC32"
->op: 0x2569, FTIAGC::audioFileOps=0x0000(0)

->Ioctl(): 0x4508, FTIAGC::AudioIoctl
->Read(): 0x4597, FTIAGC::AudioRead

[... rest of auinput printouts cut for brevity ...]
S:>driver -ftiagc
S:>auinput
stdaudioin: 0x2392, auiadc::audioFile=0x0c63(3171)

->Identify(): 0x414e, auiadc::Identify returns "AUIADC"
->op: 0x2399, auiadc::audioFileOps=0x0000(0)

->Ioctl(): 0x4023, auiadc::AudioIoctl
->Read(): 0x4104, auiadc::AudioRead

[... rest of auinput printouts cut for brevity ...]
S:>driver -auiadc
S:>auinput
E: No stdaudioin or NULL ptr

Rev. 0.04 2025-06-17 Page 26(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

8.1 Equalizer Filter Driver

The Equalizer Filter Drivers implements a high-quality, multiband equalizer to VSRV’s
output audio path.

The package itself contains detailed PDF documentation; please read it for details.

8.1.1 Driver FTOEQU.DR3

TBD.

8.1.2 Control Program SETEQU.DR3

TBD.

Rev. 0.04 2025-06-17 Page 27(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

8.2 DC Offset / AGC Filter Drivers

When audio is digitized, two technical issues are DC Offset and Large Dynamic Range.

0 100 200 300 400

-1

-0.5

0

0.5

1

Figure 10: Audio with exaggerated DC offset

In an ideal world DC Offset wouldn’t happen. However, in the real world, signals almost
always have a slight DC offset. Note, how the sine wave in Figure 10 does not move
evenly around the center point, but has an offset of about +0.35. While the figure has
been greatly exaggerated, this is a real phenomenon caused by a myriad of different
reasons.

0 100 200 300 400

-1

-0.5

0

0.5

1

Figure 11: Audio with DC blocking

DC offset may cause many issues, including increased power consumption, audible
cracks and pops, waring down of speaker elements, and non-ideal audio compression.
Because of this, it is best to remove the audio offset with a DC Blocker algorithm, as
shown in Figure 11. Notice how the offset disappear after a little while (in this case, it

Rev. 0.04 2025-06-17 Page 28(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

has vanished practically completely by sample 150).

Another issue in audio is excessive dynamic range. This is not a problem when recording
well-mixed, pre-recorded music, but it may be a big issue when recording speech from
the microphone. To compensate for the audio level differences of close and faw away
speakers, and Automatic Gain Control (AGC) unit may often be useful. Note, however,
that AGC should not be used for HiFi recording applications!

8.2.1 Driver FTIDCBL.DR3

TBD.

8.2.2 Driver FTIAGC.DR3

TBD.

8.2.3 Control Program SETAGC.DR3

TBD.

Rev. 0.04 2025-06-17 Page 29(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

8.3 Pitch Shifter / Speed Shifter Filter Driver

The FtPitch package offers a pitch and speed shifter that connects to stdout. The speed
shifter can nominally be controlled to speeds between 0.68x and 1.64x of realtime, and
the pitch shifter can nominally be controlled between 0.61x and 1.47x of normal pitch.

Features and limitations:

• Speed divided by pitch (speed/pitch) must be between 0.68 and 1.64.

• Pitch shifting alters sample rate. If the resulting sample exceeds 96 kHz, playback
will be at incorrect speed.

• The shifter has been optimized to work best for audio where sample rate is be-
tween 32 and 48 kHz.

8.3.1 Driver FTOPITCH.DR3

TBD.

8.3.2 Control Program SETPITCH.DR3

TBD.

Rev. 0.04 2025-06-17 Page 30(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

8.4 Reverb Generator Filter Drivers

The FtRev package offers a reverb-style echo generator that connects to stdaudioin or
stdaudioout. Many parameters of the Reverb Generator may be modified.

8.4.1 Driver FTIREV.DR3

TBD.

8.4.2 Driver FTOREV.DR3

TBD.

8.4.3 Control Program SETREV.DR3

TBD.

Rev. 0.04 2025-06-17 Page 31(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

8.5 Noise Killer Filter Driver

Because of the way stereo information is transmitted on FM radio, stereo reception is
always more suscept to white noise and other artifacts than mono reception. A way
to reduce or remove the noise is to either dampen the stereo effect at the receiver, or
to just turn FM stereo reception off. The FtNoiseKiller package offers an adaptive FM
stereo radio noise killer algorithm that doesn’t destroy the stereo image. This will help
in creating a purely noiseless stereo radio experience.

