VS1000 Audio Module

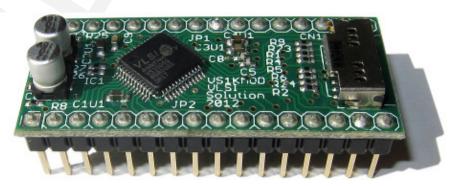
Features

- Plays audio from microSD card or SPI Flash
- Uses powerful Ogg Vorbis audio format
- · Firmware and content can be customized
- · Controlled via UART or IO pins
- Very simple to use, UART is enough to send commands
- High-performance CD quality analog out
- Supports low bit rates and various sample rates
- Operates from a single supply (VCC = 3.6...6.0V) (Note: other pins are not 5Vtolerant. Do not drive other pins over DVDD!)
- Line output
- Headphone output
- SPI FLASH for code and/or data storage
- MicroSD connector for data storage
- Most internal nodes are routed to pinheaders for easy access and customization

Applications

- Elevators
- Ticket machines
- · Audio user's manuals
- · Vending machines
- Car accessories
- Alarm systems
- PC accessories
- Speaking hi-tech toys
- Development board for VS1000 chip

Description


The VS1000 Audio Module is a small, low-cost, high performance, easy to use audio player that is controlled from the IO-pins or UART. It can be used as a "plug-in" audio board in electronic systems or as a standalone small audio player.

The product is supported by design services, audio content preparation and pre-programming. It is also fully configurable by the user by using free Integrated Development Tools (VSIDE) for the VS1000 IC. The use of the module does not require any advanced information from the user.

Pin headers of the PCB are compatible with DIL32 footprint 2.54 pitch 15.24 mm wide (100 mils pitch, 600 mils wide). This makes it possibe to use standard DIL32 ZIF sockets or solder it by using DIL32 footprint. Also see chapter 5.10.

The left row of the PCB has digital connections for external buttons, LEDs or other circuitry. The right row has power connections, analog connections, a serial port and USB. These can be used to interface the board with a PC and VSIDE or a host microcontroller.

The module operates from a single power supply and has 16 Mbits of on-board FLASH and a microSD card connector for playing license free Ogg Vorbis audio files. The module can boot from the on-board FLASH memory.

CONTENTS

Contents

VS	S1000 Audio Module	1
Та	able of Contents	2
Lis	ist of Figures	3
1	Disclaimer	4
2	Definitions	4
3	Placement and Pinout	5
4	Dimensions	6
5	Characteristics & Specifications 5.1 Absolute Maximum Ratings 5.2 Recommended Operating Conditions 5.3 Analog Characteristics of Audio Outputs 5.4 Analog Characteristics of Regulators 5.5 Analog Characteristics of VCC voltage monitor 5.6 Analog Characteristics of CVDD voltage monitor 5.7 Analog Characteristics of USB 5.8 Power Consumption 5.9 Digital Characteristics 5.10 Integrating with Your Product	7 8 9 9 10 10
6	PCB Schematics	12
7	PCB and Component Layout 7.1 Notes about the Schematics	13 14 15
8	Default Firmware (version 0.84)	16
9	Application Examples 9.1 Headphone Connection	
10	0 Document Version Changes	28
11	1 Contact Information	29

LIST OF FIGURES

3

List of Figures

I	Pinoul	Э
2	Top layer PCB layout	6
3	Top layer PCB layout	6
4	Schematic 1.82 of the VS1000 Module (2023)	12
5	Top layer and silkscreen of the PCB (Top view)	13
6	Bottom layer and silkscreen of the PCB (Top view)	13
7	Schematic 1.61 of the VS1000 Module. (2014)	15
8	Headphone Connection	23
9	Line Out Connection	24
10	USB Controlled and Powered Device with Headphone Output	25
11	RS232 Control	26
12	Button Controlled Player (idle high)	27

2 DEFINITIONS

1 Disclaimer

All properties and figures are subject to change.

2 Definitions

B Byte, 8 bits.

b Bit.

Ki "Kibi" = 2^{10} = 1024 (IEC 60027-2).

Mi "Mebi" = 2^{20} = 1048576 (IEC 60027-2).

VS_DSP VLSI Solution's DSP core.

W Word. In VS_DSP, instruction words are 32-bit and data words are 16-bit wide.

3 PLACEMENT AND PINOUT

3 Placement and Pinout

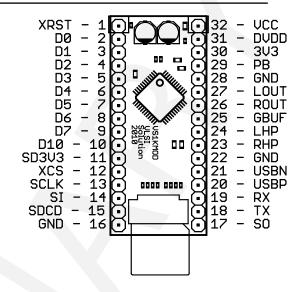


Figure 1: Pinout.

Pin	Name	Description	7	Pin	Name	Description
1	XRESET	Active Low reset for VS1000		32	VCC	Input Voltage. Power supply for the board. 3.6V - 6.0V allowed
2	D0	General purpose I/O pin		31	DVDD	Output of DVDD regulator, for external circuitry
3	D1	General purpose I/O pin		30	3V3	Output of 3V3 regulator, for external circuitry
4	D2	General purpose I/O pin		29	PB	Powerbutton. For turning the VS1000 on and off
5	D3	General purpose I/O pin		28	GND	Ground. Connected to ground plane
6	D4	General purpose I/O pin		27	LOUT	Left channel line out (AC-coupled)
7	D5	General purpose I/O pin		26	ROUT	Right channel line out (AC-coupled)
8	D6	General purpose I/O pin, 100K pulldown		25	GBUF	Headphone common output (note DC-bias)
9	D7	General purpose I/O pin, 100K pullup		24	LHP	Headphone left channel output (note DC-bias)
10	D10	General porpose I/O pin		23	RHP	Headphone right channel output (note DC-bias)
11	SD3V3	Controls the 3.3V regulator on board, 100K pulldown		22	GND	Ground. Connected to ground plane
12	XCS	SPI bus Chip Select, 100K pullup		21	USBN	USB negative signal
13	SCLK	SPI bus clock input		20	USBP	SUB positive signal
14	SI	SPI bus data input		19	RX	Serial port receive, 100K pullup
15	SDCD	SD card detected		18	TX	Serial port transmit
16	GND	Ground. Connected to ground plane		17	SO	SPI bus data output

Note: The maximum voltage for all IO pins is 3.6V! Only VCC can be 3.6 V - 6.0 V.

