
VS DSP
�

USER’S MANUAL

Revision 2.6

March 8, 2001

Revision history:
Rev. 2.6 March 8, 2001 Added long-X decoding
Rev. 2.5 January 5, 2001 Core parameter table and explanation updated
Rev. 2.4 October 16, 2000 Minor corrections to the instruction coding chapter
Rev. 2.3 October 10, 2000 Minor corrections to L-flag references
Rev. 2.2 May 25, 2000 L flag added
Rev. 2.1 October 4, 1999 Instruction coding corrected
Rev. 2.0 July 9, 1999 Revisioned for VS DSP2
Rev. 1.2 December 8, 1998 Typos corrected
Rev. 1.1 September 7, 1998 ASHL, LSHL removed
Rev. 1.0 April 27, 1998 First release

USER’S MANUAL
VS DSP �

c
�

1998-2000 VLSI Solution Oy, Hermiankatu 6–8 C, FIN-33720 Tampere, Finland

Information furnished by VLSI Solution Oy is believed to be accurate and reliable.
However, no responsibility is assumed by VLSI Solution Oy for its use.

Specifications are subject to change without notice.

All rights reserved. No part of this manual may be reproduced, in any form or by any
means, without permission in writing from the copyright owner.

The descriptions contained herein do not imply the granting of license to make, use, or
sell equipment constructed in accordance therewith.

Rev. 2.6 Page ii March 8, 2001

USER’S MANUAL
VS DSP �

Contents

1 Introduction 1

1.1 Overview . 1

1.1.1 Functional Units . 1

1.1.2 Parameters . 3

1.1.3 Extensions . 3

1.1.4 Instruction Set . 5

1.2 VS DSP Development System . 6

1.3 Organization of This Manual . 7

2 Datapath 8

2.1 Overview . 8

2.2 Arithmetic . 10

2.3 Flags and Mode Bits . 10

2.4 ALU . 10

2.5 Multiplier . 12

2.6 Guard bit registers . 12

3 Data Address Generator 13

3.1 Architecture Overview . 13

3.1.1 Index Register File . 14

3.1.2 Address ALU . 14

Rev. 2.6 Page iii March 8, 2001

USER’S MANUAL
VS DSP � CONTENTS

3.1.3 Flags . 14

3.2 Post-modification Modes . 15

3.2.1 Linear Post-increment/decrement 15

3.2.2 Modulo Post-increment/decrement (Optional) 16

3.2.3 Bit Reversal (Optional) . 17

4 Program control 18

4.1 Architecture Overview . 18

4.1.1 Instruction Decode . 19

4.1.2 Instruction Address Generator 19

4.1.3 Interrupt Control . 20

4.2 Programming Model . 21

4.2.1 PC . 21

4.2.2 LR0 . 22

4.2.3 LR1 . 22

4.2.4 MR0 . 22

4.2.5 MR1 . 23

4.2.6 LS (optional) . 23

4.2.7 IPR0 . 23

4.2.8 IPR1 . 23

4.2.9 LE (optional) . 23

4.2.10 LC (optional) . 24

5 Control Flow 25

5.1 Jumps . 25

5.2 Loops (Optional) . 27

5.3 Interrupts . 28

5.3.1 Interrupt Mechanism . 28

Rev. 2.6 Page iv March 8, 2001

USER’S MANUAL
VS DSP � CONTENTS

5.3.2 Interrupt Routines . 30

5.4 System Reset . 32

5.5 Halt . 33

6 Instruction Set Reference 34

6.1 Programming Model . 34

6.2 Flags and Mode Bits . 35

6.2.1 Loop (L) . 35

6.2.2 Index X (X) . 36

6.2.3 Index Y (Y) . 36

6.2.4 Zero (Z) . 36

6.2.5 Negative (N) . 36

6.2.6 Overflow (V) . 36

6.2.7 Extension (E) . 36

6.2.8 Carry (C) . 37

6.2.9 Saturation (S) . 37

6.2.10 Integer (I) . 37

6.2.11 Rounding (R) . 37

6.3 List of Instructions . 38

6.4 Instruction Descriptions . 40

6.5 Instruction Sequence Restrictions . 55

6.5.1 Loop Register Restrictions . 55

6.5.2 Conditional Jump Restrictions 55

7 Instruction Coding 57

7.1 General Instruction Composition . 57

7.2 Opcode Field . 57

7.3 Control Code . 58

Rev. 2.6 Page v March 8, 2001

USER’S MANUAL
VS DSP � CONTENTS

7.4 Arithmetic Operands . 60

7.5 Move Encoding . 63

7.6 Addressing Modes . 64

7.7 Constant Loading . 66

8 Software Examples 68

8.1 Single-Precision FIR Transversal Filter 68

8.2 Double-Precision FIR Transversal Filter 69

8.3 Cascaded Biquad IIR Filter . 71

8.4 Single-Precision Matrix Multiply . 72

8.5 Floating-Point Multiplication and Addition 74

Rev. 2.6 Page vi March 8, 2001

USER’S MANUAL
VS DSP �

Chapter 1

Introduction

1.1 Overview

VS DSP is a parameterized and extensible DSP core. The different manifestations of
the core share a common general architecture and instruction set. The core can be used
to build application specific integrated circuits (ASICs) and standard products (ASSPs).
The core is available in several CMOS fabrication processes, and can be promptly ported
to any normal CMOS process line.

This manual provides introduction to the general architecture, parameters, and extension
attachment. The instruction set reference is also included. Separate manuals describe
the associated software development tools and development boards.

1.1.1 Functional Units

The basic VS DSP architecture is shown in Fig. 1.1. The DSP core components are
described in detail in Chapters 2 – 4. This section gives an overview of the blocks
shown in the architecture diagram.

The following units comprise the DSP core:

� Datapath — an arithmetic/logic unit (ALU) and a multiplier. Optionally a barrel
shifter, a bit manipulation unit or other special computational units can be added
to the core.� Data Address Calculation — Two dedicated address calculation units provide
addresses to data memory accesses. They enable two operands to be fetched from
the data memory in parallel.� Program Control — The program control fetches the instruction, generates the

Rev. 2.6 Page 1 March 8, 2001

USER’S MANUAL
VS DSP � 1. INTRODUCTION

X memory Y memory

PROGRAM
CONTROL

PC

Program
memory

VS_DSP CORE

DATAPATH

arithmetic
registers

P register

ALU

X and Y
memory

 ADDRESS
CALCULATION

address
registers

Y
 a

dd
re

ss

A
LU

X
 a

dd
re

ss

A
LU

control
registers

decode
 logic

Peripheral
interface

PLL clock
generator

Peripheral
devices

Interrupt
arbitrator

Boot loader

B
us

 s
w

itc
h

Figure 1.1: VS DSP General Architecture.

next program address, and decodes the previously fetched instruction. The control
may include optional hardware for zero-overhead loop control.� Buses — The blocks are communicating over buses. There are two data buses (X
and Y) with the corresponding address buses (XAB and YAB, not shown in the
figure). An instruction bus (I) and a corresponding address bus (IAB) are used for
code memory accesses. All the buses are available also for off-core use.

The following units may be attached to the core when building system ASICs or ASSPs,
but they are not considered to be a part of the core:

� Memory — RAM and ROM (or any memory available in the particular fabrication
process) can be placed on-chip. The amount of on-chip memory can be tailored
to the application, the only practical limits being economical and technical limi-
tations of the fabrication process (the resulting die size). Off-chip memory does
not have any implications from the technology used. On the other hand, off-chip
accesses typically go through a bus switch.

Rev. 2.6 Page 2 March 8, 2001

USER’S MANUAL
VS DSP � 1. INTRODUCTION

� External Bus Switch — Off-chip accesses can be multiplexed to a single address
and data bus to save in the pin-count of the package. The use of flexible wait
states enables the use of external memories with different timing characteristics.� Peripherals — Serial and parallel interface ports, timers and also analog interfaces
(analog-to-digital and/or digital-to-analog converters) may be attached, subject
to technology limitations (analog precision available etc.). The peripherals are
mapped to the data memory space of the core, and may be connected to interrupt
lines.� Interrupt Arbitrator — The core has a single interrupt line, but multiple interrupt
priorities and interrupt nesting are supported by an external interrupt arbitration
block. The hardware supports vectored interrupts.� Clock Generator — The operating clocks of the core can be best provided by
an on-chip phase-locked loop based clock generator. The control registers of the
clock generator can be memory mapped, enabling the core software to control the
clock frequency at runtime. This is important especially in systems requiring low
power operation.� Boot Loader — A specific piece of program ROM, containing boot-up code for
loading software from a host computer or an external non-volatile memory.

1.1.2 Parameters

The most distinguishing feature of VS DSP core is the use of parameters to tailor the
actual implementation of the basic architecture. There are currently two basic imple-
mentations of the VS DSP core, the full-custom version (FC) and the synthesizable
VHDL version (VHDL). See Table 1.1 for the parameters, their ranges and their values
for the FC and VHDL core implementations.

The parameters can be used to optimize the performance, power consumption and both
core and system chip area. Especially the data word length has a major impact on
the system ASIC/ASSP area because of its direct relation to the area occupied by data
memories.

The parameter values are set in a hardware configuration file. The software tools can
adjust their operation according to the parameter values, and the actual hardware is gen-
erated by using the very same parameters as input for either layout module generators
or synthesis scripts.

1.1.3 Extensions

The basic set of instructions can be extended by adding custom hardware. The hardware
can be incorporated as a part of the core, or as a coprocessor. The extension instruction

Rev. 2.6 Page 3 March 8, 2001

USER’S MANUAL
VS DSP � 1. INTRODUCTION

Table 1.1: VS DSP Parameters

Parameter (symbol) Range or format FC VHDL Notes

Data word length (n) �������	��
 bits 16 bits 16 bits Applies to data
registers and buses

Data address length (da) �������	�� bits 16 bits 16 bits da � n
Program address length(pa) ������������� bits 16 bits 16 bits pa � n
Multiplier input width (m) ����������
 bits 16 bits 16 bits m � n
Accumulator guard bits (g) ����������� bits 8 bits 8 bits g � n

of arithmetic registers
�������� , step 2 8 8 Register length = n
of index registers 8, 16 8 8 Register length = da
Modifier-only binary (0,1) 0 0 Forbids the use of odd

registers for addresses
Loop hardware 0, 1, N 1 1 Levels of loop hardware

(N = �������	�)
Addressing mode three-bit word 1 7 Enable bits for
mask (���������) modulo, bitrev and

(reserved) modes
Modemask pa bits word 0x077f 0x7ff Selects active

mode bits/flags
Roundmode 0, 1, 2, 3 0 0 Selects the rounding

mode implemented
0 = truncate, 1 = round
2 = convergent 0
3 = convergent 1

mechanisms allow hardware-software trade-offs to be made in the application develop-
ment. They also have a major impact on the power consumption by enabling a lower
clock frequency to be used.

There are hooks for the following types of extensions:

� New Operation Modes — The operation of existing instructions can be fine-tuned
by generating new operation modes which can be chosen by setting or clearing
some of the (reserved) mode bits. In a similar manner, some new flags and condi-
tions can be added.� New Pipeline Register Modifications. The multiply-accumulate operation is pipelined,
and it is possible to invent new ways of shifting, masking or modifying the pipeline
register content when using it as an ALU (accumulation) operand.� New Addressing Modes. There remains a reserved code in the addressing mode
field. More addressing modes can thus be added to the architecture.� New Arithmetic-Logic Instructions. There are reserved operation codes for includ-
ing new ALU operations using the same register set as the basic core. This is the

Rev. 2.6 Page 4 March 8, 2001

USER’S MANUAL
VS DSP � 1. INTRODUCTION

way to add, e.g., barrel shifter support or special bit operations to the instruction
set.� New Conditional Instructions. E.g., conditional parallel moves can be coded by
employing reserved bits in some instructions. This enables, e.g., conditional stor-
age of data or pointer from registers to memory. Also ALU operations can be
made conditional, if necessary.� Custom Logic Blocks in Parallel with the Core. There are reserved opcodes for
the inclusion of almost full-length extension instructions. A custom logic block
(co-processor) can be placed in parallel with the core, and the operation is still
controlled directly by the core control. This kind of instruction can also use a
different set of data registers. The custom logic can be, e.g., a bit manipulation
unit or a divider.� Memory-Mapped Co-Processors. In addition to the tightly coupled custom logic
above, the co-operating device can be also memory mapped. This kind of exten-
sion does not necessarily require a custom instruction, it can also be controlled
simply by storing to and loading from the specific address. The co-processor can
be almost anything, e.g., a hardware filter section, some iterative device, interface
logic, or a DMA-coprocessor. The main issue in this kind of extension is that it
does not need to (or cannot be) controlled by the core software anymore.

We strongly recommend to contact the core vendor before committing to physical
design of custom extensions.

1.1.4 Instruction Set

The basic instruction set is common for the different instantiations of VS DSP core,
such that upward compatibility is retained when switching from a simpler version to
a more versatile one. This includes all the data word lengths, optional hardware (and
modes and instructions) added by the parameters, and also custom extensions. The
assembly code can be directly reused, sometimes even the compiled binary code. How-
ever, the performance may only be improved by changing the critical parts of the code
to use the more advanced features.

In another direction (“downward”), the stripped operations have to be compensated by
replacing the extension instructions by corresponding software macros. Special care has
to be taken also when decreasing the width of some address or data word length.

On C language level the compatibility is not an issue, since the tools can retarget the
code to the correct core version by recompilation.

VS DSP has a reasonable level of parallelism. The operation is pipelined in three stages
(fetch – decode – execute). Within a single processor clock cycle, the core can:

Rev. 2.6 Page 5 March 8, 2001

USER’S MANUAL
VS DSP � 1. INTRODUCTION

� Generate the next program address� Fetch an instruction� Decode the previously fetched instruction� Perform up to two data moves� Post-modify up to two data pointers� Perform a computation on register data

Chapter 6 details the instruction set.

1.2 VS DSP Development System

VS DSP is supported by a comprehensive set of software and hardware for core evalu-
ation and application system development. The VS DSP Evaluation Kit consists of the
VS DSP Software Development Toolkit (VSKIT) and the Development Board.