8.5.1 Driver FTINOISE.DR3

TBD.

8.5.2 Control Program SETNOISE.DR3

TBD.

Rev. 0.04 2025-06-17 Page 32(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

8.6 Mono / Differential Filter Drivers

TBD.

Rev. 0.04 2025-06-17 Page 33(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

9 Audio Control Programs

These programs are useful for displaying and changing audio parameters, as well as
debugging audio interfaces. They are parts of the AuControl solution.

9.1 Control Program AUINPUT.DR3

Usage: AuInput [-ddrv|-pfp|-rrate|-bbits|-sbufsize|-cch|chconf|-v|+v|-h]
-ddrv Connect to audio driver DRV.DR3
-pfp Set input audio driver pointer to fp (use with caution!)
-rrate Set sample rate to rate
-bbits Number of bits (16 or 32)
-sbufSz Set buffer size to bufSz 16-bit words
-cch Set number of channels to ch
-v|+v Verbose on|off
-h Show this help

AUINPUT lets the user display control several parameters of stdaudioin, or any unlocked
audio input driver, or file pointer if it is known.

If called without any command line arguments that change a value, AUINPUT will display
the status of the audio driver as shown below

S:>auinput
stdaudioin: 0x203a, auii2ss::audioFile=3171(0xc63)

->Identify(): 0x3b4f, auxsyncs::Identify returns "AUXSYNCS"
->op: 0x2041, auii2ss::audioFileOps=0(0x0)

->Ioctl(): 0x3992, auxsyncs::AudioIoctl
->Read(): 0x38cf, auii2ss::AudioRead

Sample rate: 48000
Bits per sample: 16
Channels: unknown (assuming 2)
Buffer size: 512 16-bit words (256 16-bit stereo samples)
Buffer fill: 508 16-bit words (254 16-bit stereo samples)
Sample counter: 235803492
Overflows: 123022

In this example, slave audio synchronization driver AUXSYNCS.DR3 (Chapter 7.6.1)
has been loaded on top of AUII2SS.DR3, replacing two of its methods, Identify() and
Ioctl().

Note: To display symbol information, AUINPUT requires library TRACE.DR3.

9.2 Control Program AUOUTPUT.DR3

Usage: AuOutput [-ddrv|-pfp|-rrate|-bbits|-sbufSize|-cch|-lvol|-v|+v|-h]

Rev. 0.04 2025-06-17 Page 34(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

-ddrv Connect to audio driver DRV.DR3
-pfp Set output audio file pointer to fp (use with caution!)
-rrate Set sample rate to rate
-bbits Number of bits (16 or 32)
-sbufSz Set buffer size to bufSz 16-bit words
-cch Set number of channels to ch
-lvol Volume Level of maximum (vol = -128 .. 127.5)
-v|+v Verbose on|off
-h Show this help

AUOUTPUT lets the user display control several parameters of stdaudioout, or any un-
locked audio input driver, or file pointer if it is known.

If called without any command line arguments that change a value, AUOUTPUT will
display the status of the audio driver as shown below

S:>auoutput
stdaudioout: 0x1fea, auodac::audioFile=3139(0xc43)

->Identify(): 0x3b4f, auxsyncs::Identify returns "AUXSYNCS"
->op: 0x1ff1, auodac::audioFileOps=0(0x0)

->Ioctl(): 0x355b, auodac::AudioIoctl
->Write(): 0x39fb, auxsyncs::AudioWrite

Sample rate: 47793
Bits per sample: 16
Channels: unknown (assuming 2)
Buffer size: 4096 16-bit words (2048 16-bit stereo samples)
Buffer fill: 4 16-bit words (2 16-bit stereo samples)
Sample counter: 235977115
Underflows: 177796
Volume: +0.0 dB of maximum level

In this example, slave audio synchronization driver AUXSYNCS.DR3 (Chapter 7.6.1)
has been loaded on top of AUODAC.DR3 (Chapter 7.2.1), replacing two of its methods,
Identify() and Write().

Note: To display symbol information, AUINPUT requires library TRACE.DR3.

Rev. 0.04 2025-06-17 Page 35(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

10 Configuration Examples

Here are some configuration examples for loading different audio drivers.

For full options for each of these programs, have a look at the README.TXT / PDF file
for each of the drivers.

10.1 Minimal startup.txt for Playback

Audio DAC out driver
Driver +AUODAC s

Note the “s” parameter after the AUODAC.DR3 driver. This “s” parameter marks that the
driver should become a system driver. In other words, it should connect to the system
file stdaudioout so that all subsequent writes to stdaudioout will go through this driver.