4 Dimensions

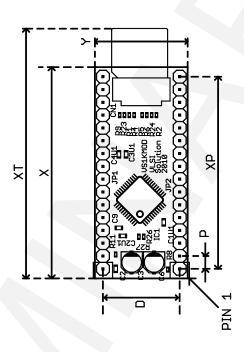


Figure 3: Top layer PCB layout

Figure 2: Top layer PCB layout

Parameter	Symbol	Min	Тур	Max	Unit
Width of PCB	Υ	18.4	18.5		mm
Length of PCB	Х	41.9	42.0		mm
Total length (approximate with μ SD card inserted)	XT		50		mm
Center of the first pin to the center of the last pin	XP		38.1		mm
Maximum height of module	Z1		15.5	16.6	mm
Minimum height of module	Z2		10.0	11.6	mm
Pitch of pins	Р		2.54		mm
Pin height	Z3		5.8	6.8	mm
Distance from lower pin row to upper pin row	D		15.24		mm
Distance to microSD card centerline	Z4		12.6	13.6	mm
Pin type and size	PT		0.65 square		mm

5 CHARACTERISTICS & SPECIFICATIONS

5 Characteristics & Specifications

5.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply voltage	VCC	-0.3	6.0	V
Voltage at Any Digital Input		-0.3	IOVDD+0.3 ¹	V
Total Injected Current on Pins			±200 ²	mA
Operating Temperature		-40	+85	°C
Storage Temperature		-65	+150	°C

¹ IOVDD is output of the programmable regulator of the VS1000 chip. Must not exceed 3.6 V

5.2 Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Operating temperature		-40		+85	°C
Ground ¹	GND		0.0		V
Supply voltage ²	VCC	3.6		6.0	V
Analog positive supply ³	AVDD	2.75	2.8	3.6	V
Digital positive supply ³	CVDD	2.2	2.3	2.65	V
I/O positive supply ³	IOVDD	1.8	2.8	3.6	V
Input clock frequency ⁴	XTALI	12	12 ⁵	13	MHz
Internal clock frequency, USB active	CLKU	48		48	MHz
Internal clock frequency, USB inactive	CLKI	12		48	MHz
Master clock duty cycle		40	50	60	%

¹ Do not float ground - ground is needed for latch-up immunity.

² Latch-up limit

² At least 4.0 V is required for compliant USB level.

³ Regulator output of the VS1000 device. Can be controlled by the firmware.

⁴ The maximum sample rate that can be played with correct speed is XTALI/256. With 12 MHz XTALI sample rates over 46875 Hz are played at 46875 Hz.

⁵ To be able to use USB, XTALI must be 12 MHz.

5 CHARACTERISTICS & SPECIFICATIONS

5.3 Analog Characteristics of Audio Outputs

Unless otherwise noted: AVDD=3.3V, CVDD=2.4V, IOVDD=2.8V, TA=-40..+85°C, XTALI=12 MHz, Internal Clock Multiplier $3.0\times$. DAC tested with full-scale output sinewave, measurement bandwidth 20..20000 Hz, analog output load: LHP to GBUF 30 Ω , RHP to GBUF 30 Ω , LOUT: 10k Ω , LOUT: 10k Ω .

Parameter	Symbol	Min	Тур	Max	Unit
DAC Resolution			18		bits
Dynamic range (DAC unmuted, A-weighted, min gain)	IDR		96		dB
S/N ratio (full scale signal, no load¹)	SNR		92		dB
S/N ratio (full scale signal, 30 ohm load ²)	SNRL	75	90		dB
Total harmonic distortion, max level, no load ¹	THD		0.01		%
Total harmonic distortion, max level, 30 ohm load ²	THDL		0.1	0.3	%
Crosstalk (LOUT/ROUT to ROUT/LOUT), no load ¹	XTALK0		75		dB
Crosstalk (LHP/RHP to RHP/LHP), 30 ohm load, without GBUF ³	XTALK1		75		dB
Crosstalk (LHP/RHP to RHP/LHP), 30 ohm load, with GBUF	XTALK2		54		dB
Gain mismatch (LOUT/ROUT to ROUT/LOUT)	GERR	-0.5		0.5	dB
Frequency response	AERR	-0.05		0.05	dB
Full scale output voltage	LEVEL	450	530	600	mVrms
Deviation from linear phase	PH		0	5	0
Analog output load resistance	AOLR		30^4		Ω
Analog output load capacitance	AOLC			100	pF
DC level (GBUF, LHP, RHP)		1.1		1.3	V
GBUF disconnect current (short-circuit protection)			130	200	mA

¹ Characteristics with no load are measured from LOUT/ROUT outputs towards GND such that LHP/RHP outputs are not loaded.

 $^{^2}$ Characteristics with 30 Ω load are measured from LHP/RHP outputs towards GBUF such that LOUT/ROUT outputs are not loaded.

 $^{^3}$ Loaded from LHP/RHP pin to analog ground via 100 μ F capacitors.

⁴ AOLR may be lower than *Typical*, but distortion performance may be compromised. Also, there is a maximum current that the internal regulators can provide.

5.4 Analog Characteristics of Regulators

Parameter	Symbol	Min	Тур	Max	Unit
IOVDD					
Recommended voltage setting range		1.7		3.6	V
Voltage setting step size		50	60	70	mV
Default setting, reset mode ¹			1.8		V
Default setting, active mode ²			1.8/3.6 ³		V
Load regulation			4.0		mV/mA
Line regulation from VCC			2.0		mV/V
Continuous current			30^4	40	mA
CVDD					
Recommended voltage setting range		1.8		2.6	V
Voltage setting step size		35	48	55	mV
Default setting, reset mode ¹			1.8		V
Default setting, active mode ²			2.2		V
Continuous current			30^4	35	mA
Load regulation			2.0		mV/mA
Line regulation from VCC			2.0		mV/V
AVDD					
Recommended voltage setting range		2.6		3.6	V
Voltage setting step size		35	46	55	mV
Default setting, reset mode ¹			2.5		V
Default setting, active mode ²			2.7		V
Continuous current			30^4	70	mA
Load regulation			1.5		mV/mA
Line regulation from VCC			2.0		mV/V

¹ Device enters reset mode when XRESET pin is pulled low.