VSKIT includes:

� Assembler — The Assembler assembles the source code and data modules, and
enables, e.g., macros and include files to be used. The Assembler adapts to the
parameter values given in Configuration Files.� Linker — The Linker links separately assembled modules.� Archiver — The Archiver enables a function library to be built by the user.� Configuration Files — The Configuration Files describe the system. There is a
configuration file to declare the parameter values of the core, and another file for
allocating memory and mapping peripherals to the memory space.� Instruction Set Simulator — The Instruction Set Simulator (ISS) reads lod- or
coff-format object files generated by the Linker and performs an interactive, instruction-
level simulation. The ISS uses the Configuration Files to create a correct model
of the core and its surroundings. The features include disassembly, breakpoints,
memory and register watch, profiling, dumping and undumping of the state (save
and resume), file i/o, and generation of test vectors to be used for hardware veri-
fication.� Emulator User Interface — The Emulator User Interface looks like the ISS, but
it connects to the Development Board for program execution instead of using the
simulator engine.� C Compiler — The C Compiler reads ANSI C based source code (interleaved with
some optimization constructs) and produces VS DSP code ready to be assembled.

All software included in the VSKIT is documented in a separate manual called “VS DSP
Software Tools User’s Manual”. For further information, please refer to that manual.

Rev. 2.6 Page 6 March 8, 2001

USER’S MANUAL
VS DSP � 1. INTRODUCTION

1.3 Organization of This Manual

The rest of this manual is organized as follows.

� Chapter 2 describes the datapath in detail.� Chapter 3 explains the addressing modes and data address calculation unit func-
tionality.� Chapter 4 describes the program control unit.� Chapter 5 illustrates the control flow of the core.� Chapter 6 is the instruction set reference, with the programming model, flags and
mode bits, and a detailed description of each instruction in the basic instruction
set.� Chapter 7 describes the instruction coding field by field in different instruction
types.� Chapter 8 gives assembly language software examples.

Rev. 2.6 Page 7 March 8, 2001

USER’S MANUAL
VS DSP �

Chapter 2

Datapath

2.1 Overview

The VS DSP datapath architecture is depicted in Fig. 2.1.

The datapath operates with the principle of one cycle per instruction (from register to
register). The ������� -bit ALU implements the arithmetic (ABS, ADD, ADDC, SUB, SUBC,
MAC, MSU) and logic (AND, ASR, LSL, LSLC, LSR, LSRC, NOT, OR, XOR) instructions.
MUL is implemented by the separate multiplier.

The ALU has up to eight � -bit arithmetic registers A0, A1, B0, � � , D0, D1. Optional
guard bit registers A2, � � , D2 are available. These can be combined to form �!�"�#� -bit
accumulators A, B, C and D. Note that C and D are optional.

The multiplier is a $&%'$ -bit signed/unsigned integer/fractional saturating/unsaturating
multiplier. Multiplier inputs are A0, A1, B0, � � , D0, D1. Multiplier output goes to
a ��� -bit pipeline register P, which can be used as an ALU operand in ADD and SUB
instruction to form a MAC or MSU operation.

The data word length n is a parameter, and the multiplier word length m is another
independent parameter. Two data buses (width = n) connect the datapath to off-core
memories.

Rev. 2.6 Page 8 March 8, 2001

USER’S MANUAL
VS DSP � 2. DATAPATH

ALU

Op1 Op2

A0A1

B1 B0

C1 C0

D1 D0

A2

B2

C2

D2

n / 2n+gn / 2n+g

n

n

n

n

interface to
 X bus

interface to
 Y bus

mux mux

n / 2n+g

P1 P0

saturation

NULL, ONES

m
m

fract/int shift

2m

2m

Figure 2.1: VS DSP datapath.

Rev. 2.6 Page 9 March 8, 2001

USER’S MANUAL
VS DSP � 2. DATAPATH

2.2 Arithmetic

The datapath operates by default on signed (two’s complement) numbers. The mul-
tiplier has separate modes for integer and fractional multiply, selected by a bit in the
mode register (see Chapter 4). The multiplier can also operate on unsigned/signed,
signed/unsigned, and unsigned/unsigned operands. The type of the operands is declared
in the multiply instruction, with the signed/signed operand pair as the default.

The logical operations simply consider the operands as bit patterns.

There is also a saturation mode for the multiplier and ALU, selected by a bit in the
mode register (see Chapter 4). In the saturation mode, the result is interpreted as a
signed number, and saturated accordingly.

2.3 Flags and Mode Bits

The processor mode/status register includes the mode bits and status flags. The bits
affecting or being affected by the datapath are:

Bit/flag Meaning
S saturation mode
I integer(1)/fractional(0) mult. mode
R rounding mode

Z zero flag
N negative flag
V overflow flag
E extension flag
C carry flag

In the saturation mode, the ALU result in arithmetic operations is saturated to the maxi-
mum positive or negative value in case the operation creates an over/underflowing result.
The integer/fractional mode controls the shifter after the multiplier to output the result
in a correctly aligned format. The rounding mode is implementation dependent.

Arithmetic flags are evaluated after an arithmetic operation.

2.4 ALU

The functions of the ALU and the multiplier are listed below.

Rev. 2.6 Page 10 March 8, 2001

USER’S MANUAL
VS DSP � 2. DATAPATH

Multiplying, adding and subtracting
ADD Op1, Op2, Result Add operands
ADDC Op1, Op2, Result Add operands with carry-in bit
SUB Op1, Op2, Result Subtract operands (order can be chosen)
SUBC Op1, Op2, Result Subtract operands with borrow-in (order can be

chosen)
MUL Op2, Op2, Result Multiply operands (multiplier)
MAC Op1, Op2, Result MAC operation (ALU and multiplier)
MSU Op1, Op2, Result MSU operation (ALU and multiplier)

Special operations with add/sub
SUB NULL, Op2, Result Negate Op2 (two’s complement)
SUB Op1, ONES, Result Increment Op1
ADD Op1, ONES, Result Decrement Op1
ADD Op1, NULL, Result Pass Op1 unchanged
ADD NULL, NULL, Result Clear result register to zero
ADD NULL, ONES, Result Set result register to –1
SUB NULL, ONES, Result Set result register to +1

Logical
AND Op1, Op2, Result Logical AND of Op1 and Op2
OR Op1, Op2, Result Logical OR of Op1 and Op2
XOR Op1, Op2, Result Logical XOR of Op1 and Op2
NOT Op2, Result Logical Not of Op2 (one’s complement)

Shifts
ASR Op2, Result Arithmetic 1-bit shift right
LSR Op2, Result Logical 1-bit shift right
LSRC Op2, Result Logical 1-bit shift right with carry-in bit
LSL Op2, Result Logical 1-bit shift left
LSLC Op2, Result Logical 1-bit shift left with carry-in bit

Miscellaneous
ABS Op2, Result Absolute value of Op2 (conditional negate)
RESP Op1, Op2 Restore pipeline register from Op1 and Op2

The ALU can calculate either ���(�)� or � -bit operations. The selection of operation
width is made depending on the operands; if one of the operands is �!�*�+� bits wide,
the operation is ���,�-� bits and the result is stored to a ���,�.� -bit register. If both
operands are � bits, the operation and result are also � bits and the result is stored to a� bit register.

The � -bit operands are A0, A1, B0, � � , D0, D1. The pseudo-registers NULL and ONES
are also available and contain all zeros and all ones, respectively. NULL and ONES
are considered to be � -bit registers for the purpose of determining the result width (see
above).

The ���/�0� -bit operands are A, B, C and D. P is available as operand2. The register A

Rev. 2.6 Page 11 March 8, 2001

USER’S MANUAL
VS DSP � 2. DATAPATH

is formed by concatenating A2:A1:A0. A0 is the lsb part. For ���1�#� -bit calculations,
also � -bit registers are available as operands. In this case, the register is used as the
middle part of the operand. The lsb end is padded with � zeros and the sign is extended
to the (optional) guard bits. For example, if register A0 is used as ���2�3� -bit operand,
the operand is xx:A0:0000 (xx means sign extension bits).

The result of ���*�4� -bit operation is either A, B, C or D. The result of � -bit operation
is A0, A1, B0, � � , D0, D1. The ALU (optionally) produces negative, carry, overflow,
zero and extension (guard bits in use) flags.

2.5 Multiplier

The multiplier is a �5%6� signed/unsigned integer/fractional saturating/unsaturating mul-
tiplier.

Both inputs can be interpreted either as signed or unsigned numbers, to facilitate multi-
precision operations. The integer/fractional mode bit controls the 1-bit left shift of the
result (fractional mode) when it is written to P. In fractional signed % signed multiplica-
tion, saturation is optionally (in saturation mode) included so that result of 0x8000 %
0x8000 is 0x7fffffff (NOT 0x7ffffffe!!). The P register length is ��� bits.

The P register can be saved by executing ADD NULL, P, An. The high and low parts will
reside in the high and low parts of the target accumulator, respectively. The restoring
will take place by executing the RESP instruction.

2.6 Guard bit registers

Optional guard bit registers behave as an extension of registers A1, B1, C1 and D1. The
following describes A2. B2, C2 and D2 function similarily, but they refer to B1, C1 and
D1, respectively, instead of A1.

Whenever an arithmetic register A1 is written to, either from data buses or from ALU,
A2 is written to with the sign extension of A1. The only exception is when an ALU
operates in �!�*�7� -bit mode and ALU result is written to A2:A1:A0. In this case the
uppermost � bits of ALU result are written to A2.

Note that if ALU operates in � -bit mode and A1 is the result register, the sign extension
will be written to A2. If A0 is the result register, A2 is not written to.

Rev. 2.6 Page 12 March 8, 2001

USER’S MANUAL
VS DSP �

Chapter 3

Data Address Generator

3.1 Architecture Overview

Data Address Generator performs data address calculations and drives data address
buses. It contains index registers 8:9';�;�;<8!= .

...
index registers

Address
ALU

Address
ALU

X address Y address

InIn InIn

Y data

X data

Figure 3.1: Data Address Generator overview

Rev. 2.6 Page 13 March 8, 2001

USER’S MANUAL
VS DSP � 3. DATA ADDRESS GENERATOR

Data Address Generator contains two identical parallel address ALU units and is capa-
ble of providing two independent data addresses on each cycle. Two address registers
used in addressing can be post-modified.

3.1.1 Index Register File

Index register file contains index registers 8�9>;�;�;!8!= . Two index registers can be accessed
to/from X and Y data bus each cycle.

Index registers are used to form X or Y memory addresses. The registers are accessed
in pairs. Each register, designated 8�? , has a corresponding register pair, designated 8�? .8�? is the index register the number of which is generated by inverting the LSB bit of the
number of register 8�? . For example, if 8!@ is 8�? , then 8�A is 8�? .

To form X/Y addresses, 8�? is used as the address. 8�? then specifies the post-modification
address mode, if any. To form long X addresses (2 % dataaddress), 8�? and 8�? are con-
catenated to form the long address.

Two index registers can be read for X/Y addresses and X/Y Address ALU index in-
puts, designated 8�? in Fig. 3.1. Two index registers can be read for X/Y Address ALU
modifier inputs, designated 8�? in Fig. 3.1. The 8�? is the register pair of 8�? .

8�? registers used for X/Y Address ALU index inputs can be updated with address ALU
outputs.

3.1.2 Address ALU

Address ALU can calculate three types of updated addresses, which are: linear post-
inc/dec, modulo post-inc/dec and bit reversal.

Address ALU contains linear and bit reverse adders for calculating linear and bit re-
versed addresses. These adders are otherwise identical, but in bit reverse adder carry
propagates towards LSB.

Modulo logic is capable of restoring calculated linear addresses to remain within a buffer
if modulo addressing is used. The buffer length does not need to be a power of two.

The modulo and bit reverse addressing modes are separately enabled by the Addressing
mode mask parameter of the core (see section 7.6). It is also possible to extend the
addressing modes by an additional mode.

3.1.3 Flags

MR0 is the processor mode/status register. The bits affected by the address calculation
are:

Rev. 2.6 Page 14 March 8, 2001

USER’S MANUAL
VS DSP � 3. DATA ADDRESS GENERATOR

Bit/flag Meaning
X index X flag
Y index Y flag

Index flags are evaluated whenever an index ALU is enabled. If the ALU uses modulo
addressing, the flag is set if the modulo wrap-around is done. If the ALU uses addressing
mode other than modulo, the flag is the sign bit of the index register used (8�?).

3.2 Post-modification Modes

Addressing has two post modification modes specified in the instruction, post-modification
by -7 ;�;�; +7 or post-modification by 8�? . The coding is summarized below.

Binary code Mode

rrrpppp indirect [8�?] with post modify by pppp (-7...+7)
rrr1000 indirect [8�?] with post modification specified in 8�?

If 8�? is used to specify the post modification mode, 3 MSBs of 8�? are used to specify
the post modification mode as follows:

Binary code Modification

000 8�? = (8�?B�DCFE (m positive)
001 8�? = (reserved)
010 8�? = (8�?B�GA<H'I2E (optional)
011 8�? = (8�?�J>A<HKILE (optional)
100 8�? = (8�?B�3�0HMCFE (optional)
101 8�? = (8�?�J+JNHMCFE (optional)
110 8�? = (8�?B�DCFE bit reverse (optional)
111 8�? = (8�?B�DCFE (m negative)

3.2.1 Linear Post-increment/decrement

Linear post-inc/dec can be an immediate pppp (-7 ;�;�; +7) modification or modification8�? + 8�? .

Post-modifier mod is either immediate pppp (sign extended):

for each i (AW–1 ;�;�; 3): mod[i] = pppp[3]
for each i (2 ;�;�; 0): mod[i] = pppp[i]

or modifier specified by 8�? (sign extended):

for each i (AW–1 ;�;�; AW–3): mod[i] = 8�? [AW–3]
for each i (AW–4 ;�;�; 0): mod[i] = 8�? [i]

Rev. 2.6 Page 15 March 8, 2001

USER’S MANUAL
VS DSP � 3. DATA ADDRESS GENERATOR

Updated value for 8�? is:

8�? = 8�? + mod

Note that in the case of a negative modifier, 8�? should contain the desired modifier m in
two’s complement format.