10.2 Basic startup.txt for Recording

Audio DAC out driver
Drover +AUODAC s
Audio ADC in driver
Driver +AUIADC s
DC Block; use at least this with analog input even if not using AGC
Driver +FTIDCBL

In this example, both AUODAC.DR3 and AUIADC.DR3 have the system “s” option, so
they will occupy standard audio handles stdaudioout and stdaudioin, respectively.

Rev. 0.04 2025-06-17 Page 36(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

10.3 Loading/Unloading Drivers Using the VSOS Shell

Using the VSOS Shell Environment, you can use the DRIVER.DR3 program to load
drivers to memory, and to later unload them.

If possible, you should always unload drivers in the reverse order of loading them. This
is particularly true with drivers that connect to other drivers, like AUXSYNCS which con-
nects to both the stdaudioin and stdaudioout drivers (in this case AUII2SS and AUODAC,
respectively), and AUXPLAY which also uses stdaudioin and stdaudioout

Example: to load and inload some drivers, run the following commands:
S:>driver +auii2ss s
S:>driver +auodac s
S:>driver +auxsyncs
S:>driver +auxplay

To unload the drivers, enter the following commands:
S:>driver -auxplay
S:>driver -auxsyncs
S:>driver -auodac
S:>driver -auii2ss

Rev. 0.04 2025-06-17 Page 37(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

11 VSOS Audio ioctl() Controls

VSOS Audio Drivers can be controlled from C language using ioctl() controls declared
in <aucommon.h>.

There are many more definitions in the #include file <aucommon.h>. Refer to the doc-
umentation of the specific drivers you use for exact details on what of these functions
they support and how to get access to a file pointer for that driver.

The ioctl() function prototype is
s_int16 ioctl(void *p, register int request, register char *arg);
where p is the file or device pointer (e.g. stdaudioin or stdaudioout), request is the
type of the request, and arg is the optional argument.

ioctl() returns S_ERROR (-1) for an error (there was an error in the parameters, or the
ioctl() for the request doesn’t exist in this driver), any other value for success.

Generally, for functions that set a value, if arg is a pointer or a 16-bit value, it is casted to
c char * and passed to the function (e.g. IOCTL_AUDIO_SET_BITS in Chapter 11.2.5).
If arg is a larger entity (e.g. 32-bit number), a pointer to the value is passed instead (e.g.
IOCTL_AUDIO_SET_ORATE in Chapter 11.2.3).

Again, generally, for functions that return a 16-bit value where S_ERROR (-1) isn’t included
in the valid value range, the value is returned directly (e.g. IOCTL_AUDIO_GET_BITS
in Chapter 11.2.4). Otherwise, the user needs to transmit a pointer to the return value in
arg (e.g. IOCTL_AUDIO_GET_ORATE in Chapter 11.2.2). Not that in both cases ioctl()
returns S_ERROR (-1) if there was an error in the call.

11.1 Resetting a Driver

11.1.1 IOCTL_RESTART

Restart driver. Normally this needs never be done.

Example:
ioctl(fp, IOCTL_RESTART, NULL);

Rev. 0.04 2025-06-17 Page 38(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

11.2 Controlling Sample Rate and Bit Width

11.2.1 IOCTL_AUDIO_SET_RATE_AND_BITS

Set sample rate times 256 and number of bits. This is the recommended way of setting
the sample rate and bit width with drivers like e.g I2S where there is a limit to sample
rate and bit width combinations. Note that the sample rate / bit width argument doesn’t
fit into 16 bits, so it needs to be passed through a pointer.

Some drivers have very restricted number of sample rates supported. If you want to
see what sample rate actually was set by the hardware, it is recommended to do a
IOCTL_AUDIO_GET_IRATE or IOCTL_AUDIO_GET_ORATE call to see what you ac-
tually got.

• labs(rateBitsX256) = sampleRateX256
• if rateBits < 0, then use 32-bit I/O
• Sets both input and output sample rate, if applicable
• Not available with Slave Mode drivers

Example:
s_int32 rateBitsX256 = -48000*256L; /* Set to 48000 Hz, 32 bits */
if (ioctl(fp, IOCTL_AUDIO_SET_RATE_AND_BITS, (char *)(&rateBits))) {

printf("Couldn’t set sample rate and bits\n");
}

11.2.2 IOCTL_AUDIO_GET_IRATE, IOCTL_AUDIO_GET_ORATE

Get current sample rate times 256. Note that sample rate doesn’t fit into 16 bits, so it
needs to be passed through a 32-bit pointer.