5.5 Analog Characteristics of VCC voltage monitor

Parameter	Symbol	Min	Тур	Max	Unit
Trigger voltage	AMON		1.07×AVDD		V
Hysteresis			50		mV

VCC voltage monitor causes interrupt when it is activated. The purpose is to shut down the system by the firmware before voltage level causes functionality error.

 $^{^{2}}$ Device enters active mode when XRESET pin is pulled high after reset mode. Regulator settings can be modified by custom firmware (in on-board FLASH).

³ Depends on GPIO0_7 pin status in boot.

⁴ Device is tested with a 30 mA load.

5.6 Analog Characteristics of CVDD voltage monitor

Parameter	Symbol	Min	Тур	Max	Unit
Trigger voltage	CMON	1.40	1.53		V
Hysteresis			2		mV

CVDD voltage monitor causes internal hardware reset of the system.

5.7 Analog Characteristics of USB

Parameter	Min	Тур	Max	Unit
Drive low level, 2.32 mA load	0.065		0.102	V
Drive low level, 6.1×AVDD mA load	0.171×AVDD		0.270×AVDD	V
Drive low level, 10.71×AVDD mA load	$0.300 \times AVDD$		AVDD	V
Drive high level, -2.32 mA load	AVDD-0.165		AVDD-0.065	V
Drive high level, -6.1×AVDD mA load	0.650×AVDD		0.829×AVDD	V
Drive high level, -10.71×AVDD mA load	0		0.700×AVDD	V
USBP level, with 15 k Ω pull-down	2.7		0.943×AVDD	V
High-Level input voltage (single-ended)	$0.7 \times AVDD$		AVDD+0.3	V
Low-Level input voltage (single-ended)	-0.2		$0.3 \times AVDD$	V
Differential input common voltage, AVDD≥3.3V	0.8		2.5	V
Differential input signal level, AVDD≥3.3V	200			mV
Input leakage current	-2.0		2.0	μ A

5.8 Power Consumption

Parameter	Min	Тур	Max	Unit	
Current Consumption of Reset mode (XRESET=0V) @ 25 °C		24	48	μ A	
UART player application VCC=6.0V IOVDD=3.3V AVDD=2.8V (CVDD=	2.5V			
Total Power, play mode, LHP and RHP with 30 Ω load to GBUF		120		mW	
Total Power, play mode, LOUT and ROUT with $10k\Omega$ load		120		mW	
UART player application VCC=4.0V IOVDD=3.3V AVDD=2.8V (CVDD=	2.5V			
Total Power, play mode, LHP and RHP with 30 Ω load to GBUF		120		mW	
Total Power, play mode, LOUT and ROUT with $10k\Omega$ load		120		mW	
UART player application VCC=6.0V, IOVDD=2.7V AVDD=2.6V	CVDD=	=2.2V			
Total Power, pause mode		10		mW	
Total Power, play mode, LHP and RHP with 30 Ω load to GBUF		80		mW	
Total Power, play mode, LOUT and ROUT with $10k\Omega$ load		80		mW	
UART player application VCC=4.0V, IOVDD=2.7V AVDD=2.6V CVDD=2.2V					
Total Power, pause mode		10		mW	
Total Power, play mode, LHP and RHP with 30 Ω load to GBUF		80		mW	
Total Power, play mode, LOUT and ROUT with $10k\Omega$ load		80		mW	

5 CHARACTERISTICS & SPECIFICATIONS

5.9 Digital Characteristics

Parameter	Min	Тур	Max	Unit
High-Level Input Voltage	$0.7 \times IOVDD$		IOVDD+0.3	V
Low-Level Input Voltage	-0.2		$0.3 \times \text{IOVDD}$	V
High-Level Output Voltage, -1.0 mA load ¹	$0.7 \times IOVDD$			V
Low-Level Output Voltage, 1.0 mA load ¹			$0.3 \times \text{IOVDD}$	V
XTALO high-level output voltage, -0.1 mA load	$0.7 \times IOVDD$			V
XTALO low-level output voltage, 0.1 mA load			$0.3 \times IOVDD$	V
Input leakage current	-1.0		1.0	μ A
Rise time of all output pins, load = 30 pF 1			50	ns

¹ Pins GPIO0_[14:0], GPIO1_[5:0].

5.10 Integrating with Your Product

Audio modules contain MSL2- / MSL3-graded components, so it is not recommended to reflow solder modules after receiving them (at least not without baking them first).

The recommended audio module assembly option:

- A female pinheader on your board is the easiest way to connect the audio module.

Other potential options:

- Wave soldering from below, and with a PCB in between the module and the solder is also acceptable, since it will not cause damage to the MSL2 / MSL3 components.
- Soldering the pins by hand is also a possibility.

6 PCB Schematics

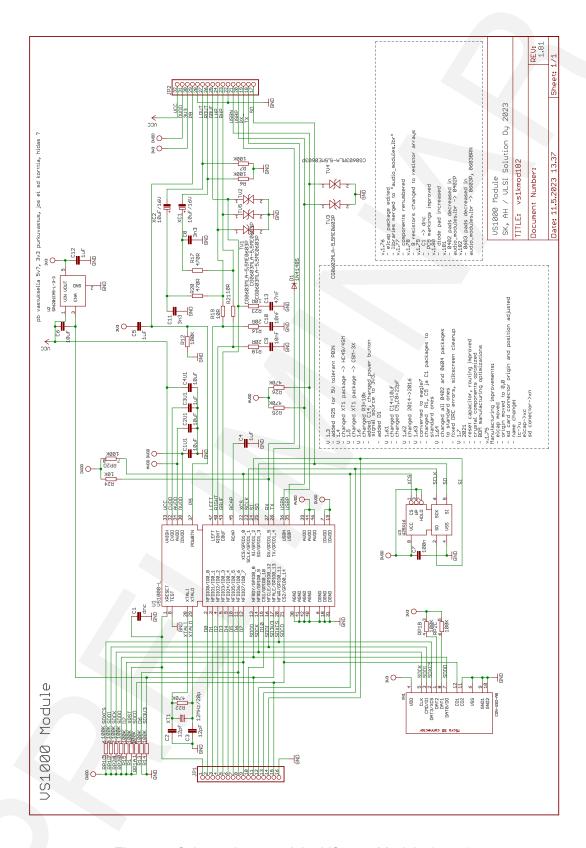


Figure 4: Schematic 1.82 of the VS1000 Module (2023).