Example (0x61–0x1f=0x42 using 8�? - 8�?):

8�? =

7 0

0 1 1 0 0 0 0 1 0x61 (97)

8�? = 1 1 1 0 0 0 0 1

updated 8�? = 0 1 0 0 0 0 1 0 0x42 (66)

3.2.2 Modulo Post-increment/decrement (Optional)

In modulo addressing, calculated addresses are kept within a buffer whose length is M.
The lower boundary of the buffer must be an integer multiple of �PO , where ��O6Q)R .

To use modulo addressing, 8�? must be within the buffer, i.e. AW–k MSB bits of 8�?
must equal the corresponding bits of the lower boundary. AW–3 LSB bits of 8�? should
contain the value M–1. AW means the data address width.

To calculate updated address, the following steps are taken:

1) Determine the lower boundary of the buffer

Starting from 8�? [AW–3], find the uppermost 1 bit in 8�? . Let k be the bit position of the
uppermost 1 bit. The lower boundary is:

for each i (AW ;�;�; k+1): lower[i] = 8�? [i]
for each i (k ;�;�; 0): lower[i] = 0

2) Determine the upper boundary of the buffer

Upper boundary is lower boundary plus the length of the buffer, which is contained in8�? . The upper 3 MSBs of 8�? are not part of the buffer length.

length = 8�? [AW–3 ;�;�; 0] + 1

upper = lower + length - 1

3) Calculate linear address

Calculate linear modified address depending on MSBs of 8�? .

Rev. 2.6 Page 16 March 8, 2001

USER’S MANUAL
VS DSP � 3. DATA ADDRESS GENERATOR

8�? [AW ;�;�; AW–3] linear address

010 lin = 8�?B�G�
011 lin = 8�?�J>�
100 lin = 8�?B�'S
101 lin = 8�?�JMS

4) Restore to buffer if needed

If linear address is outside the buffer, restore it to buffer. If linear address is already
inside the buffer, nothing needs to be done.

If lower T lin T upper, 8�? = lin
If lin U lower, 8�? = lin + length
If lin V upper, 8�? = lin – length

Example (13-point ring buffer 0x20 ;�;�; 0x2c, 0x2c+0x2=0x21):

8�? =

7 4

0 0 1 0

3 0

1 1 0 0 0x2c (44)

8�? = 0 1 0 0 1 1 0 0 0x4c (64+12=76)

1) lower = 0 0 1 0 0 0 0 0 0x20

2) upper = 0 0 1 0 1 1 0 0 0x2c

3) linear = 0 0 1 0 1 1 1 0 0x2e

updated 8�? = 0 0 1 0 0 0 0 1 0x21 (33)

3.2.3 Bit Reversal (Optional)

In bit reversal addressing, calculated addresses are kept within a buffer length � O and
when calculating the updated address, carry is propagated towards the LSB. The lower
boundary of the buffer must be a multiple of � O .
To use bit reversal addressing, 8�? must be within the buffer, i.e. AW–k MSB bits of 8�?
must equal the corresponding bits of the lower boundary. 3 MSBs of 8�? should contain
110 to select bit reversal addressing. LSBs of 8�? should contain the value � OXWFY .
8�? = 8�? + 8�? [AW–3 ;�;�; 0] (propagate carry towards LSB)

Example (16-point (k = 4) FFT in buffer 0x50 ;�;�; 0x5f):

8�? =

7 4

0 1 0 1

3 0

1 1 0 0 0x5c (92)

8�? = 1 1 0 0 1 0 0 0 0xc8 (192+ ��Z WFY =200)

updated 8�? = 0 1 0 1 0 0 1 0 0x52 (82)

Rev. 2.6 Page 17 March 8, 2001

USER’S MANUAL
VS DSP �

Chapter 4

Program control

4.1 Architecture Overview

Program control unit (pcu) performs instruction fetch and decode, control flow changes
and interrupt fetching. In addition to the program counter PC, program control unit has
two link registers which are used for indirect jumps, LR0 and LR1.

Instruction
Decode

Instruction
Address
Generator

Interrupt
Controller

Program Memory

jumps

loop

external
interrupt
request

registers

X bus

Y bus

Program
Address

Program
Data

Control
signals

flags

core
interrupt

Figure 4.1: Program Control overview

Rev. 2.6 Page 18 March 8, 2001

USER’S MANUAL
VS DSP � 4. PROGRAM CONTROL

LR1

LR0 PC

mux

jump address

mux

interrupt address

Program Address

mux

+1

LS

LE

LC

comp

optional loop hardware

−1

Figure 4.2: Instruction Address Generator overview

Mode register MR0 holds the mode and flag bits, and MR1 is used as a temporary mode
register while transferring to interrupt service. Optional loop control has three registers,
LS, LE and LC. Program counter is not directly accessible.

Program Control unit has three components, which are shown in Fig. 4.1. The com-
ponents Instruction Decode, Instruction Address Generator and Interrupt Controller are
described in the following subsections.

4.1.1 Instruction Decode

Instruction Decode reads instructions from Instruction Data Bus and decodes them.

4.1.2 Instruction Address Generator

Instruction Address Generator contains all pcu registers. Instruction Address Generator
drives Instruction Address Bus from PC, LR0, LR1, interrupt address or from instruction

Rev. 2.6 Page 19 March 8, 2001

USER’S MANUAL
VS DSP � 4. PROGRAM CONTROL

jump address.

Fig. 4.2 shows the overall structure of the Instruction Address Generator. Connections
from registers to data buses are not shown.

The fetch address is determined as follows:

� On Interrupt cycle #2, interrupt vector I0 is the fetch address.� If instruction in execute phase is Jcc and the condition is true, jump address is
the fetch address.� If instruction in execute phase is JRcc and the condition is true, LR0 contains the
fetch address.� If instruction in execute phase is RETI, LR1 contains the fetch address.� In all other cases, PC holds the fetch address.

Instruction Address Generator contains the optional loop hardware. Behavior of Instruc-
tion Address Generator is further described in Chapter 5.

To achieve larger than pa-bit instruction address space, two page registers are used.
IPR0 holds the uppermost part of the program address. IPR0 and PC together deter-
mine the program address.

4.1.3 Interrupt Control

Interrupt Controller processes interrupts. It implements the interrupt state machine de-
scribed in Fig. 5.7, section 5.3. Interrupt Controller receives external interrupt and drives
interrupt fetch signal to Instruction Address Generator. Interrupt Controller makes sure
that previous interrupt has been processed before new interrupt request is presented to
Instruction Address Generator.

Rev. 2.6 Page 20 March 8, 2001

USER’S MANUAL
VS DSP � 4. PROGRAM CONTROL

4.2 Programming Model

Program control unit has the following registers:

15 0

PC

15 0

LR0

15 0

LR1

15 0

MR0

15 0

MR1

Optional loop registers:

15 0

LS

15 0

LE

15 0

LC

Page registers:

15 0

IPR0

15 0

IPR1

The width of registers is Program address width pa. Above it is assumed that pa is 16.

4.2.1 PC

PC is the program counter. It is not directly accessible by the programmer. PC is loaded
with the program address bus+1 value on all cycles except when new loop round starts.
In this case PC is loaded with LS.

In reset, PC is copied to LR1.

Rev. 2.6 Page 21 March 8, 2001

USER’S MANUAL
VS DSP � 4. PROGRAM CONTROL

In instruction fetches, program address bus is driven either from PC, LR0, LR1, decoded
instruction jump target address, reset vector address or interrupt vector address.

4.2.2 LR0

LR0 is used in indirect jumps. JRcc instruction causes instruction to be fetched from
LR0 address instead of PC address, if condition cc is true. LR0 can be used to form
subroutines by saving the return address to LR0 and executing JRcc at the end of the
subroutine. If nested subroutines are needed, LR0 must be saved and restored by the
calling subroutine.

4.2.3 LR1

LR1 is used in interrupt returns. RETI instruction causes instruction to be fetched
from LR1 address instead of PC address. PC is copied to LR1 on interrupt cycle #1 and
possibly on interrupt cycle #2 (see section 5.3.1 for description of interrupt mechanism).

If nested interrupts are needed, LR1 must be saved and restored by the interrupt service
routine. See section 5.3.2 for the save and restore routines.

4.2.4 MR0

MR0 is the processor mode/status register. The length of the register is pa, so the mini-
mum length is 11 and maximum 20 bits. It includes the mode bits and status flags. The
bits are (here in the case pa = 16):

15 8

d d d d d S I R

mode bits

7 0

L X Y Z N V E C

flags

Bit/flag Meaning
S saturation mode
I integer(1)/fractional(0) mult. mode
R rounding mode

L loop flag
X index X flag
Y index Y flag

Z zero flag
N negative flag
V overflow flag
E extension flag
C carry flag

Rev. 2.6 Page 22 March 8, 2001

USER’S MANUAL
VS DSP � 4. PROGRAM CONTROL

In the end of an interrupt, MR0 is being restored from the stack. Thus explicit moves
must override the evaluation of flags.

The mode bits and flags are described in more detail in section 6.2.

4.2.5 MR1

MR1 is the interrupt register of MR0. In interrupts, MR0 is copied to MR1 at interrupt
cycle #4 when L-flag is set in MR0. MR1 must be saved in the start of the interrupt.

4.2.6 LS (optional)

LS holds the loop start address. LOOP instruction copies instruction fetch address to
LS. When new loop round starts, PC is loaded with LS instead of instruction fetch ad-
dress+1.

4.2.7 IPR0

IPR0 is the instruction page register. It holds the upper pa bits of instruction address.

There are limitations on the use of IPR0. It can be accessed only as a source operand
in MVX or STX instruction. IPR0 can be changed by JRcc or JMPI instruction.

4.2.8 IPR1

IPR1 is the interrupt register of IPR0. In interrupts, IPR0 is copied to IPR1 at inter-
rupt cycle #2.

There are limitations on the use of IPR1. It can be accessed only as a source operand
in MVX or STX instruction. There is no way to write to IPR1, except the interrupt
mechanism.

4.2.9 LE (optional)

LE holds the loop end address. LOOP instruction loads LE with loop end address speci-
fied in the LOOP instruction. When instruction fetch occurs from LE address and L-flag
is not set, new loop round starts if []_^`.a .
LE is initiated with all ones in system reset.

Rev. 2.6 Page 23 March 8, 2001

USER’S MANUAL
VS DSP � 4. PROGRAM CONTROL

4.2.10 LC (optional)

LC holds the loop count. LOOP instruction loads LC from specified register. When
instruction fetch occurs from LE address, LC is tested for being equal to 0. If [Pbc^`da , it
is decremented by one, new loop round starts and LS is copied to PC. If [e\ `)a , nothing
special happens and PC is loaded with instruction fetch address+1 as usual.

Rev. 2.6 Page 24 March 8, 2001

USER’S MANUAL
VS DSP �

Chapter 5

Control Flow

The control flow behavior follows the three-stage pipelining of the processor operation.
The change-of-flow instructions are all delayed, with one delay slot following the in-
struction. There can not be another change-of-flow instruction in the delay slot. In this
sense, also LOOP is considered as a change-of-flow instruction, in addition to J, Jcc,
JRcc, CALLcc and RETI.

The JMPI instruction is also a change-of-flow instruction and has the same kind of
timing behavior as other change-of-flow instructions, but the instruction in the delay
slot is canceled (executed as NOP), and can therefore be a change-of-flow instruction.
This feature is mostly used in the interrupt vector table.

5.1 Jumps

Jump conditions are the processor flags and their combinations. The flags that are used
in the jump condition evaluation must be unaffected in the cycle before the jump in-
struction is executed, i.e., the instruction immediately before the jump instruction must
not change the jump condition flags. Other flags can be modified.

Fig. 5.1 shows the situation where instruction #2 is a change-of-flow instruction (J,
Jcc, JRcc, CALLcc or RETI). Instruction #3 is in the delay slot and is always exe-
cuted. When jump instruction executes (cycle 4), program address is driven either from
jump target register, LR0 or LR1 (jump is taken) or from PC (jump is not taken). D2
denotes this address. PC is loaded with D2+1 on the next cycle.

Rev. 2.6 Page 25 March 8, 2001

USER’S MANUAL
VS DSP � 5. CONTROL FLOW

Cycle 1 2 3 4 5 6 7 8 9
Fetch #1 #2 #3 D2 D2+1 ;�;�;
Decode #1 #2 #3 D2 D2+1 ;�;�;
Execute #1 #2 #3 D2 D2+1 ;�;�;
PC #1 #2 #3 #4 D2+1 ;�;�;

Figure 5.1: Jump execution

Cycle 1 2 3 4 5 6 7 8 9
Fetch #1 #2 #3 LS LS+1 ;�;�;
Decode #1 #2 #3 LS LS+1 ;�;�;
Execute #1 LOOP #3 LS LS+1 ;�;�;
PC #1 #2 #3 LS LS+1 ;�;�;
LS ;�;�; LS

LE ;�;�; LE

LC ;�;�; LC

Figure 5.2: Loop start.

Cycle 1 2 3 4 5 6 7 8 9
Fetch #1 #2 #3 LS LS ;�;�;
Decode #1 #2 #3 LS LS ;�;�;
Execute #1 LOOP #3 LS LS ;�;�;
PC #1 #2 #3 LS LS ;�;�;
LS ;�;�; LS

LE ;�;�; LE

LC ;�;�; n–1 n–2 ;�;�;
Figure 5.3: Single instruction loop start.

Rev. 2.6 Page 26 March 8, 2001

USER’S MANUAL
VS DSP � 5. CONTROL FLOW

Cycle 1 2 3 4 5 6 7 8 9
Fetch #1 #2 #3 LS LE+1 ;�;�;
Decode #1 #2 #3 LS LE+1 ;�;�;
Execute #1 LOOP #3 LS LE+1 ;�;�;
PC #1 #2 #3 LS LE+1 ;�;�;
LS ;�;�; LS

LE ;�;�; LE

LC ;�;�; 0

Figure 5.4: Single instruction, single round loop.

Cycle 1 2 3 4 5 6 7 8 9
Fetch LE–2 LE–1 LE LS LS+1 ;�;�;
Decode LE–2 LE–1 LE LS LS+1 ;�;�;
Execute LE–2 LE–1 LE LS LS+1 ;�;�;
PC LE–2 LE–1 LE LS LS+1 ;�;�;
LC n n–1

Figure 5.5: Loop end when LC ^` 0.