Some drivers have very restricted number of sample rates supported. If you want to
see what sample rate actually was set by the hardware, it is recommended to do a
IOCTL_AUDIO_GET_IRATE or IOCTL_AUDIO_GET_ORATE call to see what you ac-
tually got.

• Not available with Slave Mode drivers

Example for input driver:
s_int32 sampleRateX256;
if (ioctl(fp, IOCTL_AUDIO_GET_IRATE, (char *)(&sampleRateX256))) {

printf("Couldn’t get sample rate\n");
}

Example for output driver:
s_int32 sampleRateX256;
if (ioctl(fp, IOCTL_AUDIO_GET_ORATE, (char *)(&sampleRateX256))) {

printf("Couldn’t get sample rate\n");
}

Rev. 0.04 2025-06-17 Page 39(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

11.2.3 IOCTL_AUDIO_SET_IRATE, IOCTL_AUDIO_SET_ORATE

Set sample rate times 256. Note that sample rate doesn’t fit into 16 bits, so it needs to
be passed through a 32-bit pointer.

• Only for Master Mode drivers
• It is recommended to use IOCTL_AUDIO_SET_RATE_AND_BITS instead

Example for input driver:
s_int32 sampleRateX256 = 48000*256L;
if (ioctl(fp, IOCTL_AUDIO_SET_IRATE, (char *)(&sampleRateX256))) {

printf("Couldn’t set sample rate\n");
}

Example for output driver:
s_int32 sampleRateX256 = 48000*256L;
if (ioctl(fp, IOCTL_AUDIO_SET_ORATE, (char *)(&sampleRateX256))) {

printf("Couldn’t set sample rate\n");
}

11.2.4 IOCTL_AUDIO_GET_BITS

Get number of bits for driver. If the driver only supports 16-bit mode, it may not imple-
ment this function call.

Example:
s_int16 bits = ioctl(fp, IOCTL_AUDIO_GET_BITS, NULL);
if (bits < 0) bits = 16;

11.2.5 IOCTL_AUDIO_SET_BITS

Set number of bits for driver.

Example:
• bits may be 16 or 32
• With Master Mode drivers it is recommended to use

IOCTL_AUDIO_SET_RATE_AND_BITS instead

Example:
if (ioctl(fp, IOCTL_AUDIO_SET_BITS, (char *)(32))) {

printf("Couldn’t set bits\n");
}

Rev. 0.04 2025-06-17 Page 40(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

11.3 Controlling Number of Audio Channels

These functions are relevant to drivers that can handle other than normal 2-channel
audio. 2-channel drivers don’t need to implement these function calls.

11.3.1 IOCTL_AUDIO_GET_ICHANNELS, IOCTL_AUDIO_GET_OCHANNELS

Get number of audio channels of a driver. If the driver only supports 2-channel audio, it
may not implement this function call.

Example for input driver:
s_int16 channels = ioctl(fp, IOCTL_AUDIO_GET_ICHANNELS, NULL);
if (channels < 0) channels = 2;

Example for output driver:
s_int16 channels = ioctl(fp, IOCTL_AUDIO_GET_OCHANNELS, NULL);
if (channels < 0) channels = 2;

11.3.2 IOCTL_AUDIO_SET_ICHANNELS, IOCTL_AUDIO_SET_OCHANNELS

Set number of bits audio channels. As of the writing of this (2023-02-28) no drivers
support this function.

Example for input driver:
if (ioctl(fp, IOCTL_AUDIO_SET_ICHANNELS, (char *)(6))) {

printf("Couldn’t set number of channels\n");
}

Example for output driver:
if (ioctl(fp, IOCTL_AUDIO_SET_OCHANNELS, (char *)(6))) {

printf("Couldn’t set number of channels\n");
}

Rev. 0.04 2025-06-17 Page 41(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

11.4 Controlling Audio Buffers

11.4.1 IOCTL_AUDIO_GET_INPUT_BUFFER_FILL

Get input buffer fill state in 16-bit words.

• Only for drivers with input capability

Example:
iBufFill = ioctl(fp, IOCTL_AUDIO_GET_INPUT_BUFFER_FILL, NULL);

11.4.2 IOCTL_AUDIO_GET_INPUT_BUFFER_SIZE

Get input buffer size in 16-bit words.