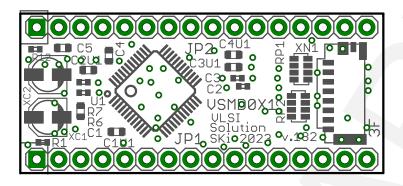


Figure 5: Top layer and silkscreen of the PCB (Top view)

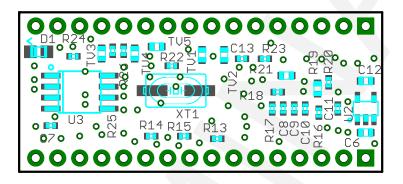


Figure 6: Bottom layer and silkscreen of the PCB (Top view)

7 PCB and Component Layout

Bill	Bill of Material from vs1kmod182.sch, 51 parts, grouped by values, as of 11.2.2025							
Qty	Value	Package	Description	Part				
4	10uF	0603P	CAPACITOR	C1U1, C2U1, C4U1, C6				
2	12pF	0402P	CAPACITOR	C2, C3				
4	1uF	0603P	CAPACITOR	C3U1, C4, C5, C12				
1	100n	0402P	CAPACITOR	C7				
2	3n3	0402P	CAPACITOR	C8, C11				
2	10nF	0402P	CAPACITOR	C9, C10				
1	47nF	0402P	CAPACITOR	C13				
1	1N4148S	SOD323	DIODE	D1				
2		1X16R	PIN HEADER	JP1, JP2				
7	100K	0402P	RESISTOR	R1, R6, R7, R12, R13, R14, R15				
2	20R	0402P	RESISTOR	R16, R18				
2	470R	0402P	RESISTOR	R17, R20				
2	10R	0603P	RESISTOR	R19, R21				
3	470K	0402P	RESISTOR	R22, R25, R26				
1	10R	0402P	RESISTOR	R23				
1	10K	0402P	RESISTOR	R24				
2	100K	RASARR1206		RP1, RP2				
5	CG0603MLA-5.5ME	0603P	Transient suppressor	TV1, TV2, TV3, TV4, TV5				
1	VS1000-L	LQFP48		U1				
1	SP6201EM5-L-3-3	SOT23-5L		U2				
1	W25X16	SO-08M	SPI FLASH	U3				
2	10uF/16V	EC-SMD-44X44	Polarized Capacitor	XC1, XC2				
1	CON-USD-AB	47(309/571)	Micro SD connector	XN1				
1	12MHz/20p	CSM-3X	CRYSTAL	XT1				

PCB AND COMPONENT LAYOUT

7.1 Notes about the Schematics

- Line outputs have a first order RC low-pass filter that removes some of the DA converter quantization noise. Useful when connecting to a limited bandwidth amplifier.
- Line outputs are AC-coupled, so they can be connected directly to an amplifier.
- Headphone outputs (including common buffer) are DC-biased to 1.2V. Do not connect the common buffer output to ground! Do not connect Left/Right headphone outputs directly to an amplifier!
- Input power supply is connected to pin 1 of JP1.
- Since 1.61 the powerbutton pulse is generated using the 3.3 V regulator. This way the pulse should never exceed specification and be high enough to start the module.
- Since 1.61 the RX input uses a diode, and is thus 5 V-tolerant.
- · Version 1.82 has production-related changes, see schematics for a list.

7.2 Schematics of the Previous Version 1.61

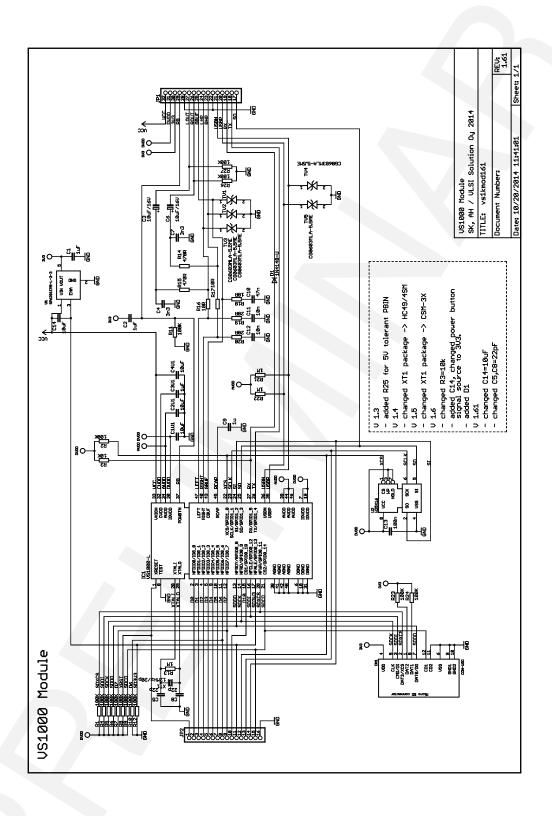


Figure 7: Schematic 1.61 of the VS1000 Module. (2014)

8 DEFAULT FIRMWARE (VERSION 0.84)

8 Default Firmware (version 0.84)

The VS1000 Audio Module allows several uses in addition to audio playback. For normal audio use, the content can reside in either the SPI FLASH or external SD card. The default firmware implements UART-controller player, which plays files from the SPI FLASH or μ SD.