5.2 Loops (Optional)

Loop mechanism is optional. Loop mechanism has three registers which are loop start
register LS, loop end register LE and loop count register LC.

Change-of-flow instructions can not be at loop end address or immediately before that.

LOOP instruction starts a hardware loop. LOOP instruction has one delay slot, i.e., loop
start address is LOOP+2. This results from the fact that instruction at LOOP+1 (delay
slot) is fetched before loop registers are updated by LOOP instruction. Fig. 5.2 and
Fig. 5.3 illustrate start of loop. Loop can also be initiated by setting LS, LE and LC to
appropriate values.

When program fetch address equals LE, the value of LC is checked. If LC is not equal
to zero, it is decremented by 1 and PC is loaded with LS. If LC is equal to zero, noth-
ing special happens and the loop ends. Fig. 5.5 and Fig. 5.6 illustrate these loop end
situations.

Rev. 2.6 Page 27 March 8, 2001

USER’S MANUAL
VS DSP � 5. CONTROL FLOW

Cycle 1 2 3 4 5 6 7 8 9
Fetch LE–2 LE–1 LE LE+1 LE+2 ;�;�;
Decode LE–2 LE–1 LE LE+1 LE+2 ;�;�;
Execute LE–2 LE–1 LE LE+1 LE+2 ;�;�;
PC LE–2 LE–1 LE LE+1 LE+2 ;�;�;
LC 0

Figure 5.6: Loop end when LC = 0.

5.3 Interrupts

Interrupts are vectored using a jump table. The external interrupt arbiter supplies an
interrupt vector. The vector is an address in the range 0x20 � � 0x3f. These addresses
hold a jump table with JMPI instructions which jump to the start of the appropriate
interrupt routine.

In interrupts LR1 is used to save the return address. When main program is interrupted,
return address is automatically copied to LR1. Interrupts end with a RETI or a JRcc.

If nested interrupts are needed, interrupt program must save LR1 and restore it before
returning from interrupt. Saving and restoring instructions must be the routines specified
in section 5.3.2.

5.3.1 Interrupt Mechanism

Fig. 5.7 shows interrupt state machine with 5 interrupt cycles. State transitions are done
at the end of each instruction cycle. The actions in each state are described in the right
hand side of that state.

On interrupt cycle #1, fetch address is copied to LR1. Instruction fetch is done from the
normal fetch address.

On interrupt cycle #2, first interrupt instruction (I0) is fetched. IPR0 is copied to IPR1.
On this cycle we also decide whether instruction fetched on interrupt cycle #1 will be
canceled or not. The L-flag is set in MR0 register.

Instruction fetched on interrupt cycle #1 must be canceled, unless

� instruction fetched on the cycle before interrupt cycle #1 is a change-of-flow in-
struction, or� instruction fetch on interrupt cycle #1 occurs from loop end address LE.

Rev. 2.6 Page 28 March 8, 2001

USER’S MANUAL
VS DSP � 5. CONTROL FLOW

Int Cycle #1

Int Cycle #2

Int Cycle #3

Int Cycle #4

 Idle

Int Cycle #5

Interrupt pending

reset

MR0 MR1

LR1 = fetch address
Fetch normally

if instr in Decode is not cancelled,
LR1 = D2

Fetch from I0
Set L−flag
Acknowledge interrupt

Figure 5.7: Interrupt cycle control flow.

If instruction fetched on interrupt cycle #1 is not canceled, on interrupt cycle #2 LR1
is loaded with the destination address of instruction that is in execute stage on interrupt
cycle #2. Destination address is the address that would be fetched if the interrupt fetch
would not have occurred (e.g. jump target address or next linear address).

During interrupt cycle #4 MR0 is copied into MR1.

From interrupts’ point of view, change-of-flow instructions are J, Jcc, JRcc, RETI
and LOOP.

Fig. 5.8 shows an example when canceling occurs and Fig. 5.9 when it does not occur.
In figure Fig. 5.8, instruction #2 is a change-of-flow instruction, or instruction #3 is
fetched from loop end address LE. Instruction #3 must be executed before interrupt is
serviced. If instruction #2 is a change-of-flow instruction, destination address (denoted
by D2) is the jump target address or next linear address if the jump is not taken. If
instruction #3 is fetched from loop end address LE, D2 is the loop start address LS or
next linear address if the loop ends. In all cases D2 is copied to LR1 and will be the
interrupt’s return address.

If there is the possibility that instruction #3 is a change-of-flow instruction, instruction
in its delay slot (#4) would not be fetched because of I0 fetch. To prevent this, instruc-
tion #3 must be canceled. Fig. 5.9 illustrates this situation. LR1 is not updated again on

Rev. 2.6 Page 29 March 8, 2001

USER’S MANUAL
VS DSP � 5. CONTROL FLOW

Cycle 1 2 3 4 5 6 7 8 9

Int Cycle 1 2 3 4 5

Fetch #1 #2 #3 I0 I1 I2 I3
Decode #1 #2 #3 I0 I1 I2 I3
Execute #1 #2 #3 I0 I1 I2 I3

PC #1 #2 #3 #4 I1 I2 I3 ;�;�;
LR1 ;�;�; #3 D2

MR1 ;�;�; MR0

Figure 5.8: Interrupt when instruction #3 is not canceled.

Cycle 1 2 3 4 5 6 7 8 9

Int Cycle 1 2 3 4 5

Fetch #1 #2 #3 I0 I1 I2 I3
Decode #1 #2 NOP I0 I1 I2 I3
Execute #1 #2 NOP I0 I1 I2 I3

PC #1 #2 #3 #4 I1 I2 I3 ;�;�;
LR1 ;�;�; #3

MR1 ;�;�; MR0

Figure 5.9: Interrupt when instruction #3 is canceled.

interrupt cycle #2, so it will point to address of instruction #3.

In case of nested interrupts, old value of LR1 is lost when first interrupt instruction (I0)
is fetched. In interrupt routine, second instruction (I1) saves LR1, so another interrupt
fetch can start when I1 has been executed (cycle 8) in Fig. 5.9.

Next I0 can be fetched on cycle #8 at the earliest to be sure LR1 is saved properly. In
interrupts, I0, I1 and I2 are always executed before another interrupt can occur. If I2 is
a change-of-flow instruction, also I3 is executed.

Loading of LR1must override automatic LR1 load by interrupt mechanism to guarantee
proper interrupt ending (case when instruction #1 above is LR1 load).

5.3.2 Interrupt Routines

A typical interrupt jump table looks like the following:

.org 0x20

Rev. 2.6 Page 30 March 8, 2001

USER’S MANUAL
VS DSP � 5. CONTROL FLOW

Rst active released

Int Cycle 3 3 3 3 4 5

Fetch no fetch R0 R1 R2 R3
Decode NOP R0 R1 R2 R3
Execute NOP R0 R1 R2 R3

PC R0 R1 R2 R3 ;�;�;
Figure 5.10: Reset

JMPI int_routine0,(SP)+1
JMPI int_routine1,(SP)+1
JMPI int_routine2,(SP)+1
...

Here, the JMPI instructions also increase the stack pointer.

The start of the interrupt handler must save the processor state before enabling interrupts
in the external arbiter. The end of the handler restores the processor state. Depending
whether only 16-bit or both 16- and 32-bit instruction memory addressing will be used
in the program, a different kind of a saving and restoring is used.

The following is a typical 16-bit interrupt routine:

_InterruptService:
STX mr1,(i6); STY i7,(i6)+1
STX lr1,(i6); STY lr0,(i6)+1

STX i0,(i6); STY i1,(i6)
...
(actual interrupt functionality)
...
LDX (i6),i0; LDY (i6)-1,i1

LDC INT_GLOB_EN,i7
LDX (i6),lr1; LDY (i6)-1,lr0
LDX (i6),mr0
RETI
STX i7,(i7); LDY (i6)-1,i7

When an interrupt is taken, the interrupt controller automatically disables all interrupts.
Writing to the chip-specific memory address INT GLOB EN enables the interrupts.

Rev. 2.6 Page 31 March 8, 2001

USER’S MANUAL
VS DSP � 5. CONTROL FLOW

The interrupts must be disabled during the RETI instruction execution, and they will
therefore be enabled in its delay slot. The RETI will also clear the L-flag, and the
restoring of MR0 must therefore come before it, if the flag is not cleared by the user.

The following is a typical 32-bit interrupt routine. Both of the interrupt routines pre-
sented here may change the values of X and Y flags, which therefore cannot be used in
the actual program in sections where interrupts are enabled.

STX i7,(i6)+1; STY lr0,(i6)
MVX ipr1,i7
STX lr1,(i6)+1; STY i7,(i6)
STX mr1,(i6)+1

STX i0,(i6); STY i1,(i6)
...

(actual interrupt functionality)
...

LDX (i6),i0; LDY (i6)-1,i1

LDX (i6)-1,mr0
LDC INT_GLOB_EN,i7
STY i7,(i7)
LDX (i6),lr0; LDY (i6)-1,i7 // lr1 ipr1
JR (i7)
LDX (i6),i7; LDY (i6)-1,lr0 // i7 lr0

8!= and LR0 must be restored in the delay slot of the JR-instruction, because the JR uses
them both.

5.4 System Reset

System reset forces the processor to a known reset state. After reset is released, the
processor starts executing instructions from reset address onwards.

All registers except LE and PC are zeroed on reset. LE is set to all ones. PC is set to
reset vector. Interrupt Controller is forced to interrupt cycle #3.

Fig. 5.10 shows reset behavior. R0–R3 denote addresses reset vector – reset vector+3.

Rev. 2.6 Page 32 March 8, 2001

USER’S MANUAL
VS DSP � 5. CONTROL FLOW

Cycle 1 2 3 4 5 6 7 8 9

Int Cycle idle 1 2 3 4 5

Fetch #1 #2 #3 I0 I1 I2 I3
Decode halt #1 #2 #3 I0 I1 I2
Execute halt #1 #2 #3 I0 I1

PC #1 #2 #3 #4 I1 I2 I3

Figure 5.11: HALT execution

5.5 Halt

In HALT, the processor input clock is held low until an interrupt occurs. The execution
pipeline is stopped.

When an interrupt occurs, the processor will execute 3 instructions after HALT instruc-
tion before executing the first interrupt instruction. See figure 5.11. In the figure, the
execution of the HALT instruction takes 3 cycles (cycles #2 � � #4). The interrupt request
is received during cycle #4.

If the interrupt state machine is not in the idle state when HALT goes to execution,
HALT instruction has no effect and is executed like a NOP.

Rev. 2.6 Page 33 March 8, 2001

USER’S MANUAL
VS DSP �

Chapter 6

Instruction Set Reference

6.1 Programming Model

The processor programming model is shown in Fig. 6.1. The processor contains arith-
metic, address and control registers.

A2

B2

C2

D2

A1

B1

C1

D1

P1

A0

B0

C0

D0

P0
g

n n

I0

I2

I4

I6

I1

I3

I5

I7

da da

LR0

LR1

LS

LE

LC

MR0

MR1

PC

IPR0

IPR1

pa pa

Figure 6.1: Processor programming model

Arithmetic registers are the � -bit registers A0, A1, B1, � � , D1 and the � -bit guard
bit registers A2, � � , D2. The multiplier pipeline register P0, P1 is also shown.
There is no guard bit register for P because a single multiplication result always fits into�!� -bit register. The arithmetic registers can be used either as � -bit registers mentioned
above or as ���1�#� -bit registers (A, B, C, D, P).

Address registers are the f<g -bit index registers I0, I1, � � , I7. Optionally there
may also be index registers I8, I9, � � , I15.

Control registers are the program counter PC, link registers LR0, LR1 and mode regis-
ters MR0, MR1. Optional loop hardware registers are LS, LE, LC and page registers
IPR0, IPR1.

Rev. 2.6 Page 34 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

6.2 Flags and Mode Bits

The mode/status register MR0 bits are (here in the case pa = 16):

15 8

d d d d d S I R

mode bits

7 0

L X Y Z N V E C

flags

Bit/flag Meaning
S saturation mode
I integer(1)/fractional(0) mult. mode
R rounding mode

L loop flag
X index X flag
Y index Y flag

Z zero flag
N negative flag
V overflow flag
E extension flag
C carry flag

The normal definition of the flags and mode bits is as follows. Exceptions to the flag
behavior are listed in the particular instruction description.

6.2.1 Loop (L)

When set, the loop flag disables loop end detection, i.e. loop hardware. The flag is
automatically set by the interrupt mechanism to prevent false loop end detections when
the interrupt causes the execution to transfer to zero page from another page. Normally,
there is no need for the user to set or clear the loop flag.

The detailed operation of the loop flag is as follows:

� Interrupt sets the loop flag. The value in MR1 corresponds to L=1.

� MR0 load can set or clear the loop flag.

� JR, RETI, J, CALL, and LOOP instructions clear the loop flag.

� JMPI does not affect the loop flag.

Rev. 2.6 Page 35 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

6.2.2 Index X (X)

The flag is set or cleared based on the address ALU output (updated address). If address
ALU X uses modulo addressing, the flag is set if the modulo restoring to buffer is done
(the calculated linear address is outside the buffer). If restoring is not done (the linear
address is inside the buffer), the flag is cleared.

If address ALU X uses other addressing modes (linear or bit reversal), the flag is set if
the uppermost bit is set. If the bit is clear, the flag is cleared.

6.2.3 Index Y (Y)

Same as Index X above, but uses address ALU Y instead.

6.2.4 Zero (Z)

If the ALU is operating in the ���*�7� -bit mode and bits ���*�4�LJ.Sh � � a of the ALU
result are all clear, the flag is set.

If the ALU is operating in the � -bit mode and bits �*J)Si � � a of the ALU result are all
clear, the flag is set.

Otherwise, the flag is cleared.

6.2.5 Negative (N)

If the ALU is operating in the �!�L�#� -bit mode and bit ���1�N�jJ+S of the ALU result is
set, the flag is set.

If the ALU is operating in the � -bit mode and bit �KJ#S of the ALU result is set, the flag
is set.

Otherwise, the flag is cleared.

6.2.6 Overflow (V)

Set if an arithmetic overflow occurs in the ALU result.

6.2.7 Extension (E)

If the ALU is operating in the ���5�k� -bit mode and bits �!�j�c��J#Si � � ����"J#S are all the
same (either all ones or all zeros), the flag is cleared.