• Only for drivers with input capability

Example:
iBufSize = ioctl(fp, IOCTL_AUDIO_GET_INPUT_BUFFER_SIZE, NULL);

11.4.3 IOCTL_AUDIO_SET_INPUT_BUFFER_SIZE

Set input buffer size in 16-bit words.

• Only for drivers with input capability

Example:
if (ioctl(fp, IOCTL_AUDIO_SET_INPUT_BUFFER_SIZE, (char *)(1024))) {

printf("Couldn’t set input buffer size\n");
}

11.4.4 IOCTL_AUDIO_GET_OUTPUT_BUFFER_FREE

Get how many 16-bit words there are free in the output buffer.

• Only for drivers with DSP output capability

Example:
iBufFill = ioctl(fp, IOCTL_AUDIO_GET_OUTPUT_BUFFER_FREE, NULL);

Rev. 0.04 2025-06-17 Page 42(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

11.4.5 IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE

Get output buffer size in 16-bit words.

• Only for drivers with DSP output capability

Example:
oBufSize = ioctl(fp, IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE, NULL);

11.4.6 IOCTL_AUDIO_SET_OUTPUT_BUFFER_SIZE

Set output buffer size in 16-bit words.

• Only for drivers with DSP output capability

Example:
if (ioctl(fp, IOCTL_AUDIO_SET_OUTPUT_BUFFER_SIZE, (char *)(1024))) {

printf("Couldn’t set output buffer size\n");
}

Rev. 0.04 2025-06-17 Page 43(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

11.5 Volume Control

11.5.1 IOCTL_AUDIO_GET_VOLUME

Get volume. Volume is a number between 0 - 511 where 256 is full-scale, and each
successive number represents a volume gain step of -0.5 dB. See table below:

IOCTL_AUDIO_GET_VOLUME argument table
Argument Amplification Description

0 +128.0 dB Insane amplification
1 +127.5 dB Insane amplification minus 0.5 dB
...

255 +0.5 dB Slightly louder than full-scale volume
256 0.0 dB Full-scale volume
257 -0.5 dB Almost full-scale volume

...
509 -126.0 dB Very silent
510 -∞dB No sound, may not turn off driver
511 -∞dB No sound, may turn off driver

A driver may limit the range it actually accepts for its volume settings. E.g. the analog
output driver AUODAC only supports the range between 256 (0.0 dB) and 511 (analog
driver power-down). As another example, the S/PDIF driver supports the range between
208 (+24.0 dB) and 511 (silence). If a driver does not support the whole range, it will
automatically limit itself so you can still call it with the extreme values.

511 is a special value that allows e.g. the audio driver to turn itself off (supported by e.g.
AUODAC). Use with caution!

To get the maximum value the driver accepts as its setting, you may set the third param-
eter to IOCTL_PARAM_MAX. The get the minimum value use IOCTL_PARAM_MIN.

Example:
volume = ioctl(fp, IOCTL_AUDIO_GET_VOLUME, NULL);
maxVolArgVal = ioctl(fp, IOCTL_AUDIO_GET_VOLUME, IOCTL_ARGVAL_MAX);
minVolArgVal = ioctl(fp, IOCTL_AUDIO_GET_VOLUME, IOCTL_ARGVAL_MIN);

11.5.2 IOCTL_AUDIO_SET_VOLUME

Set volume. Scale for volume is the same as for IOCTL_AUDIO_GET_VOLUME (Chap-
ter 11.5.1).

Example:
/* Set full scale volume */
if (ioctl(fp, IOCTL_AUDIO_SET_VOLUME, (char *)(256))) {

printf("Couldn’t set volume\n");
}

Rev. 0.04 2025-06-17 Page 44(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

11.6 Miscellaneous Controls

11.6.1 IOCTL_AUDIO_GET_SAMPLE_COUNTER

Get sample counter. This value may be used to synchronize input and output (e.g. by
the driver AUXSYNCS, Chapter 7.6.1).

Example:
s_int32 sampleCounter;
if (ioctl(fp, IOCTL_AUDIO_GET_SAMPLE_COUNTER, (char *)(&sampleCounter))) {

printf("Couldn’t get sample counter\n");
}

11.6.2 IOCTL_AUDIO_GET_OVERFLOWS

Get overflow sample counter for the input buffer.

If this number changes while an audio input program is running, this is an indication of
a program performance or input/output buffer size issue.

If nobody cosumes samples from the input audio driver, this value increases at the rate of
the sample counter that can be read with IOCTL_AUDIO_GET_SAMPLE_COUNTER.