UART speed 115200 bps is used. The module boots up by default in *continuous* playing mode, which plays all available audio files sequentially and continues until powered off. If SD/MMC card insertion is detected, files are played from SD/MMC instead.

When power is applied and the firmware starts, a version string is printed ("v0.84uart" or "v0.84gpio"). If you don't see a version string, the firmware is older than 0.70, or it is compiled neither with UART nor GPIO control. Additional postfixes are displayed for each enabled option: "-queue" (USE_QUEUE), "-filemode" (START_IN_FILEMODE), "-gapless" (GAPLESS), and "-u/p" (USB_DISABLE_PIN or USB_ENABLE_PIN).

Information about the SPI FLASH is displayed next. The manufacturer and size is determined with the REMS sequence. The manufacturer names Macronix, Winbond, and Spansion are known. The automatically detected size may be incorrect, because manufacturers do not use the REMS sequence consistently. Only sizes 2MB, 16MB, and 64MB are displayed.

If a valid FAT filesystem is detected, you get the string "fat", a 4-byte FAT size (most significant byte first), then a newline character (0x0a). For example "fat", 0x00, 0x00, 0x0f, 0xc0, 0x0a. If there is not a valid FAT disk, you get "nofat" and a newline (0x0a). If there is a valid disk, the string "files" is sent, followed by a two-byte value containing the number of playable files (for example 0x00, 0x04 for 4 files), and a newline (0x0a).

When a file has been located and starts playing, you get the string "play" and a two-byte file number, then a 8.3-character filename (for example "AUDIO01 OGG" and a newline (0x0a). After a file is finished playing (or interrupted), you get "done" and a newline (0x0a). If the player is in the *continuous* playing mode, a new file is automatically selected and played.

The *continuous* playing mode understands the following single-byte commands:

- f switch to file play mode
- · c switch to continuous play mode
- C cancel play, return to play loop, responds with c
- + volume up, responds with two-byte current volume level
- - volume down, responds with two-byte current volume level
- = pause on, responds with =
- > play (normal speed), responds with >
- >> (0xbb) faster play, responds with the new play speed
- n next song, responds with n
- · p previous song, responds with p
- 1 toggle loop mode, responds with 1 (on) or 0 (off)
- ? play info, returns play seconds (4 bytes, high byte first), and one-byte file left indicator (255 to 0).

Continuous play mode commands are only available during the playing of a song.

In *file* play mode files are not played automatically. To change into *file* play mode, send f, then you can send C to cancel playback. (The play mode that is active after power-on can be configured at compile time, see the VSIDE solution and the START_IN_FILE_MODE option.)

The *file* play mode commands are single-line commands ending with the newline character (0x0a), which is marked with in the text below as \n . The following commands are currently implemented:

- OFF\n powers down, needs a pulse on PWRBTN to wake up again.
- c\n switch to continuous play mode
- L\n list files
- PFILENAMEOGG \n play by name (capital P), a 8.3-character uppercase name without the ""
- pnumber\n play file by number (small-case p)
- $vnumber \$ n set volume attenuation, e.g. 0 is max volume, 12 is -6dB.
- 1\n toggle loop mode, responds with 1 (on) or 0 (off)

If SD card is inserted during SPI FLASH playback, "SD" and newline (0x0a) are sent, and the SD/MMC player program is loaded. It sends FAT (or no-FAT) and file number information in the same way as the SPI FLASH player program before starting playback.

If SD card is removed during SD playback or mass storage operation, "!SD" and newline (0x0a) are sent and the SPI FLASH player program is loaded.

If USB attach is detected during play mode, USB mass storage mode is started. "USB Attach SPI" or "USB Attach SD" and newline (0x0a) is displayed before going into mass storage mode (SPI FLASH and SD, respectively). When USB is detached, "USB Detach SPI" or "USB Detach SD" and newline is displayed before returning to play mode.

The selected play mode is preserved when switching between SPI FLASH and SD/MMC player programs. The same applies to the volume setting.

Optional Features

Note: Some of these features are not active by default, depending on the firmware type. You need to adjust preprocessor definitions from system.h, recompile, and reprogram the module to add or remove these features.

The UART-controlled firmware is the default available in the web store. Other configurations, and specific old versions are available with additional unit cost. Check the web store for a list of available custom versions.

UART CONTROL

When **UART_CONTROL** is defined in system.h (this is the default), the player prints status messages to UART and expects user commands from UART. The default speed is 115200 bps with 8N1 format.

UART_CONTROL and GPIO_CONTROL should not be enabled at the same time.

GPIO_CONTROL

When **GPIO_CONTROL** is defined in system.h (instead of UART_CONTROL), GPIO pins select the song to play. The normal polarity for the GPIO pins is idle/inactive when pulled low, and selected/active when pulled high.

By default GPIO_MASK is defined to 0x1f in gpioctrl.c, and specifies that GPIO0_0 to GPIO0_4 are used as a binary-coded number. If any combination of the pins are pulled high, the file corresponding to the binary-coded value is played. While the value remains the same, the same file is played in a loop. If none of the pins are pulled high, the current song is played to the end before playback is stopped. For example if only GPIO0_0 is pulled high, the first song is played, if both GPIO0_1 and GPIO0_2 are pulled high (0b00110 = 6), the 6th file is played.

Instead, GPIO_PRIORITIES can be defined to 0x4ff in gpioctrl.c, and specifies that each GPIO pin from GPIO0_0 to GPIO0_7 and GPIO0_10 select files directly. If any pin is pulled high, the corresponding file is played. If multiple pins are pulled high, the one with the lower number is played. If none of the pins are pulled high, the current song is played to the end before playback is stopped.

The polarity of the GPIO pins can be reversed by enabling GPIO_INVERTED define from gpioctrl.c. When this define is active, the idle state of the GPIO pins is high, and the active state is to pull the pins low.

Note: The firmware first drives the pins to a known state before scanning their state. This means that pull-up and/or pull-down should be used instead of directly connecting the pins to IOVDD or GND.

UART_CONTROL and GPIO_CONTROL should not be enabled at the same time.