Rev. 2.6 Page 36 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

If the ALU is operating in the � -bit mode, the flag is cleared.

Otherwise, the flag is set.

6.2.8 Carry (C)

If a carry is generated in an addition or a borrow is generated in a subtraction, the flag
is set. The flag is set also in LSR and LSRC, if the LSB bit of the operand is logical ’1’.

Otherwise, the flag is cleared.

6.2.9 Saturation (S)

If the saturation mode bit is set, the ALU and multiplier operations will saturate the
result in case of an over/underflow. The overflow flag will be set, but its interpretation
is that saturation has taken place in the ALU. Rounding precedes saturation, if both are
enabled simultaneously.

If the mode bit is clear, the ALU and multiplier will not saturate their outputs, and the
overflow flag will have its normal meaning.

6.2.10 Integer (I)

If the integer mode bit is set, the multiplier result is interpreted as an integer and thus no
re-alignment is needed.

Otherwise, the multiplier result is assumed to be a fractional number with two leading
sign bits, which will be re-aligned by a single left-shift before storing in the P register.
Normally, a zero will be fed into the LSB. In saturation to the largest positive value, the
LSB will be set to one.

6.2.11 Rounding (R)

If the rounding mode bit is set, the 2n+g-bit ALU operations will round the result to n
bits according to the selected rounding mode. The rounding mode is (by default) chosen
by the parameter roundmode, or by an extension specific mode bit (to be defined). By
default, there is just one rounding mode available in the particular implementation of
the core. Rounding precedes saturation, if both are enabled.

The possible rounding modes are truncate, normal round, convergent round to 0 and
convergent round to 1. Rounding will clear the n bits of the lower half of the result,
and adjust the upper half according to the hard-wired rounding mode. In truncation, the
upper half is left intact. In normal rounding, the uppermost bit of the lower half is added
to the upper part (thus rounding up if the lower part was at least half of the LSB value

Rev. 2.6 Page 37 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

of the upper part). In convergent rounding the LSB of the upper half also has effect on
the rounding operation in case the lower half is exactly half of the LSB (0b1000 ;�;�;).
In convergent 0, the upper half LSB is to be added to the upper half in the special case
(thus adding 1 if the LSB is one). In convergent to 1, the complement of the upper half
LSB is to be added to the upper half in the special case (thus inserting 1 if the LSB is
zero). The rounded result will be written in one of the accumulators (2n + g registers).

If the rounding mode bit is clear, the ALU operates normally in the 2n + g base.

6.3 List of Instructions

The following table lists all basic and optional instructions. The operand set of each
instruction, mode bits affecting the operation and the flags affected are also declared.

Rev. 2.6 Page 38 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

Mnemonic meaning type operands result S I R L X Y Z N V E C db da

ABS absolute value A Areg Areg u – u – – – x x x x x – –
ADD add A 2 l Areg Areg u – u – – – x x x x x – –
ADDC add with carry A 2 l Areg,

c
Areg u – u – – – x x x x x,u – –

AND logical AND A 2 l Areg Areg – – – – – – x x 0 x 0 – –
ASR 1-b arithm. right shift A Areg Areg – – – – – – x 0 0 x x – –
CALLcc conditional call C addr,cc LR0 – – – 0 u u u u u u u yes yes
HALT wait for an interrupt C – – – – – – – – – – – – – – –
J jump C addr – – – – 0 – – – – – – – – yes
Jcc conditional jump C addr,cc – – – – 0 u u u u u u u yes yes
JMPI jump, ignore delay slot C addr,Ireg Ireg – – – – – – – – – – – – yes
JR jump register C 0 – – – – 0 – – – – – – – – yes
JRcc conditional JR C cc, Ireg – – – – 0 u u u u u u u yes yes
LDC load constant M imm reg – – – – – – – – – – – – –
LDX load on X bus M Ireg, mod reg – – – – x – – – – – – – –
LDY load on Y bus M Ireg, mod reg – – – – – x – – – – – – –
LOOP start loop C(O) reg, addr Lregs – – – 0 – – – – – – – – yes
LSL 1-b log. left shift A Areg Areg – – – – – – x x x x x – –
LSLC LSL with carry A Areg,c Areg – – – – – – x x x x x – –
LSR 1-b log. right shift A Areg Areg – – – – – – x 0 0 x x – –
LSRC LSR with carry A Areg,c Areg – – – – – – x x 0 x x – –
MAC multiply-accumulate A 2 l Areg Areg,P u u u – – – x x x x x – –
MSU multiply-subtract A 2 l Areg Areg,P u u u – – – x x x x x – –
MUL multiply A 2 l Areg P u u – – – – – – – – – – –
MVX register move M reg reg – – – – – – – – – – – – –
MVY register move M reg reg – – – – – – – – – – – – –
NOP no operation M – – – – – – – – – – – – – – –
NOT logical NOT A Areg Areg – – – – – – x x 0 x 0 – –
OR logical OR A 2 l Areg Areg – – – – – – x x 0 x 0 – –
RESP restore P C 2 l Areg P – – – – – – – – – – – – –
RETI return from interr. C Ireg PC – – – 0 – – – – – – – – yes
STX store on X bus M Ireg,

mod, reg
mem – – – – x – – – – – – – –

STY store on Y bus M Ireg,
mod, reg

mem – – – – – x – – – – – – –

SUB subtract A 2 l Areg Areg u – u – – – x x x x x – –
SUBC SUB with carry A 2 l Areg,

c
Areg u – u – – – x x x x x,u – –

XOR logical XOR A 2 l Areg Areg – – – – – – x x 0 x 0 – –

Types: A = arithmetic (logic), C = control, M = data move, (O) = optional
Operands and result: reg = register, I = index, mod = modifier, addr = address,

Mode bits and flags: x = sets flag, u = uses bit, 0 = sets flag to 0,
Delay slots: db = delay slot before, da = delay slot after

Rev. 2.6 Page 39 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

6.4 Instruction Descriptions

The instruction description includes the mnemonic and a one line description
(name) of the command, the syntax and mathematical expression of the
instruction, comments on the use and other specific information, and finally
the coding of the instruction. The operand fields or other further refinements are given
in accompanying tables. The number of registers is dependent on the core parame-
ters.

Several instructions can be executed in parallel when they are using different fields of the
instruction word, e.g., ALU operations and two parallel moves with indirect addressing
are possible, see instruction composition in chapter 7.

Rev. 2.6 Page 40 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

ABS Absolute value m npoGqDr �]s
m
tPu0v qDr � v!w

m
t

Flags: Z,N,V,E,C.

The operand is conditionally negated (two’s complement operation) and placed in the
target register. The coding of Op2 is given in Table 7.4 (ALU operand), and the result
coding in Table 7.3. The absolute value of the minimum integer (fraction -1.0) is the
maximum integer in the saturation mode.

Coding:

31 28

1 1 1 1

27 24

0 0 0 0

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

ADD Addition of two operandsm x<x5qDr Sys qDr �]s
m
tPu qDr Sh� qDr � w

m
t

Flags: Z,N,V,E,C.

The operand coding is shown in Table 7.4 (ALU operand), and the result coding in
Table 7.3. LSL is constructed with ADD Op1, Op1,

m
t .

Coding:

31 28

0 1 0 0

27 24

R R R R

23 20

r r r r

19 17

A A A

16 0

parallel move

RRRR = Op1, rrrr = Op2, AAA = target register.

ADDC Addition of two operands with carrym x<x \ qDr Sys qDr �]s
m
tyu qzr Sh� qzr �z�3{ w

m
t

Flags: Z,N,V,E,C.

The operand coding is shown in Table 7.4 (ALU operand), and the result coding in
Table 7.3.

Coding:

31 28

1 0 0 0

27 24

R R R R

23 20

r r r r

19 17

A A A

16 0

parallel move

RRRR = Op1, rrrr = Op2, AAA = target register.

Rev. 2.6 Page 41 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

AND Bitwise AND of two operandsm |PxjqDr Sys qDr �]s
m
t:uc}�~��D� g<���K�i� qDr SP�����F; qDr �p����� w

m
t �����

Flags: Z,N,V=0,E,C=0.

The operand coding is found in Table 7.4 (ALU operand), and the result coding in
Table 7.3.

Coding:

31 28

1 0 1 1

27 24

R R R R

23 20

r r r r

19 17

A A A

16 0

parallel move

RRRR = Op1, rrrr = Op2, AAA = target register.

ASR Arithmetic shift right�6��� qzr �]s
m
t<u,}�~!��� g<���'�iV a � qDr ������� w

m
t ����J4S���s qDr ����$*����� w

m
t ��$*�����

Flags: Z,N,V,E,C=op2(0).

The instruction shifts right by one position. The LSB bit is discarded, and MSB of the
source registers is fed into the MSB bit of the result.

Coding:

31 28

1 1 1 1

27 24

0 0 0 1

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

CALLcc Conditional delayed jump and save return address

{ ���i� g<f<f �]u*� \ w [P�p9Fs�� } � ~ ��f��Gg<f<f �Gw�� \
Flags: L=0.

Identical to normal jump instruction, but PC is saved to LR0. This instruction replaces
the sequence J addr, LDC @+1,LR0 which is used in subroutine calls.

Note the one delay slot associated to this instruction. The address which is saved to LR0
is the CALL instruction address + 2. The instruction in the delay slot is always executed
regardless of the condition.

Coding:

31 28

0 0 1 0

27 24

1 0 0 1

23 20

n n n n

19 16

n n n n

15 12

n n n n

11 8

n n n n

7 4

n n c c

3 0

c c c c

nn...nn = absolute address, cccccc = condition.

Rev. 2.6 Page 42 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

HALT Halt the processor and wait for an interrupt� �����
Flags: no change.

The processor is halted to a low-power state. Normal execution is resumed when an
interrupt occurs.

Coding:

31 28

0 0 1 0

27 24

1 1 0 1

23 20

d d d d

19 16

d d d d

15 12

d d d d

11 8

d d d d

7 4

d d d d

3 0

d d d d

dd = don’t care.

J Y Delayed jump to absolute address� g<f<f �]u g<fef �Gw�� \
Flags: L=0.

Note the one delay slot associated with this instruction.

Coding:

31 28

0 0 1 0

27 24

1 0 0 0

23 20

n n n n

19 16

n n n n

15 12

n n n n

11 8

n n n n

7 4

n n 0 0

3 0

0 0 0 0

nn...nn = absolute address.

Jcc Conditional delayed jump to absolute address�<�<� gef<f �eu � } � ~ ��f1�Ggef<f �Gw�� \�s ��� � � � � \��)S w�� \
Flags: L=0.

Flags and their combinations can be used as jump conditions, as shown in Table 6.1
(Jump conditions). The instruction immediately before the Jcc must not change the
flags that are used in the jump condition. Other flags can be changed. Note the one
delay slot associated to this instruction.

Coding:

31 28

0 0 1 0

27 24

1 0 0 0

23 20

n n n n

19 16

n n n n

15 12

n n n n

11 8

n n n n

7 4

n n c c

3 0

c c c c

nn...nn = absolute address, cccccc = condition.
This instruction is implemented as a single instruction software macro.

Rev. 2.6 Page 43 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

Table 6.1: Jump conditions.

Binary code Abbrev Name definition

000000 always
000001 CS carry set C = 1
000010 ES extension set E = 1
000011 VS overflow V = 1
000100 NS negative N = 1
000101 ZS zero Z = 1
000110 XS index X set X = 1
000111 YS index Y set Y = 1
001000 LT less than zero ¡£¢¥¤§¦-; � E = 1
001001 LE less than or equal to zero ¡¨¢¥¤§¦-; � E + Z = 1
010001 CC carry clear C = 0
010010 EC extension clear E = 0
010011 VC not overflow V = 0
010100 NC not negative N = 0
010101 ZC not zero X = 0
010110 XC index X clear X = 0
010111 YC index Y clear Y = 0
011000 GE greater than or equal to zero ¡¨¢¥¤§¦-; � E = 0
011001 GT greater than zero ¡£¢¥¤§¦-; � E + Z = 0

JMPI Jump, ignore delay slot, increment index register��© � 8�gef<f � s�¤ qzr S�Eª�¥� u gef<f �Gw�� \�s qDr S«�¥� w qDr S:s a w 8 � �p9
Flags: no change.

Identical to normal jump instruction, but ignores the instruction in the delay slot (a
NOP is executed instead) and jumps to zero page. Also, the index register specified
is optionally modified (identical to LDX (Op1)+n,NULL). The X flag is not updated
regardless of the LDX result.

This instruction is used in interrupt vector jump table.

Coding:

31 28

0 0 1 0

27 24

1 0 1 0

23 20

n n n n

19 16

n n n n

15 12

n n n n

11 8

n n n n

7 4

n n d m

3 0

m r r r

nn...nn = absolute address, rrr = address register, dd = don’t care,
mm = address mode (00 = no update, 01 = +1, 11 = -1).

Rev. 2.6 Page 44 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

JRcc Conditional delayed jump to the address in link register 0� � �<� u � } � ~ ��fL�6[P�p9 w�� \
Flags: L=0.

JRcc Conditional delayed jump to the address in link register 0� � �<� ¤ qDr S�E u � } � ~ ��f1�6[P��9 w�� \Bs qDr S w 8 � �p9
Flags: L=0.

The JRcc instruction can be used for returns from subroutines, as well as for other
jumps with run-time calculated addresses. The return addresses are typically loaded
by an LDC instruction. Flags and their combinations can be used as jump conditions, as
shown in Table 6.1 (Jump conditions). The instruction immediately before the JRccmust
not change the flags that are used in the jump condition. Other flags can be changed.
Unconditional return can be done with the “always” condition. Note the one delay slot
associated to this instruction.

Coding:

31 28

0 0 1 0

27 24

0 0 0 0

23 20

0 d d d

19 16

d d d d

15 12

d d d d

11 8

d d d d

7 4

d d c c

3 0

c c c c

31 28

0 0 1 0

27 24

0 0 0 0

23 20

1 d d d

19 16

d d d d

15 12

d d d d

11 8

d d d r

7 4

r r c c

3 0

c c c c

ddd = don’t care bits, cccccc = condition, rrr = Op1 (I0 � � I7)

LDC Load constant to a register

[x \G� ~ ����¬gP��¬�s qDr S u � ~ ����¬gP��¬ w qzr S
Flags: no change.