• Only for drivers with input

Example:
s_int32 overFlow;
if (ioctl(fp, IOCTL_AUDIO_GET_OVERFLOWS, (char *)(&overFlow))) {

printf("Couldn’t get overflow counter\n");
}

11.6.3 IOCTL_AUDIO_GET_UNDERFLOWS

Get underflow sample counter for the output buffer.

If this number changes while an audio output program is running, this is an indication of
a program performance or input/output buffer size issue.

If nobody produces samples for the output audio driver, this value increases at the rate of
the sample counter that can be read with IOCTL_AUDIO_GET_SAMPLE_COUNTER.

• Only for drivers with output

Example:
s_int32 underFlow;
if (ioctl(fp, IOCTL_AUDIO_GET_UNDERFLOWS, (char *)(&underFlow))) {

printf("Couldn’t get underflow counter\n");
}

Rev. 0.04 2025-06-17 Page 45(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

12 Controlling Audio from VSOS Shell with UiMessages

When using the VSOS Shell, some audio functions may be controlled even if running
a VSOS program that doesn’t take audio controls. If the TTY is not in RAW mode, the
following escape sequences defined in <uimessages.h> may be sent to the shell.

12.1 Setting Volume anywhere from VSOS Shell

Note that here means sending ASCII code 2, invoked in most terminal emulation
programs by pushing Ctrl-B.

Volume up by 1/2 dB:
111ms

Volume down by 1/2 dB:
112ms

Set attenuation to -HH/2 dB, where HH is a hexadecimal number:
206mHHs

Example:
To set volume to -20 dB, you need to send 40 = 0x28:
206m28s

12.2 Sending Equalizer Controls from VSOS Shell

The filters are accessed with UiMessages that have the following format, where X is the
filter number (0..f), and YY is the 16-bit signed value presented as an unsigned 16-bit
hexadecimal number. 21XmYYs

Example:
Let’s assume we have the following configuration lines in config.txt:

RUN SETEQU 1 3 100 0 0.7
RUN SETEQU 2 3 10000 0 0.7

Now, to set bass (filter channel 1) to +6 dB (6), send the following command:
210m6s

To set treble (filter channel 2) to -12 dB (0xfff4), send the following command:
211mfff4s

Up To 16 channels may be accesses with messages ranging from 0x210 to 0x21f.

Rev. 0.04 2025-06-17 Page 46(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

13 Audio Decoders

Library audiodec automatically chooses between many Audio Decoders when presented
an audio file. The libraries, their respective decode audio formats, and their clock rate
requirements, are presented below.

NOTE: The clock speeds have been tested with a Class 4 SD card and “typical test
files”. While VLSI believes the information to be accurate, clock rates should still be
interpreted as estimates. The estimates are given for a system with a typical interrupt
load and with a 8 KiW audio output buffer. An example S:CONFIG.TXT configuration file
that sets the system up for best playback audio performance is provided in file con-
fig_audio_decoders.txt in the VSOS Root and Libraries Source Code package.

Audio Decoders
LibName Format Description
decaac AAC AAC in ADTS and MP4 containers (.aac, .m4a, .mp4, .3gpp)
decac3 AC3 AC3 decoded into stereo
decaiff AIFF Apple uncompressed PCM format
decalac ALAC Apple lossless in MP4 (.mp4, .m4a) or CAFF (.caf) container
decape APE Monkey’s audio
decdsd DSD DSD bitstream files in .DSF and .DFF container, LSb first only
decflac FLAC Free Lossless Audio Codec
decmp3 MP3 MPEG audio layer 3
decvorb Ogg Vorbis Vorbis audio in Ogg container
decwav RIFF WAV Many RIFF WAV subformats
decwma WMA Windows Media Audio
mp4file - Determines if MP4 file contains ALAC or AAC

NOTE: For formats where there may be more than 2 audio channels, only files up to 2
audio channels are supported.

Library decaac subformats and clock requirements
Clock Description
30 MHz AAC up to 48 kHz, 280 kbit/s

Library decaiff subformats and clock requirements
Clock Description
12 MHz AIFF up to 96 kHz 16-bit
18 MHz AIFF up to 96 kHz 24-bit
37 MHz AIFF up to 192 kHz 24-bit
61 MHz AIFF up to 352 kHz 24-bit

Library decac3 subformats and clock requirements
Clock Description
– MHz 5.1 channels at 48 kHz, – kbit/s

Rev. 0.04 2025-06-17 Page 47(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

Library decalac subformats and clock requirements
Clock Description
37 MHz Apple lossless up to 48 kHz 16-bit
74 MHz Apple lossless up to 96 kHz 24-bit