USE WAV

When **USE_WAV** is defined in <code>system.h</code> (this is the default), the player also considers files with the .WAV suffix and plays mono and stereo 8-bit and 16-bit linear RIFF-WAV files. Comment out the define and recompile to disable the function.

START_IN_FILE_MODE

When you define **START_IN_FILE_MODE** in system.h, the player starts in file mode instead of continuous play mode. (not set by default)

NO4KBLOCKERASE

If you use a FLASH that doesn't support 4kB block erase, define **NO4KBLOCKERASE** in system.h. This disables the USB mass storage mode for SPI FLASH. This automatically sets **RESERVED_BLOCKS** to 256 (128kB), so that reprogramming content is possible without erasing the firmware.

USB DISABLE PIN

USB_DISABLE_PIN defines a GPIO0 pin mask that disables USB. When the defined pin is high, the unit is in normal player mode regardless of the state of the USB pins. When the pin is low, USB attack and detach are detected and handled normally.

If USB_DISABLE_FORCED is also defined, the defined GPIO0 pin acts like a physical USB attach/detach: low allows USB mode, high focibly removes the device from the USB bus.

Needs PATCH_EJECT (active by default) in usbmass.c and sdmass.c .

USB_ENABLE_PIN

Similar to USB_DISABLE_PIN, USB_ENABLE_PIN defines a GPIO0 pin mask. When low, USB attach is not monitored or detected, if high, USB attach and detach works normally.

If USB_DISABLE_FORCED is also defined, the defined GPIO0 pin acts like a physical USB attach/detach: high allows USB mode, low focibly removes the device from the USB bus.

Needs PATCH_EJECT (active by default) in usbmass.c and sdmass.c .

USE POWERBUTTON

Allows the powerbutton pin to power down the module. The powerbutton line must be high at least approximately 0.2 seconds, for the request to be detected, then go low for the module to finish power down. (not active by default in 0.84)

USE VOL

Adds a 'v' command to filemode. The parameter defines the attenuation in 0.5 decibel resolution. E.g. "v12" sets the volume at -6 dB. Note that this doesn't allow negative values unlike the volume up and down commands during play. (active by default since 0.80)

LOOP_MODE

When you define **LOOP_MODE** in system.h, you can set a file to be played in a loop. (default since 0.80)

The loop mode can be toggled in the filemode by "l\n", and in the play mode by 'l'. The response is '1' for loop mode on, and '0' for loop mode off.

Cancel and next / previous commands exit the loop without needing to turn off loop mode first.

Optional Commands

Note: None of these features are active by default. You need to adjust preprocessor definitions from system.h, recompile, and reprogram the module to be able to use these features.

USE_TYPE

When you define **USE_TYPE** in system.h, command 'T' (type) is included in the firmware. The 'T' command takes a 8.3-character filename as parameter. If the file is found, the number of the file is printed (two bytes), then the content of the file is printed out. Otherwise 0xff 0xff are returned.

USE INFO

When you define **USE_INFO** in system.h, commands 'i' and 'l' (information) are included in the firmware. The 'i' command takes a number as parameter, while the 'l' command takes a 8.3-character filename just like the play commands. For Ogg Vorbis files the info command returns the play length of the file in seconds without playing it. For WAV files the returned value is not defined. If the file does not exist, "not found\" will be returned, so the 'l' command can also be used to determine if a file exists.

USE QUEUE

When you define **USE_QUEUE** in system.h, you can add files to a play queue before starting file playback.

Files are only added by name using the 'Q' command. The filename is in the same format as in the 'P' command. If the named file is found, "add " followed by the file name and newline is printed. If the named file is not found, "nof " followed by the file name and newline is returned. If the queue is full "ful" and a newline is returned.

As long as there are files in the queue, whenever a play of a file is ended (end of file, next or previous commands), the next file from the queue is played. "queue ", the number of files in the queue (this one included) and a newline character is printed before starting playing the file with any normal play printouts.

The additional one-character command for the play mode is R, which clears the queue and stops playing, possibly returning to the file mode or continuing normal play from the next file.

DISABLE_SD and DISABLE_USB

Sometimes you want to only play (preprogrammed) files from the SPI FLASH. In this case you can disable the check for uSD card by defining **DISABLE_SD**. Note that disabling uSD removes the possibility to update firmware and content using the uSD connector.

If you don't need USB access, you can disable USB by defining **DISABLE USB**.

NOVORBISGAIN

The Ogg Vorbis decoder looks for a ReplayGain value in the Ogg comments and uses it to equalize volume between tracks. Define **NOVORBISGAIN** if you want to disable this feature. Defining **NOVORBISGAIN** usually makes Ogg Vorbis files play louder at the startup volume setting.

EXTCLOCK

If you use XTALI which is not 12.0 MHz, you can set the actual XTALI by defining **EXTCLOCK** in kHz. USB only works with 12.0 MHz, so also disable USB by defining **DISABLE_USB**. For example with 13MHz XTALI:

#define EXTCLOCK 13000
#define DISABLE_USB

GAPLESS

When **GAPLESS** is defined in system.h, the firmware tries to speed up change from one Ogg file to the next, provided they have been encoded with the same parameters.

With the gapless feature, UART responses during file change are reduced. Only one byte is sent for the file number when play starts and a single 'd' is sent when the play ends.

In gapless mode the internal PLL is set to $3.5 \times$ clock. (In normal mode $3.0 \times$ clock is used.)

SHOW LONG FILENAMES

When **SHOW_LONG_FILENAMES** is defined, the 'L' command prints out the corresponding long filename and newline after each 32-byte file entry.

UARTCUSTOMSPEED

The default UART speed is 115200bps. If you want the change that, define **UARTCUSTOM-SPEED** with the new value. For example to get 9600bps:

#define UARTCUSTOMSPEED 9600

WAV Playback

Since the 0.60 version the firmware uses a very compact wav decoder, and by default plays both linear 8-bit and 16-bit PCM WAV files and Ogg Vorbis files. However, the wav decoder is very stripped and optimized, for example fast play is not supported by the WAV decoder.

If you want, you can disable WAV decoding (and perhaps also USB) from the configuration file system.h to get more free instruction memory for your own changes.