The register (Op1) coding is shown in Table 7.9 (Target full move). The assembler
understands numbers in different bases (e.g., hexadecimal, decimal, binary), while the
immediate is finally coded in binary format. A single constant load can be done in an
instruction, and no parallel arithmetic can be used. The constant is LSB-aligned and
sign extended if needed.

Coding:

31 28

0 0 0 i

27 24

i i i i

23 20

i i i i

19 16

i i i i

15 12

i i i i

11 8

i i i i

7 4

i i R R

3 0

R R R R

RRRRRR = Op1, ii...ii = constant immediate.

Rev. 2.6 Page 45 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

LDX Load register from X-memory

[xe® ¤ qzr S�E¯s qDr � u±° � qDr S�� w qDr �]s³² r f<gP¬ � qzr S
Flags: X.

LDY Load register from Y-memory

[x<´ ¤ qzr S�E¯s qDr � u*µ � qDr S�� w qDr �]s³² r f<gP¬ � qDr S
Flags: Y.

Coding (double full moves):

31 28

0 0 1 1

27 14

X full move

13 0

Y full move

Coding (parallel full move):

31 28

o o o o

27 24

d d d d

23 20

d d d d

19 17

d d d

16 12

0 b d F F

11 8

F F F F

7 4

F F F F

3 0

F F F F

oooo = opcode allowing parallel moves, dddd = don’t care
b = bus X/Y (0/1), FFFFF = full move bits of X/Y

Coding (parallel short moves):

31 28

o o o o

27 24

d d d d

23 20

d d d d

19 17

d d d

16 12

1 x x x x

11 8

x x x x

7 4

y y y y

3 0

y y y y

xxxx = short move bitsof X, yyyy = short move bits of Y.

LDX Load register from X memory with long address�i¶ ° ¤ qDr �'� qzrB· E¯s qDr S u±° � qDr �K� qzrB· � w qDr S
Flags: X.

STX Store register in X memory with long address��� ° qDr Sys�¤ qDr �5� qDrB· E u qzr S w ° � qzr �j� qDrB· �
Flags: X.

Load or store a register from or to X memory. This instruction uses two index registers
to generate a long (2 % dataaddress) memory address. Op3 is always 8�? , where Op2 is8�? .

Coding (parallel move):

Rev. 2.6 Page 46 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

31 17

arithmetic opcode

16 10

0 0 1 0 1 0 0

9 6

s r r r

5 0

R R R R R R

RRRRRR = Op1, rrr = Op2, s = store/load

Table 6.2: Loop count register coding.

Binary code Register

0000a A0 � � A1
0001a B0 � � B1
0010a C0 � � C1
0011a D0 � � D1
01000 LR0
01001 LR1
01010 MR0
01011 MR1
01100 (reserved)
01101 LC (optional)
01110 LS (optional)
01111 LE (optional)

10rrr 8�9 ... 8!=
11rrr 8!¸ ... 8]¹ 5 (optional)

LOOP Start a hardware loop, delayed

[pº<º � qDr Sys�gef<f �eu qzr S w [e\Bs,g<f<f �Gw [Pbªs � \6�3� w [o
Flags: L=0.

This optional instruction starts a hardware loop. The instruction carries a register num-
ber, as encoded in Table 6.2 (Loop count), and an absolute loop end address which
can be calculated by the assembler. The LE indicates the address of the last instruc-
tion within the loop body. The loop start is implicitly the second instruction from the
LOOP instruction. See section 5.2 for details. Note the one delay slot associated to this
instruction.

Coding:

31 28

0 0 1 0

27 24

0 1 n n

23 20

n n n n

19 16

n n n n

15 12

n n n n

11 8

n n n n

7 4

n n d r

3 0

r r r r

rrrrr = Op1 (loop count), nn...nn = absolute loop end address.
d = don’t care bit.

Rev. 2.6 Page 47 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

LSL � Logical shift left

[o [qDr �]s
m
tPuc}ª~!�D� g<���K��U+����¬»�DJ+SM� qzr ������� w

m
t ���ª�7S��§s a w

m
t � a �

Flags: Z,N,V,E,C=op2(bits-1).

The instruction shifts left by one position. This instruction is implemented in hardware
as ADD Op2, Op2, A ¼ . Note! P is not available as an operand for this instruction.

Coding:

31 28

0 1 0 0

27 24

r r r r

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

LSLC � Logical shift left with carry

[o [e\ qDr �es
m
t<u½}�~���� ge�X�'�iU+����¬»��J4SM� qzr ������� w

m
t �����)SX�§s�{ w

m
t � a �

Flags: Z,N,V,E,C=op2(bits-1).

The instruction shifts left by one position. This instruction is implemented in hardware
as ADDC Op2, Op2, A ¼ . Note! P is not available as an operand for this instruction.

Coding:

31 28

1 0 0 0

27 24

r r r r

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

LSR Logical shift right

[o � qDr �es
m
tPuc}�~��D� g<���K�iV a � qDr �p����� w

m
t ���¾J+S��§s a w

m
t ��$*�����

Flags: Z,N,V,E,C=op2(0).

The instruction shifts right by one position. The LSB bit is discarded, and zero is fed into
the MSB bit. The operand (Op2) is encoded as described in Table 7.4 (ALU operand),
and the result coding in Table 7.3.

Coding:

31 28

1 1 1 1

27 24

0 0 1 0

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

¿
This instruction is implemented as a single instruction software macro.

Rev. 2.6 Page 48 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

LSRC Logical shift right with carry

[o �]\ qDr �]s
m
tPu½}�~��>� g<�X�'�hV a � qzr ������� w

m
t ����J4SX�§s�{ w

m
t ��$*�����

Flags: Z,N,V,E,C=op2(0).

The instruction shifts right by one position. The LSB bit is fed to carry, and carry is
fed into the MSB bit. The operand (Op2) is encoded as described in Table 7.4 (ALU
operand), and the result coding in Table 7.3.

Coding:

31 28

1 1 1 1

27 24

0 0 1 1

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

MAC Multiply-accumulate© m \ qzr Sys qzr �]s
m
tyu
m
t � �1w

m
t s qzr S6% qzr � w��

Flags: Z,N,V,E,C.

The instruction performs one multiplication and adds the result of the previous multipli-
cation (P) to a register. The multiplication operands are considered signed or unsigned
(see MUL), multiplication mode and possible saturation are controlled by the appropriate
mode bits.

Coding:

31 28

0 1 0 1

27 24

r r r m

23 20

m R R R

19 17

A A A

16 0

parallel move

rrr = Op1, RRR = Op2, AAA = target register, mm = data format.

MSU Multiply-subtract©�o!À"qzr Sys qzr �]s
m
t:u
m
t J �1w

m
t s qzr SG% qDr � w��

Flags: Z,N,V,E,C.

The instruction performs one multiplication and subtracts the result of the previous mul-
tiplication (P) from a register. The multiplication operands are considered signed or
unsigned (see MUL).

Coding:

31 28

0 1 1 1

27 24

r r r m

23 20

m R R R

19 17

A A A

16 0

parallel move

rrr = Op1, RRR = Op2, AAA = target register, mm = data format.

Rev. 2.6 Page 49 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

MUL Multiply ©PÀ [qDr Sys qDr � u qzr SG% qDr � w��
Flags: no change.

Performs one multiplication. The operands can be signed or unsigned, multiplica-
tion mode and possible saturation are controlled by the appropriate mode bits. There
are different mnemonics for different format operands. The data format can be Op1
signed/Op2 signed (MULSS), Op1 unsigned/Op2 signed (MULUS), Op1 signed/Op2 un-
signed (MULSU) or Op1 unsigned/Op2 unsigned (MULUU). The format SS is the default,
and MULSS can thus be written as plain MUL.

Coding:

31 28

1 1 1 1

27 24

1 1 1 m

23 20

m R R R

19 17

r r r

16 0

parallel move

rrr = op1, RRR = op2, mm = data format.

MVX/MVY Register-to-register move

R-¦ ° qDr Sys qDr � u qDr S w qDr �
Flags: no change.

Moves a register to another register using X or Y data bus. In parallel MVX, any register
can be used as a source or target. The source is read on X bus, switched to Y bus and
written from Y bus.

In double MVX/MVY, two moves can be performed with a single instruction. The
source and destination registers must be from different execution units (ALU, DAG,
PCU).

Coding (parallel move):

31 17

arithmetic opcode

16 12

0 0 1 0 0

11 6

s s s s s s

5 0

d d d d d d

Coding (double move):

31 28

0 0 1 0

27 24

1 0 1 1

23 18

S S S S S S

17 12

D D D D D D

11 6

s s s s s s

5 0

d d d d d d

n = reserved, ssssss = Y source, dddddd = Y tar get,
SSSSSS = X source , DDDDDD = X target.

Rev. 2.6 Page 50 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

NOP No operation | º ��u � ~D��}�}�� ��¬
Flags: no change.

A parallel move NOP is a load operation to NOP register. A total NOP is LDC to NOP.

Coding:

31 28

1 1 1 1

27 24

0 1 0 0

23 20

d d d d

19 17

d d d

16 0

parallel move

ddd = don’t care.

NOT Á Bitwise logic NOT operation| º:Â qDr �es
m
t<u½}�~���� ge�X�'�i� qDr ������� w

m
t �����

Flags: Z,N,V=0,E,C=0.

The operand (Op2) coding is shown in Table 7.4 (ALU operand), the target can be one
of the registers. In hardware this is equal to an XOR with register ONES.

Coding:

31 28

1 1 0 1

27 24

1 0 0 1

23 20

r r r r

19 17

A A A

16 0

parallel move

rrrr = Op2, AAA = target register.

OR Bitwise logic OR operation

ºy� qDr Sys qDr �]s
m
tyu½}�~!�D� g<�X�K�i� qzr S<�����e� qDr ������� w

m
t �����

Flags: Z,N,V=0,E,C=0.

The operands are encoded as described in Table 7.4 (ALU operand), and the result
coding in Table 7.3. The target is one of the registers.

Coding:

31 28

1 1 0 0

27 24

r r r r

23 20

R R R R

19 17

A A A

16 0

parallel move

rrrr = Op1, RRRR = Op2, AAA = target register.

Rev. 2.6 Page 51 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

RESP Restore P register

�<b o � qDr S:s qDr � u qzr S w � a qzr � w�� S
Flags: no change.

This instruction restores the P contents from two arithmetic registers. The saving of the
P shall be done as described in section 2.5. The operands are encoded as multiplication
operands.

Coding:

31 28

0 0 1 0

27 24

0 0 1 0

23 20

d R R R

19 16

r r r d

15 12

d d d d

11 8

d d d d

7 4

d d d d

3 0

d d d d

rrr = Op1, RRR = Op2, ddd = don’t care bits.

RETI Delayed return from interrupt

�<b<Âª8 u [P��¹ w�� \
Flags: L=0.

RETI Delayed return from interrupt

�<b<Âª8j¤ qzr S�E u [P��¹ w�� \Bs qDr S w 8 � ��9
Flags: L=0.

The RETI instruction is used for returns from interrupts, similarly as JRcc is used for
returns from subroutines. For description of interrupt mechanism and the correct use of
RETI, see chapter 5.

Coding:

31 28

0 0 1 0

27 24

0 0 0 1

23 20

0 d d d

19 16

d d d d

15 12

d d d d

11 8

d d d d

7 4

d d d d

3 0

d d d d

31 28

0 0 1 0

27 24

0 0 0 1

23 20

1 d d d

19 16

d d d d

15 12

d d d d

11 9

d d d

8 6

r r r

5 0

d d d d d d

ddd = don’t care bits, nnn = absolute address, rrr = Op1 (I0 � � I7)

Rev. 2.6 Page 52 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

STX Store a register in X memoryo Â ®5qDr S:s�¤ qzr �yE u qzr S w�° � qDr �!�§s³² r f<gP¬ � qzr �
Flags: X.

See LDX for the general load/store capability description and the encoding of the move
fields.

STY Store a register in Y memoryo Â ´5qDr S:s�¤ qzr �yE u qzr S w µ � qDr �!�§s³² r f<gP¬ � qDr �
Flags: Y.

See LDX for the general load/store capability description and the encoding of the move
fields.

SUB Subtraction of two operandso!À�n5qDr Sys qDr �]s
m
tyu qDr SzJ qzr � w

m
t

Flags: Z,N,V,E,C.

The operand coding is shown in Table 7.4 (ALU operand), and the result coding in
Table 7.3.

Coding:

31 28

0 1 1 0

27 24

R R R R

23 20

r r r r

19 17

A A A

16 0

parallel move

RRRR = Op1, rrrr = Op2, AAA = target register.

SUBC Subtraction of two operands with carryo!À�n \ qDr S:s qDr �es
m
tyu qzr SÃJ qzr ��J#{ w

m
t

Flags: Z,N,V,E,C.

The operand coding is shown in Table 7.4 (ALU operand), and the result coding in
Table 7.3.

Coding:

Rev. 2.6 Page 53 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

31 28

1 0 0 1

27 24

R R R R

23 20

r r r r

19 17

A A A

16 0

parallel move

RRRR = Op1, rrrr = Op2, AAA = target register.

XOR Bitwise logic XOR operation® º:� qzr Sys qzr �]s
m
t:uc}�~��D� ge�X�'�i� qDr S<������¢ qDr ������� w

m
t �����

Flags: Z,N,V=0,E,C=0.

The operand coding of Op1 and Op2 is shown in Table 7.4 (ALU operand), and the
result coding in Table 7.3. XOR has also been used to implement NOT.

Coding:

31 28

1 1 0 1

27 24

R R R R

23 20

r r r r

19 17

A A A

16 0

parallel move

RRRR = Op1, rrrr = Op2, AAA = target register.

Rev. 2.6 Page 54 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

6.5 Instruction Sequence Restrictions

There are certain sequences of instructions which, due to the pipelined execution, would
produce undetermined results. These sequences are either flagged as errors by the soft-
ware tools or masked off by the hardware.

6.5.1 Loop Register Restrictions

When either the LE, LC or LS register is loaded from memory with a LDX or LDY
instruction, the loop end comparison is not done.

