
VS DSP
Software Tools User’s Manual

Revision 3.2

Aug 15, 2002

Revision history:
Rev. 3.2 Aug 15, 2002 vslink: allocation priority explanation
Rev. 3.1 May 10, 2002 VCC: packed strings, section 2.8.8
Rev. 3.0 January 28, 2002 Some reformatting
Rev. 2.9 June 8, 2001 VCC updated, VSSYM added
Rev. 2.8 March 9, 2001 VCC and coff2lod updated
Rev. 2.7 October 24, 2000 Explanations added to VCC errors/warnings
Rev. 2.6 October 13, 2000 Minor corrections
Rev. 2.5 August 22, 2000 VCC documentation updated
Rev. 2.4 June 29, 2000 Small changes to VCC documentation
Rev. 2.3 March 16, 2000 VCC and VSLINK documentation updated
Rev. 2.2 March 8, 2000 Copyright/disclaimer page added
Rev. 2.1 December 17, 1999 Updated text, added coff2lod
Rev. 2.0 November 17, 1999 Updated for software tools 2
Rev. 1.0 September 10, 1998 First release

Software Tools User’s Manual
VS DSP

c© 2002 VLSI Solution Oy, Hermiankatu 6–8 C, FIN-33720 Tampere, Finland

Information furnished by VLSI Solution Oy is believed to be accurate and reliable.
However, no responsibility is assumed by VLSI Solution Oy for its use.

Specifications are subject to change without notice.

All rights reserved. No part of this manual may be reproduced, in any form or by any
means, without a written permission from the copyright owner.

The descriptions contained herein do not imply the granting of license to make, use, or
sell equipment constructed in accordance therewith.

All trademarks mentioned in this document are trademarks of their respective owners.