Since version 0.70 the SD USB mass storage handling is a separate program, so there is more available memory in sdplayer.

Updating

Since version 0.3 SD/MMC card can be used for firmware update. If a program named "SDUPDATE.PRG" is found on the SD/MMC card, it is automatically executed. The program can then for example open another file on the SD card and program the contents to SPI FLASH.

Both the boot firmware and audio content can be programmed in this way.

The default name of the firmware file is FIRMWARE.RAW. Copy spiall.spi from the VSIDE project and rename it to FIRMWARE.RAW.

The default name of the content file is CONTENT. RAW.

Source Code

If you look at the source code (which is now also available as a VSIDE project), the software consists of four parts:

- usbmass, which is executed after power-on and handles
 USB Mass Storage for SPI FLASH if USB is attached (if NO4KBLOCKERASE not defined).
 Otherwise loads spiplayer or sdplayer depending on the SD/MMC insertion switch.
- spiplayer, which plays audio from SPI FLASH, loads sdplayer if SD/MMC insertion switch is triggered, and loads usbmass if USB attachment is detected (if NO4KBLOCKERASE not defined).
- sdplayer, which plays audio files from SD/MMC, loads sdmass if USB Attach is detected, loads spiplayer if SD/MMC insertion switch is deasserted.
- sdmass, which handles USB Mass Storage, loads sdplayer if USB is detached, loads spiplayer if SD/MMC insertion switch is deasserted.

The parts are compiled and linked separately (usbmass.bin, spiplayer.bin, sdplayer.bin, sdmass.bin), and SPI boot images are generated from them. Then the boot images are combined into one image file (spiall.spi) that is programmed into SPI FLASH.

The starting offsets are specified in Makefile and passed as preprocessor definitions to programs.

In the VSIDE project this image creation is automatic, and the resulting eeprom.img can be programmed into the module with VSIDE's prommer named "VS1000 SPI Flasher (24-bit) prepared image". (Note that the normal prommer overwrites eeprom.img with the active project, and thus produces a non-working result.)

The firmware and prepared content image can also be programmed using a standalone pcflash tool, see https://www.vlsi.fi/en/support/software/vs1000tools.html .

9 Application Examples

9.1 Headphone Connection

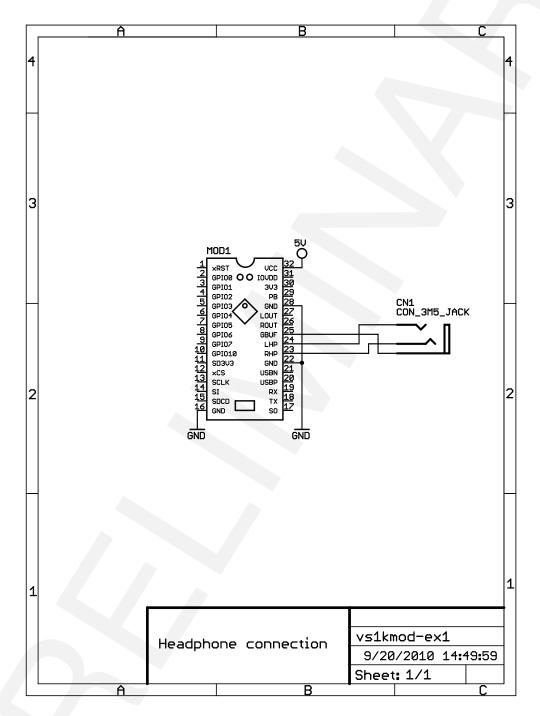


Figure 8: Headphone Connection.

The minimum connections required to get sound output is shown above.

The firmware starts playing the first audio file from the SPI FLASH automatically after power-on.

9.2 Line Out Connection

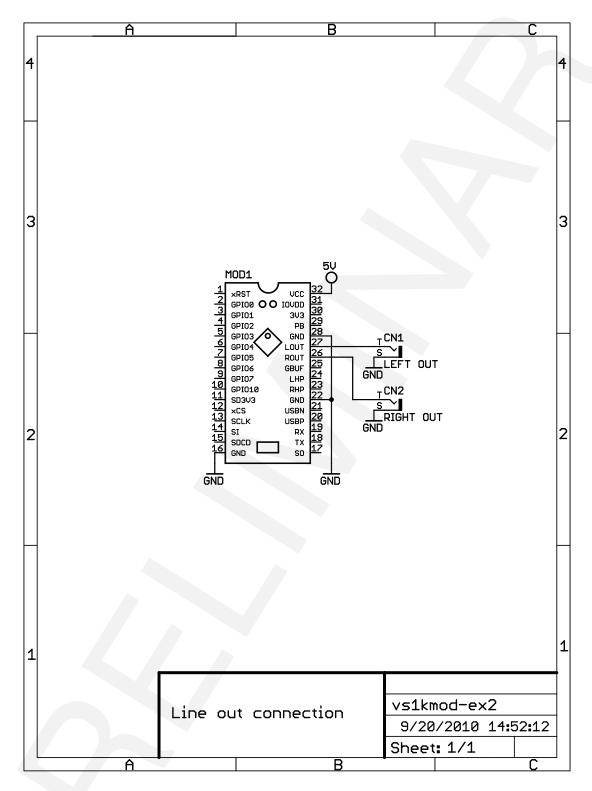


Figure 9: Line Out Connection.