Library decape subformats and clock requirements
Clock Description
61 MHz Monkey’s Audio up to 48 kHz 24-bit, profile Fast
67 MHz Monkey’s Audio up to 48 kHz 24-bit, profile Normal
79 MHz Monkey’s Audio up to 48 kHz 24-bit, profile High
N/A Monkey’s Audio, profiles Extra High and Insane

Library decdsd subformats and clock requirements
Clock Description
49 MHz DSD64 (2.8 MHz, 1-bit)
86 MHz DSD128 (5.6 MHz, 1-bit)
92 MHz DSD256 (11.3 MHz, 1-bit)

Library decflac subformats and clock requirements
Clock Description
12 MHz FLAC up to 16 kHz, 16-bit
18 MHz FLAC up to 32 kHz, 16-bit
25 MHz FLAC up to 48 kHz, 16-bit
37 MHz FLAC up to 96 kHz, 16-bit
43 MHz FLAC up to 96 kHz, 24-bit

Library decmp3 subformats and clock requirements
Clock Description
12 MHz MP3 at 8 kHz, 8 kbit/s
31 MHz MP3 up to 48 kHz, 320 kbit/s

Library decvorb subformats and clock requirements
Clock Description
12 MHz Ogg Vorbis up to 16 kHz, 73 kbit/s
18 MHz Ogg Vorbis up to 32 kHz, 151 kbit/s
37 MHz Ogg Vorbis up to 48 kHz, 346 kbit/s
55 MHz Ogg Vorbis up to 96 kHz, 362 kbit/s

Library decwav subformats and clock requirements
Clock Description
12 MHz RIFF WAV up to 96 kHz 16-bit
18 MHz RIFF WAV up to 96 kHz 24-bit
31 MHz RIFF WAV up to 192 kHz 24-bit (e.g. DXD format)
55 MHz RIFF WAV up to 352 kHz 24-bit (e.g. DXD format)
68 MHz RIFF WAV up to 352 kHz 32-bit floating-point (e.g. DXD format)

Rev. 0.04 2025-06-17 Page 48(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

Library decwma subformats and clock requirements
Clock Description
61 MHz All WMA files in VLSI Solution’s internal test suite

Rev. 0.04 2025-06-17 Page 49(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

13.1 Decoder Loop Functionality

Some of the audio decoders include a chance to play a part of the audio file in a loop.

Depending on the decoder, there may or may not be support for the

The list of audio decoders that contains loop functionality, and the level of support, is
provided in the following table:

Audio decoders with loop functionality
LibName Set Sample Smooth3 Comments

timing1 accurate2

decvorb Yes Yes No -
decwav Yes Yes4 No -

1 If this feature is not available, the decoder is only able to loop the complete audio file.
To make sure user software is compatible with potential future versions of the driver
which may start supporting the Set Timing feature, Loop structure should be set as
follows:
loop->startSeconds = loop->endSeconds = loop->endSamples = 0;
loop->endSeconds = 0xFFFFFFFFU;
2 If this feature is available, looping is sample-accurate. If not available, loop start and
stop points may vary slightly.
3 If this feature is available, loop supports the CFL_DECLICK flag which declicks the loop
but is not sample accurate. If this feature is missing from the decoder, flag CFL_DECLICK
is ignored.
4 Exception: IMA ADPCM is not sample accurate.

An example of how to use the loop feature is provided in solution PlayFileLoop in the
VSOS Root and Libraries Source Code package. Read the README.TXT file for details.

Rev. 0.04 2025-06-17 Page 50(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

14 Audio Encoders

TBD.

14.1 ENCVORB.DR3 - Ogg Vorbis Encoder

TBD.

14.2 ENCMP3.DR3 - MP3 Encoder (VS1205 only)

TBD.

14.3 ENCOPUS.DR3 - Opus Raw Encoder

TBD.

14.4 ENCFLAC.DR3 - FLAC Encoder

TBD.

Rev. 0.04 2025-06-17 Page 51(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

15 Latest Document Version Changes

This chapter describes the latest changes to this document.

Version 0.04, 2025-06-17

• First public prerelease.

• Added Chapter 7.5, Ethernet Input Audio Driver, including documentation for the
AUIETH.DR3 driver.

Version 0.03, 2025-06-09

First internal prerelease.