This means that loop registers can not be loaded by instruction whose address is [Pb�J½� .
If this is done, further loop rounds are ignored and the execution continues linearly.

The LDC instruction does not have this restriction and the loop hardware uses the value
loaded with an LDC if it is needed on the same cycle. Also, the LOOP instruction does
not have the restriction so single instruction loops are allowed.

illegal_example:
ldc loop_end1,le
ldx (i0),lc /* le comparison not done */
nop

loop_end1:
nop

legal_example:
ldc 2,lc
ldc loop_start,ls
ldc loop_end2,le /* le comparison is done */
nop

loop_end2:
nop

6.5.2 Conditional Jump Restrictions

The instruction immediately before the jump instruction (JRcc or Jcc) must not change
the flags that affect the jump condition.

For example, if the jump is a JCC (jump if carry clear) the instruction immediately
before must not change the C flag. In practice, this means that instruction must not be
an ALU instruction. X and Y flags can be changed since they do not affect the “carry
clear” condition.

Rev. 2.6 Page 55 March 8, 2001

USER’S MANUAL
VS DSP � 6. INSTRUCTION SET REFERENCE

example1:
ldx (i0)+1, NULL /* must not change C flag */
jcc jump_target
nop /* jump delay slot */

example2:
not a0,a1 /* must not change X flag */
jxs jump_target
nop /* jump delay slot */

The reason for this restriction is the fact that the jump condition is determined during
the decode phase. In a normal (linear) execution, the instruction immediately before
the jump does not affect the jump. The situation is different if the jump instruction is
canceled due to an interrupt. When execution returns from the interrupt to the normal
execution flow, the instruction immediately before the jump has been executed. The
jump condition is determined again, this time with different flags.

Rev. 2.6 Page 56 March 8, 2001

USER’S MANUAL
VS DSP �

Chapter 7

Instruction Coding

7.1 General Instruction Composition

The instruction is composed of a 4-bit opcode and additional fields as described below.

31 28

o o o o

opcode

27 6

i i

immediate

5 0

y y y y y y

target

31 28

o o o o

opcode

27 0

c c

control code

31 28

o o o o

opcode

27 14

x x x x x x x x x x x x x x

X full move

13 0

y y y y y y y y y y y y y y

Y full move

31 28

o o o o

opcode

27 17

a a a a a a a a a a a

arithmetic operands

16 0

m m m m m m m m m m m m m m m m

parallel moves

7.2 Opcode Field

The encoding of operations is shown in Table 7.1. The control and double move exten-
sions to the opcode are described in the following section.

Rev. 2.6 Page 57 March 8, 2001

USER’S MANUAL
VS DSP � 7. INSTRUCTION CODING

Table 7.1: Operation Codes

Binary code Operation Parallel

000X LDC none
0010 Control none
0011 Double moves none
0100 ADD yes
0101 MAC yes
0110 SUB yes
0111 MSU yes
1000 ADDC yes
1001 SUBC yes
1010 (reserved)
1011 AND yes
1100 OR yes
1101 XOR yes
1110 (reserved)
1111 Single op instructions yes

7.3 Control Code

The absolute address in jump instructions is at most 20 bits. The conditional jumps
Jcc are taken when the condition given in the instruction is true. See Table 6.1 (Jump
condition) for the condition field coding. The flag and mode bits can be masked by the
implementation parameter Modemask, see Chapter 4.

Return (JRcc) and return from interrupt (RETI) use the link registers to restore the
PC. The linking (return address storage) is done by a constant load instruction to the
link register LR0 (the link register should be saved beforehand in case of a subroutine
already being executed). The return address is calculated at compilation/linking time,
not run-time. This allows also jumps by loading the link register and then executing the
JRcc instruction. The linking can be done also in the delay slot. The LR1 loading takes
place automatically when interrupt processing is started.

In the (optional) loop instruction there is a register number containing the loop count.
All registers except the double-size accumulators can be used. The loop end address is
given as an immediate (at most 20 bits) value. The loop start address will be loaded au-
tomatically from the PC. The register field encoding is given in Table 6.2 (Loop count).
The loop registers (LC, LS, LE) should not be loaded within the two instructions pre-
ceding a loop end to avoid implementation-dependent ambiguities in the loop behavior.

In the full size moves, the load/store operations can use all the addressing modes and all
registers. These moves do not allow any control operations in parallel. See section 7.5

Rev. 2.6 Page 58 March 8, 2001

USER’S MANUAL
VS DSP � 7. INSTRUCTION CODING

Table 7.2: Control Codes.

Binary code Operation Sub-fields Additional fields

0000dddddddd JRcc condition
0001dddddddd RETI
0010dxxxyyyd RESP x = op2, y = op1
01nnnnnnnnnn LOOP loop end lsb,

n = loop end msb register
(loop count)

1000nnnnnnnn Jcc n = address msb address lsb,
condition

1001nnnnnnnn CALLcc n = address msb address lsb,
condition

1010nnnnnnnn JMPI n = address msb address lsb,
index reg

1011nnnnnnnn MVX/MVY move fields
1101nnnnnnnn HALT

111000000000;�;�; (reserved)
111111111111

for move encoding.

RESP is a special instruction to restore the P register.

The rest of the control codes are reserved for future extensions.

Rev. 2.6 Page 59 March 8, 2001

USER’S MANUAL
VS DSP � 7. INSTRUCTION CODING

Table 7.3: ALU result coding

Binary code n-bit register 2n+g-bit register

000 A0 (reserved)
001 A1 A
010 B0 (reserved)
011 B1 B
100 C0 (reserved)
101 C1 C
110 D0 (reserved)
111 D1 D

7.4 Arithmetic Operands

The operands of two-operand arithmetic and logic instructions (ADD, SUB, AND, OR,
XOR) are encoded in the second field of these instructions. The field is composed as
follows:

27 24

alu op1

23 20

alu op2

19 17

alu result

In MAC:
27 25

mul op1

24 23

mode

22 20

mul op2

19 17

alu result

Table 7.4 (ALU operand) gives the encoding of Op1 and Op2 of the ALU (fields alu
op1 & alu op2). S denotes sign extension.

Table 7.5 (Mul operand) gives the encoding of fields mac op1 and mac op2.

The opcode of single-operand arithmetic and logic instructions (ABS, LSR and MUL) is
encoded in the first operand field. The encoding is:

27 24

single opcode

23 20

alu op2

19 17

alu result

In MUL:

27 25

MUL opcode

24 23

mode

22 20

mul op2

19 17

mul op1

Rev. 2.6 Page 60 March 8, 2001

USER’S MANUAL
VS DSP � 7. INSTRUCTION CODING

Table 7.4: ALU operand encoding.

Binary code register composition

0000 A0 S:A0:0000
0001 A1 S:A1:0000
0010 B0 S:B0:0000
0011 B1 S:B1:0000
0100 C0 S:C0:0000
0101 C1 S:C1:0000
0110 D0 S:D0:0000
0111 D1 S:D1:0000
1000 NULL 0:0000:0000
1001 ONES F:FFFF:FFFF
1010 (reserved) (reserved)
1011 P S:P1:P0
1100 A A2:A1:A0
1101 B B2:B1:B0
1110 C C2:C1:C0
1111 D D2:D1:D0

Table 7.5: Mul operand.

Binary code register

000 A0
001 A1
010 B0
011 B1
100 C0
101 C1
110 D0
111 D1

Rev. 2.6 Page 61 March 8, 2001

USER’S MANUAL
VS DSP � 7. INSTRUCTION CODING

Table 7.6: Mul mode.

Binary code op1 op2

00 signed signed
01 signed unsigned
10 unsigned signed
11 unsigned unsigned

Table 7.7: Single operand ALU instructions.

Binary code Operation

0000 ABS
0001 ASR
0010 LSR
0011 LSRC
0100 NOP
0101;�;�; (reserved)
1101
111X MUL

Table 7.6 (Mul mode) gives the encoding of the mode field.

The result sub-field encoding is shown in Table 7.3.

Table 7.4 (ALU operand) gives the encoding of Op2 of the ALU (field alu op2).

The single-operand opcode encoding is given in Table 7.7.

Rev. 2.6 Page 62 March 8, 2001

USER’S MANUAL
VS DSP � 7. INSTRUCTION CODING

7.5 Move Encoding

The move instructions are LDX, LDY, STX and STY, the X and Y denoting the desired
data bus to be used. There can be a maximum of two moves (loads or stores) in parallel,
one operating on the X bus and the other on Y bus. Constant loading is described
separately in section 7.7.

There are two kinds of moves: full moves and short moves.

The short moves use a restricted set of registers and restricted addressing modes. The
full moves have all registers and all addressing modes available.

The parallel moves can be done together with arithmetic operations, and can either be
one full or two short moves. Double full move instruction has two full moves, but can
not be executed in parallel with other instructions.

The full move field is always the following 14-bit control field:

13 10

s r r r

9 6

p p p p

5 0

R R R R R R

In short moves the move field is as follows:

13 10

s r r r

9 6

p 0 0 0

5 0

0 0 0 R R R

s = store/load, r = address register, p = post modification mode,
R = move source/destination register.

In the double full move the 14-bit fields come directly after the instruction.

27 14

s r r r p p p p R R R R R R

X full move

13 0

s r r r p p p p R R R R R R

Y full move

Parallel move can be either one full move, two short moves or one register-to-register
move. The coding of parallel moves is:

16 14

0 b 0

13 0

s r r r p p p p R R R R R R

full move

b = bus (0=X,1=Y)

16

1

15 8

s r r r p R R R

X short move

7 0

s r r r p R R R

Y short move

Rev. 2.6 Page 63 March 8, 2001

USER’S MANUAL
VS DSP � 7. INSTRUCTION CODING

Table 7.8: Registers in short move.

Binary code Register

00a A0 � � A1
01a B0 � � B1
10a C0 � � C1
11a D0 � � D1

16 14

0 0 1

13 12

00

11 0

s s s s s s d d d d d d

reg-to-reg move (Y bus)

16 14

0 0 1

13 10

0 1 0 0

9 0

s r r r R R R R R R

long-X move

The coding of the store/load bit is given in Table 7.10. The rrr register is the number
of the desired address register. The src/dest register number ((RRR)RRR) is given in
Table 7.9 (Source and target), and the addressing mode in Table 7.11. See also section
7.6 for further description of the addressing modes available. The post modification
pppp is a four-bit two’s complement number (-7 ... +7), which is added to the address
register. The code -8 is for the additional address post modification modes found in 8�? .

The 8�? is the index register the number of which is generated by inverting the LSB bit
of the number of register 8�? . It is recommended to use the odd-numbered registers as8�? and even as 8�? . The modifier register set

© ? (in the basic version aliased to the odd8�?) can be used instead of the 8�? . If even 8�? and even
© ? are used in the basic version,

the code will be transferable to versions with an additional dedicated modifier register
set. The post modifications by the 8�? (

© ?) are defined in Table 7.12.

7.6 Addressing Modes

The addressing modes and their availability in short and full formats are summarized
in Table 7.13. The addressing modes available in the implementation are controlled by
the parameter Addressing mode mask, which has enable bits for the modulo, bit-reversal
and (reserved) addressing modes in the following manner:

(reserved) bitrev modulo

The modulus m is given by the lower end of 8�? (word length – 3 bits) in unsigned format
such that the third bit from the MSB end of 8�? defines whether to add or subtract. In
the Ä>C case, the m is a (word length – 2 bit) two’s complement number, where the

Rev. 2.6 Page 64 March 8, 2001

USER’S MANUAL
VS DSP � 7. INSTRUCTION CODING

Table 7.9: Registers in full move.

Binary code Register

00000a A0 � � A1
00001a B0 � � B1
00010a C0 � � C1
00011a D0 � � D1
001000 LR0
001001 LR1
001010 MR0
001011 MR1
001100 NULL (update index reg & flags)
001101 LC (optional)
001110 LS (optional)
001111 LE (optional)

010rrr 8�9 ... 8!=
011rrr 8!¸ ... 8]¹ 5 (optional)

100000 A2 (optional)
100001 B2 (optional)
100010 C2 (optional)
100011 D2 (optional)

100100 Move NOP (no updates)

100101;�;�; reserved
111101

111110 IPR0
111111 IPR1

Table 7.10: Load/Store coding.

Binary code Mode

0 load
1 store

Table 7.11: Addressing Modes.

Binary code Mode

rrrpppp indirect [8�?] with post modify by pppp (-7...+7)
rrr1000 indirect [8�?] with post modification specified in 8�?

Rev. 2.6 Page 65 March 8, 2001

USER’S MANUAL
VS DSP � 7. INSTRUCTION CODING

Table 7.12: Modifications by the 8�? register.

Binary code Modification

000 8�? = (8�?B�DCFE (m positive)
001 8�? = (reserved)
010 8�? = (8�?B�GA<H'I2E (optional)
011 8�? = (8�?�J>A<HKILE (optional)
100 8�? = (8�?B�3�0HMCFE (optional)
101 8�? = (8�?�J+JNHMCFE (optional)
110 8�? = (8�?B�DCFE bit reverse (optional)
111 8�? = (8�?B�DCFE (m negative)

sign is automatically in the three MSB bits of 8�? . In the basic version only the Ä�C
modifications are implemented.

7.7 Constant Loading

The additional fields in the constant load instruction LDC look like:

27 6

immediate

5 0

register

The immediates are assumed signed and will be sign extended if the register is wider
than the immediate. In case there are more bits in the immediate than in the register to be
loaded, the LSB part is taken. The register number is encoded as in the full addressing
load/stores, shown in Table 7.9.

Rev. 2.6 Page 66 March 8, 2001

USER’S MANUAL
VS DSP � 7. INSTRUCTION CODING

Table 7.13: Addressing mode summary.