9.3 USB Controlled and Powered Device with Headphone Output

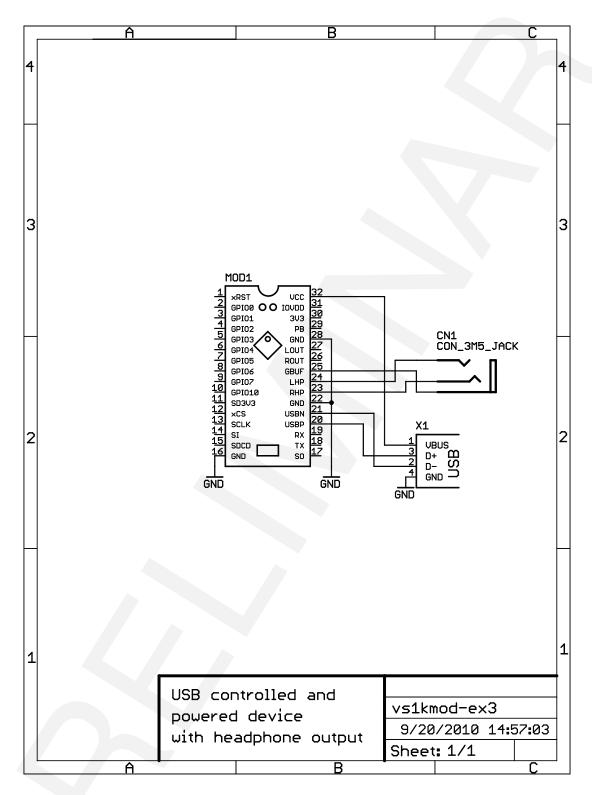


Figure 10: USB Controlled and Powered Device with Headphone Output.

9.4 UART Control

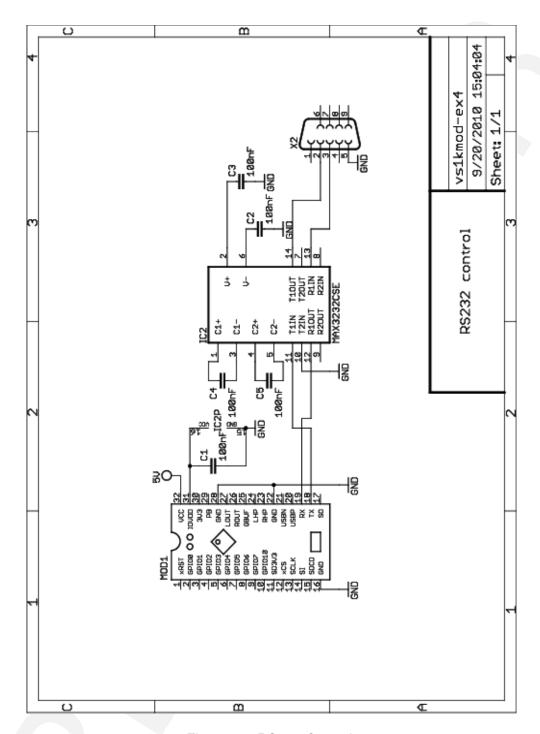


Figure 11: RS232 Control.

The TX and RX pins of the module are logic-level UART pins, so the use of the module with a RS232 interface requires an external RS232 adapter.

Alternatively you can use an logic-level (3.3 V) USB-UART adapter like the VSIDE UART Cable.

9.5 **GPIO-Controlled Player**

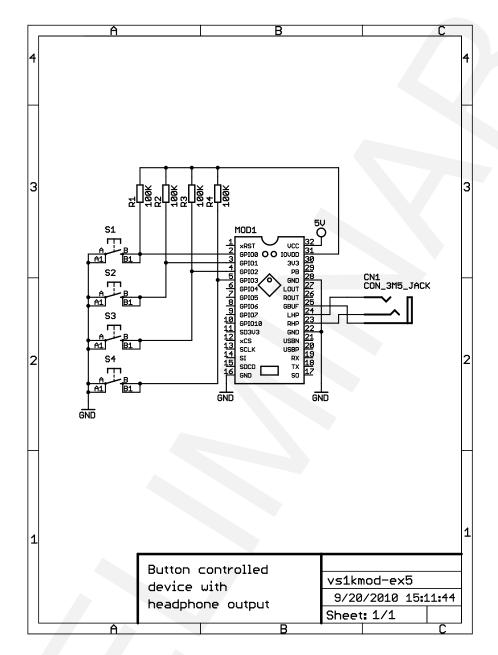


Figure 12: Button Controlled Player (idle high).

Note: The default GPIO-controlled firmware uses idle-low buttons (instead of idle-high like in the schematics above), so that it is compatible with the standard audio module that does not have any buttons connected.

The polarity can be adjusted from the source code (see gpioctrl.c).

The GPIO's are driven low (or high, depending on the polarity) by VS1000 before they are scanned, which tries to prevent floating lines from affecting the scanning. This is of course required only when testing, the buttons should have the proper pull-downs and pull-ups in your product. But this drive by VS1000 must be taken account if you connect external controllers (use a series resistor).

10 Document Version Changes

This chapter describes the most important changes to this document.

Version 0.84, 2025-02-12

Added the latest schematics and updated firmware documentation for 0.84.

Version 0.81, 2023-12-27

Added chapter 5.10 about integration and assembly.

Version 0.80, 2023-01-04

- Check for execfile.prg no longer gets stuck when there are any subdirectories on the SPI FLASH disk (FAT12).
- USE VOL added and is now on by default.
- Uses REMS (0x90) command for SPI FLASH detection. Detects Macronix, Winbond, and Spansion manufacturer ID. Prints the size if it is 2MB, 16MB, or 64MB. Sizes detection is not guaranteed to work.

Version 0.72, 2018-09-24

- NO4KBLOCKERASE disables USB mass storage function when the memory doesn't support the 4kB block erase option.
- spiplayer.c uses the 4READ command to read sectors when areas above 16MB are accessed.
- SDUPDATE.PRG and program.c use the 4PP command to program sectors when areas above 16MB are programmed. (Also, the pcflash tool was updated to version 1.0.)
- Currently tested 64MB (512Mbit) SPI FLASH: S25FL512S.

Version 0.71, 2016-03-23

Mechanical dimensions updated.

Version 0.70, 2015-01-13

- Added schematics for 1.61.
- Added more firmware specs and talk about the optional features.

11 CONTACT INFORMATION

11 Contact Information

VLSI Solution Oy Entrance G, 2nd floor Hermiankatu 8 FI-33720 Tampere FINLAND

URL: http://www.vlsi.fi/ Phone: +358-50-462-3200 Commercial e-mail: sales@vlsi.fi

For technical support or suggestions regarding this document, please participate at http://www.vsdsp-forum.com/
For confidential technical discussions, contact support@vlsi.fi