Rev. 0.04 2025-06-17 Page 52(53)

HH

VSRV VSOS AUDIO SUBSYSTEM VSRV1

16 Contact Information

VLSI Solution Oy
Entrance G, 2nd floor

Hermiankatu 8
FI-33720 Tampere

FINLAND

URL: http://www.vlsi.fi/
Phone: +358-50-462-3200

Commercial e-mail: sales@vlsi.fi

For technical support or suggestions regarding this document, please participate at
http://www.vsdsp-forum.com/

For confidential technical discussions, contact
support@vlsi.fi

Rev. 0.04 2025-06-17 Page 53(53)

	VSRV VSOS Audio Subsystem Front Page
	Table of Contents
	Introduction
	Disclaimer
	Definitions
	Overview
	Requirements
	The VSRV VSOS Audio Subsystem
	Standard Audio
	VSOS Audio Output Example Program
	VSOS Audio Input/Output Example Program

	Audio Drivers
	General
	Examples of Loading and Unloading Audio Drivers

	Analog Output DAC Audio Driver
	Driver AUODAC.DR3

	Analog Output Side Path Audio Driver
	Driver AUOOSET.DR3

	Analog Input ADC Audio Driver
	Driver AUIADC.DR3

	Ethernet Input Audio Driver
	Driver AUIETH.DR3

	Slave Audio Input Synchronization Driver
	Driver AUXSYNCS.DR3

	Audio Input to Output Copying Drivers
	Loopback Driver AUXPLAY.DR3
	Loopback Slave Driver AUXPLAYB.DR3 with Big Buffer

	Audio Filter Drivers
	Equalizer Filter Driver
	Driver FTOEQU.DR3
	Control Program SETEQU.DR3

	DC Offset / AGC Filter Drivers
	Driver FTIDCBL.DR3
	Driver FTIAGC.DR3
	Control Program SETAGC.DR3

	Pitch Shifter / Speed Shifter Filter Driver
	Driver FTOPITCH.DR3
	Control Program SETPITCH.DR3

	Reverb Generator Filter Drivers
	Driver FTIREV.DR3
	Driver FTOREV.DR3
	Control Program SETREV.DR3

	Noise Killer Filter Driver
	Driver FTINOISE.DR3
	Control Program SETNOISE.DR3

	Mono / Differential Filter Drivers

	Audio Control Programs
	Control Program AUINPUT.DR3
	Control Program AUOUTPUT.DR3

	Configuration Examples
	Minimal startup.txt for Playback
	Basic startup.txt for Recording
	Loading/Unloading Drivers Using the VSOS Shell

	VSOS Audio ioctl() Controls
	Resetting a Driver
	IOCTL_RESTART

	Controlling Sample Rate and Bit Width
	IOCTL_AUDIO_SET_RATE_AND_BITS
	IOCTL_AUDIO_GET_IRATE, IOCTL_AUDIO_GET_ORATE
	IOCTL_AUDIO_SET_IRATE, IOCTL_AUDIO_SET_ORATE
	IOCTL_AUDIO_GET_BITS
	IOCTL_AUDIO_SET_BITS

	Controlling Number of Audio Channels
	IOCTL_AUDIO_GET_ICHANNELS, IOCTL_AUDIO_GET_OCHANNELS
	IOCTL_AUDIO_SET_ICHANNELS, IOCTL_AUDIO_SET_OCHANNELS

	Controlling Audio Buffers
	IOCTL_AUDIO_GET_INPUT_BUFFER_FILL
	IOCTL_AUDIO_GET_INPUT_BUFFER_SIZE
	IOCTL_AUDIO_SET_INPUT_BUFFER_SIZE
	IOCTL_AUDIO_GET_OUTPUT_BUFFER_FREE
	IOCTL_AUDIO_GET_OUTPUT_BUFFER_SIZE
	IOCTL_AUDIO_SET_OUTPUT_BUFFER_SIZE

	Volume Control
	IOCTL_AUDIO_GET_VOLUME
	IOCTL_AUDIO_SET_VOLUME

	Miscellaneous Controls
	IOCTL_AUDIO_GET_SAMPLE_COUNTER
	IOCTL_AUDIO_GET_OVERFLOWS
	IOCTL_AUDIO_GET_UNDERFLOWS

	Controlling Audio from VSOS Shell with UiMessages
	Setting Volume anywhere from VSOS Shell
	Sending Equalizer Controls from VSOS Shell

	Audio Decoders
	Decoder Loop Functionality

	Audio Encoders
	ENCVORB.DR3 - Ogg Vorbis Encoder
	ENCMP3.DR3 - MP3 Encoder (VS1205 only)
	ENCOPUS.DR3 - Opus Raw Encoder
	ENCFLAC.DR3 - FLAC Encoder

	Latest Document Version Changes
	Contact Information