Mode full move code short move code 8�Å parameter

Linear post-inc/dec

(8�Å) srrr0000RRRRRR srrr0RRR — —
(8�Å)++ srrr0001RRRRRR N/A — —
(8�Å)+2 srrr0010RRRRRR N/A — —
(8�Å)+3 srrr0011RRRRRR N/A — —
(8�Å)+4 srrr0100RRRRRR N/A — —
(8�Å)+5 srrr0101RRRRRR N/A — —
(8�Å)+6 srrr0110RRRRRR N/A — —
(8�Å)+7 srrr0111RRRRRR N/A — —
(8�Å)-- srrr1111RRRRRR N/A — —
(8�Å)–2 srrr1110RRRRRR N/A — —
(8�Å)–3 srrr1101RRRRRR N/A — —
(8�Å)–4 srrr1100RRRRRR N/A — —
(8�Å)–5 srrr1011RRRRRR N/A — —
(8�Å)–6 srrr1010RRRRRR N/A — —
(8�Å)–7 srrr1001RRRRRR N/A — —

(8�Å)* Linear post-inc/dec
(ÆÈÇ)+m, ÉdÊ_Ë srrr1000RRRRRR srrr1RRR 000 mmmm...mmmm —
(ÆÈÇ)+m, ÉdÌ_Ë srrr1000RRRRRR srrr1RRR 111 mmmm...mmmm —
(8�Å)* Modulo post-inc/dec
(Æ Ç)++%m srrr1000RRRRRR srrr1RRR 100 mmmm...mmmm amm[0]
(ÆÈÇ)--%m srrr1000RRRRRR srrr1RRR 101 mmmm...mmmm amm[0]
(ÆÈÇ)+2%m srrr1000RRRRRR srrr1RRR 010 mmmm...mmmm amm[0]
(Æ Ç)–2%m srrr1000RRRRRR srrr1RRR 011 mmmm...mmmm amm[0]
(8�Å)* Bit reversal
(ÆÈÇ)+m bit-rev srrr1000RRRRRR srrr1RRR 110 mmmm...mmmm amm[1]

Register as source/destination

A Å srrrpppp000RRR srrrpRRR — —
A Å ext srrrpppp1000RR N/A — g V 0
LR0, LR1 srrrpppp00100R N/A — —
MR0, MR1 srrrpppp00101R N/A — —
NULL srrrpppp001100 N/A — —
NOP srrrpppp100100 N/A — —
LC srrrpppp001101 N/A — lc Q 1
LS srrrpppp001110 N/A — lc Q 1
LE srrrpppp001111 N/A — lc Q 18�Å , n=0 ;�;�; 7 srrrpppp010RRR N/A — —8�Å , n=8 ;�;�; 15 srrrpppp011RRR N/A —© Å , n=0 ;�;�; 7 iregs = 16

Rev. 2.6 Page 67 March 8, 2001

USER’S MANUAL
VS DSP �

Chapter 8

Software Examples

8.1 Single-Precision FIR Transversal Filter

This code implements an single-precision single-sample direct-form (transverse) 16-
stage FIR filter. The input and the coefficients are 16 bits wide, the intermediate results
being 32 bits.

.fract 15

.sect data_x, XData
delay:
.zero 15 // x[-15]...x[-1] (delay line) at startup
input:
.uword 0x1234 // x[0] at startup
output:
.zero 1

.sect data_y, YData
coef:
.zero 16

.sect code, Single_precision_FIR
fir:

LDC 0x400,mr0 // fractional & saturation mode
LDC input,i0 // point to the newest sample
LDC 0xa00f,i1 // modulo -1 addressing

// (could be linear -1)
LDC coef,i2
LDC 1,i3 // post-increment by 1 addressing
LDC output,i4 // pointer to output buffer
AND a,NULL,a; LDX (i0)*,b1; LDY (i2)*,b0

Rev. 2.6 Page 68 March 8, 2001

USER’S MANUAL
VS DSP � 8. SOFTWARE EXAMPLES

// clear a-reg., load first sample/coef.-pair
LDC 15,ls // loop count, number of loops minus one

// use otherwise unused ls-register
LOOP ls,firloop // start looping
MUL b1,b0; LDX (i0)*,b1; LDY (i2)*,b0

// perform first multiply, load next pair
firloop:

MAC b1,b0,a; LDX (i0)*,b1; LDY (i2)*,b0
// use pipelined MAC to implement FIR

STX a1,(i4) // store result
endfir:
.end

8.2 Double-Precision FIR Transversal Filter

This code implements an double-precision single-sample FIR filter. The input and the
filter coefficients are 32 bits wide, the intermediate results 64 bits.

Algorithm:¤ � %)� Y�Í �&ÎKE1%£¤�{Ï%)� Y�Í � ¶ E ` � {Ï%)� Á � � ��¶ %d� Y�Í �&Î'{Ð%)� Y�Í �&Î ¶
In this example, AC is first added to a-reg, then BD to b-reg. and after that BC to a1:b0
and finally AD to a1:b0

.fract 15

.sect data_x, XData
input:
input_hi:
.uword 0x9234,0x6666,0x7654
.zero 14
output:
output_hi:
.zero 16
coef:
coef_hi:
.uword 0x8001,0xffff,0x5656
.zero 14

.sect data_y, YData
input_lo:
.uword 0x5678,0x4444,0x9f01
.zero 14
output_lo:
.zero 16

Rev. 2.6 Page 69 March 8, 2001

USER’S MANUAL
VS DSP � 8. SOFTWARE EXAMPLES

coef_lo:
.uword 0xffff,0xeeee,0xaeae
.zero 14

.sect code,Double_precision_FIR
fir:

/* Double precision single-sample FIR */
LDC 0x200,mr0
LDC input,i0
LDC 0xa00f,i1 // modulo -1 addressing

// LDC 1,i1
LDC coef,i2
LDC 1,i3
AND a,NULL,a // intermediate results in a:b
AND b,NULL,b // set result to zero
LDC 15,ls // 16 stages
LOOP ls,firloop
LDC output,i4

/* Next sample from delay line -> c, next coefficients -> d */
LDX (i0),c1; LDY (i0),c0
LDX (i2),d1; LDY (i2)*,d0

/* 32x32-bit MAC with 64-bit result */
MULUU c0,d0
ADD b,p,b
MULSS c1,d1
ADDC a,p,a
MULUS c0,d1
ADD NULL,p,c
ADD c0,b1,b1; LDX (i0)*,c0
LDC 1,d1
MULSS d1,c1 // sign extend BC(31..16)
ADDC a,p,a
MULSU c0,d0
ADD NULL,p,c
ADD c0,b1,b1
MULSS d1,c1 // sign extend AD(31..16)

firloop:
ADDC a,p,a // result after this stage in a:b

/* scale result to Q31 and store */
LSL b,b
LSLC a,a
STX a1,(i4); STY a0,(i4)+1 // store output

endfir:

Rev. 2.6 Page 70 March 8, 2001

USER’S MANUAL
VS DSP � 8. SOFTWARE EXAMPLES

NOP
.end

8.3 Cascaded Biquad IIR Filter

This code implements a single-sample IIR filter as a cascade of second-order biquad
sections. The number of sections in this example is 8.

.fract 15

#define BIQUADS 8

.sect data_x, XData
dly: // delay line, z(-2)’s
.uword 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88 // BIQUADS
coef: // coefficients, a11, b11, a12,...
.uword 0x100,0x200,0x300,0x400// 2*BIQUADS
.uword 0x500,0x600,0x700,0x800
.uword 0x1100,0x1200,0x1300,0x1400
.uword 0x1500,0x1600,0x1700,0x1800
input:
.uword 0x1234
output:
.zero 1

.sect data_y, YData
dly_1: // delay line, z(-1)’s
.uword 0x111,0x222,0x333,0x444 // BIQUADS
.uword 0x555,0x666,0x777,0x888
coef_1: // coefficients, a21, b21, a22,...
.uword 0x2100,0x2200,0x2300,0x2400 // 2*BIQUADS
.uword 0x2500,0x2600,0x2700,0x2800
.uword 0x3100,0x3200,0x3300,0x3400
.uword 0x3500,0x3600,0x3700,0x3800

.sect code,Biquad_IIR
iir:

LDC 0x400,mr0
LDC input,i0
AND a0,NULL,a0; LDX (i0),a1 // input -> a
LDC dly,i0
LDC coef,i2
LDC 1,i3

Rev. 2.6 Page 71 March 8, 2001

USER’S MANUAL
VS DSP � 8. SOFTWARE EXAMPLES

LDC BIQUADS-1,ls
LOOP ls,biquadloop
LDC output,i4
LDX (i2),b0; LDY (i0),b1 // a11 -> b0, z(-1) -> b1
MUL b0,b1; LDX (i0),b0; LDY (i2)*,c0

// z(-2) -> b0, a21 -> c0
MAC b0,c0,a; LDX (i2),c0; LDY (i2)*,c1

// b11 -> c0, b21 -> c1
MAC c0,b1,a; STX b1,(i0) // z(-2) = z(-1)
MAC c1,b0,a; STY a1,(i0)+1 // z(-1) = t

biquadloop:
ADD a,p,a // result after this biquad to a-reg.

STX a1,(i4) // store output
iirend:
.end

8.4 Single-Precision Matrix Multiply

C = A % B matrix multiplication, matrix dimensions: A[5][4], B[4][3], C[5][3].

Note: to test with integers, use mode 0x600 instead of 0x400 and store a0 (or the whole
a-reg.) instead of a1.

.fract 15

/* Matrices’ dimensions */
#define RA 5
#define CA 4
#define RB CA
#define CB 3
#define RC RA
#define CC CB

.sect data_x,XData
matrixA:
.uword 1,2,3,4
.uword 5,6,7,8
.uword 9,1,2,3
.uword 4,5,6,7
.uword 8,9,1,2

.sect data_y,YData
matrixB:

Rev. 2.6 Page 72 March 8, 2001

USER’S MANUAL
VS DSP � 8. SOFTWARE EXAMPLES

.uword 12,13,14

.uword 15,16,17

.uword 18,19,20

.uword 21,22,23
matrixC:
.zero 15

.sect code,Matrix_Multiply
mult:

LDC 0x400,mr0 // saturation & fractional mode
LDC matrixA,i0
LDC 1,i1
LDC matrixB,i2
LDC CB,i3
LDC matrixC,i4
LDC CA-1,c0 // loop counter for one output value
LDC RC,d0 // loop counter for rows

nextrow:
LDC CC,d1 // loop counter for columns

nextcolumn:
AND a,NULL,a; LDX (i0)*,b1; LDY (i2)*,b0

// out=0 -> a
LOOP c0,inloop
MUL b0,b1; LDX (i0)*,b1; LDY (i2)*,b0

inloop:
MAC b0,b1,a; LDX (i0)*,b1; LDY (i2)*,b0

// out+=A[i][k]*B[k][j]

LDC -(CA+2),i1 // modify addresses before
LDC 1-CB*(CA+2),i3 // the next round (next column)
LDX (i2)*,NULL; STY a1,(i4)+1 // store C[i][j]
ADD d1,ONES,d1; LDX (i0)*,NULL
LDC 1,i1 // restore modifiers
JZC nextcolumn
LDC CB,i3

LDC CA,i1 // modify addresses before
LDC -CB,i3 // the next round (next row)
ADD d0,ONES,d0; LDX (i0)*,NULL
LDX (i2)*,NULL
LDC 1,i1 // restore modifiers
JZC nextrow
LDC CB,i3

endmult:

Rev. 2.6 Page 73 March 8, 2001

USER’S MANUAL
VS DSP � 8. SOFTWARE EXAMPLES

.end

8.5 Floating-Point Multiplication and Addition

Single-precision, i.e., a0 exponent (16 bits signed), a1 mantissa 1.15 format (Q15) (from
-1.0 to 0.9999999...9).

f mul multiplies a and b and puts result in c, f add is the addition routine (c = a + b) and
f sub is the subtraction (c = a - b).

.fract 15

// Maximum difference in exponents
// If the difference is greater, no calculation is done
// and larger number is returned
#define _F_MAX_EXP_DIFF 16
// Stack pointer index register
#define SP i6

.sect code,Floating_point
// Fractional mode must be set, saturation mode must be unset
// e.g. LDC 0x0000,mr0
// a * b -> c
f_mul:

MULSS a1,b1
ADD NULL,p,c // truncate mode

J f_norm_res
ADD a0,b0,d0

/* a + b -> c */
f_add:

SUB a0,b0,d0; LDX (i6)+1,NULL
// make room to stack

LDC _F_MAX_EXP_DIFF,d1
JGE $1 // exp(a) >= exp(b)

ADD a,NULL,c // swap a,b
ADD b,NULL,a
ADD c,NULL,b
SUB a0,b0,d0

/* exp(a) >= exp(b) */

Rev. 2.6 Page 74 March 8, 2001

USER’S MANUAL
VS DSP � 8. SOFTWARE EXAMPLES

$1:
/* check the difference in exponents, save loop hw status */

SUB d0,d1,d1; STX lc,(i6)+1
STX ls,(i6); STY le,(i6)

JGE $2 // a is much bigger than b, return a
AND b0,NULL,b0 // zero lsp

/* shift a & b right 1 times to avoid overflow in add later */
/* loop shifts b 1 extra times */

/* shift b until it has the same exponent */
LOOP d0,$3
SUB a0,ONES,d0 // make result have exp(a)+1

$3:
ASR b,b

/* shift a 1 time, restore loop hw */
AND a0,NULL,a0; LDY (i6),le // zero lsp
ASR a,a; LDX (i6)-1,ls

/* a & b now have the same exp */
J f_norm_res
ADD a,b,c; LDX (i6)-1,lc // do the add

/* return a */
$2:

J f_norm
ADD a,NULL,c

/* a - b -> c */
f_sub:

J f_add // calculate a + (-b)
SUB NULL,b1,b1 // negate b1

/* Subroutines called by f_add, f_sub and f_mul */
// f_norm_res
// d0 exp
// c1:c0 mantissa
// norm(c) -> c

f_norm_res:
ADD c,NULL,c // test mantissa for zero
NOP

Rev. 2.6 Page 75 March 8, 2001

USER’S MANUAL
VS DSP � 8. SOFTWARE EXAMPLES

JZC $1 // result is not zero
NOP

JR
AND c0, NULL, c0 // force exp to zero
$1:

ADD c1,c1,d1 // shift left for xor
XOR c1,d1,d1

NOP
JNS $2 // normalized, exit
ADD d0,ONES,d0

J $1
ADD c,c,c // shift left

/* exit, first adjust c0 by 1 */
$2:

JR
SUB d0,ONES,c0 // adjust back

f_norm:
ADD c0,NULL,d0
J f_norm_res
AND c0,NULL,c0

.end

Rev. 2.6 Page 76 March 8, 2001