Rev. 3.2 Page ii Aug 15, 2002

Software Tools User’s Manual
VS DSP

Contents

1 Introduction 7

2 VCC - VS DSP Optimizing C Compiler 9

2.1 Synopsis . 9

2.2 Options . 10

2.3 Main Features . 11

2.3.1 Architectural Issues . 11

2.3.2 Current data types for 16/32-bit architecture 12

2.3.3 Current extensions . 12

2.3.4 Global optimizer features . 12

2.3.5 Code generation features . 13

2.3.6 Code Optimizer . 14

2.3.7 Extensions and differencies to ANSI-C features 17

2.4 Link Libraries . 18

2.5 Implementation-defined Behavior . 18

2.5.1 Translation . 18

2.5.2 Environment . 18

2.5.3 Identifiers . 19

2.5.4 Characters . 19

2.5.5 Integers . 19

Rev. 3.2 Page 1 Aug 15, 2002

Software Tools User’s Manual
VS DSP CONTENTS

2.5.6 Floating Point . 19

2.5.7 Arrays and Pointers . 20

2.5.8 Registers, X and Y Memory 20

2.5.9 Structures, Unions, Enumerations, and Bitfields 21

2.5.10 Qualifiers . 21

2.5.11 Declarators . 22

2.5.12 Statements . 22

2.5.13 Preprocessing Directives . 22

2.5.14 Library Functions . 22

2.5.15 Locale-specific Behavior . 23

2.6 Pragma Statements . 23

2.7 Warning and Error messages . 23

2.7.1 Syntax and Sematic Errors . 24

2.7.2 Expression Errors . 28

2.7.3 Code Generation Stage Errors 32

2.8 Specific Information about Implementation 39

2.8.1 Function Calls . 39

2.8.2 Stack Frame . 39

2.8.3 Bitfield Allocation . 39

2.8.4 Multiplications . 40

2.8.5 Fractional Division . 41

2.8.6 Generation of Constants . 41

2.8.7 Grouping of Values . 41

2.8.8 Using Packed Characters . 42

3 VSA - VS DSP Symbolic Assembler 43

3.1 Synopsis . 43

Rev. 3.2 Page 2 Aug 15, 2002

Software Tools User’s Manual
VS DSP CONTENTS

3.2 Description . 43

3.3 Options . 44

3.4 Examples . 45

3.5 Preprocessor . 45

3.5.1 Preprocessor directives . 46

3.5.2 Preprocessor constants . 49

3.5.3 Preprocessor #if and expressions 50

3.6 Program lines . 53

3.7 Comments . 53

3.8 Directives . 54

3.9 Expressions . 55

3.10 Labels . 57

3.10.1 Label format 1 - labelname: 57

3.10.2 Label format 2 - $positiveinteger: 58

3.11 How the compiler works internally . 59

3.11.1 Steps needed to compile a program 59

3.11.2 Steps needed to compile one program line 60

3.12 Hints . 61

3.12.1 Fractional numbers . 61

3.13 A compilable example program . 61

4 VSAR - VS DSP Archiver 63

4.1 Synopsis . 63

4.2 Description . 63

4.3 Options . 64

5 VSLINK - VS DSP Linker 65

5.1 Synopsis . 65

Rev. 3.2 Page 3 Aug 15, 2002

Software Tools User’s Manual
VS DSP CONTENTS

5.2 Description . 65

5.3 Options . 65

5.4 memdesc . 66

5.5 vslink.cmd . 68

5.6 An Example . 69

6 VSOMD - VS DSP Object Module Disassembler 72

6.1 Synopsis . 72

6.2 Description . 72

6.3 Options . 72

7 VSSYM - VS DSP COFF Symbol Lister 73

7.1 Synopsis . 73

7.2 Description . 73

7.3 Options . 73

7.4 Output Format . 74

8 COFF2LOD - COFF-LOD Converter 75

8.1 Synopsis . 75

8.2 Description . 75

8.3 Options . 76

9 VSSIM - VS DSP Simulator 77

9.1 Synopsis . 77

9.2 Description . 77

9.3 Options . 77

9.4 Environment . 78

9.5 Files . 79

9.5.1 memdesc . 79

Rev. 3.2 Page 4 Aug 15, 2002

Software Tools User’s Manual
VS DSP CONTENTS

9.5.2 hwdesc . 80

9.5.3 LOD files . 81

9.5.4 COFF files . 82

9.5.5 Command files . 82

9.5.6 Log file . 82

9.6 Profiler listing file . 83

9.6.1 Register trace file . 87

9.7 Commands . 87

10 Installing and First Steps Using VSDSP Tools 95

10.1 Overview . 95

10.2 Installing the VSDSP Tools . 95

10.3 Compiling the First Assembly Program with VSA 96

10.4 Linking the First Assembly Program with VSLINK 96

10.5 Running the First Assembly Program with VSSIM 97

10.6 Compiling, Linking, Running the First C Program 99

10.7 Compiling and Linking Multiple Object Files 100

11 VCC Programming Tips 101

11.1 General . 101

11.2 Pointers, X and Y Memory . 101

11.3 Using the Profiler . 102

11.3.1 Reading Profiler Output . 102

11.3.2 Profiler Feedback to Compiler 103

11.4 FIR Filters and C . 103

11.5 File Naming Conventions . 105

11.6 How to Optimize Your C Code for Speed 106

11.6.1 Automatic Variables . 106

Rev. 3.2 Page 5 Aug 15, 2002

Software Tools User’s Manual
VS DSP CONTENTS

11.6.2 Parameters . 107

11.6.3 Local Scopes . 107

11.6.4 Shifting . 108

11.7 An Example on How to Optimize Your Code 109

11.7.1 MemCpy0, 40 words, 3100 clocks (12.11 clocks/word) 109

11.7.2 MemCpy1, 37 words, 2587 clocks (10.11 clocks/word) 109

11.7.3 MemCpy2, 32 words, 2072 clocks (8.09 clocks/word) 109

11.7.4 MemCpy3, 29 words, 539 clocks (2.11 clocks/word) 110

11.7.5 MemCpy4, 29 words, 539 clocks (2.11 clocks/word) 110

11.7.6 MemCpy5, 44 words, 321 clocks (1.25 clocks/word) 111

Rev. 3.2 Page 6 Aug 15, 2002

Software Tools User’s Manual
VS DSP

Chapter 1

Introduction

This manual describes the VSDSP software tools. The tools are:

• VCC - C Compiler

• VSA - Assembler

• VSAR - Archiver

• VSLINK - Linker

• VSSYM - COFF symbol lister

• VSOMD - Object module disassembler

• COFF2LOD - COFF to LOD file converter

• VSSIM - VS DSP Simulator

VCC compiles a C source code into VSDSP assembly language and into a COFF ex-
ecutable or object file suitable for further processing by for example the linker tool
VSLINK.

VSA is a powerful and fast macro assembler for the VSDSP processor. It contains a
versatile preprocessor and supports symbolic expressions in place of constants.

VSAR is a archiver for common object file format (COFF) object files generated by
VSA.

VSLINK is a linker for common object file format (COFF) object files generated by
VSA and VCC. VSLINK can directly use the archive files created by VSAR as link
libraries.

Rev. 3.2 Page 7 Aug 15, 2002

Software Tools User’s Manual
VS DSP 1. INTRODUCTION

VSSYM is a symbol lister for common object file format (COFF) object files generated
by VSA.

VSOMD is an object module disassembler for common object file format (COFF) object
files generated by VSA.

COFF2LOD converts COFF object files to LOD files or uploads them to a VSDSP
board.

VSSIM simulates a defined VSDSP architecture. Core parameters can be changed us-
ing a hardware configuration file. Cycle-based simulation can be controlled both inter-
actively and using a command script file.

As additional material, chaptersInstalling and First Steps Using VSDSP Toolsand
VCC Programming Tipsare included.

Rev. 3.2 Page 8 Aug 15, 2002

Software Tools User’s Manual
VS DSP

Chapter 2

VCC - VS DSP Optimizing C Compiler

2.1 Synopsis

vcc [-S] [-h hw desc] [-w num] [-f special] [-O level] [-I incpath]
[-D define] [-o outfile] [infile]

vcc is an ANSI-C compiler for VSDSP core with a 16-bit and a 32-bit address space.
vcc compiles ANSI-C source code into VSDSP assembly language and automatically
into a COFF executable or object file suitable for further processing by for example the
linker toolvslink .

vcc also automatically runs the C preprocessor (currently an external program) on the
input file. Currently an intermediate assembly file, which includes the original C code
and moderately commented assembly code, is generated and the assembler is called au-
tomatically, unless the-S option is used. If needed, the core parameters can be changed
using a hardware configuration file.

ANSI-C link libraries for the target system are provided. Both simulator and emulator
versions of the libraries are available. In practice, the following are required to effec-
tively use the compiler:

• vsa - the assembler, which is automatically called byvcc

• cpp - any C preprocessor, which is automatically called byvcc

• vslink - the linker to create executable programs

• libc.o and/orlibsim.o standard libraries and the corresponding header files
for the emulator and simulator (separate versions are available for 16-bit and 32-
bit address spaces)

• vssim and/orcoff2lod or vsemu to simulate and/or run the code in actual
hardware

Rev. 3.2 Page 9 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

2.2 Options

-o outfile
Define output filename (object file)

-S
Generate assembly output only

-h hw-desc
Define a hardware configuration file where to read the hardware configuration from. If
not defined, the standard hardware configuration file is used.

-fno-cpp
Do not run preprocessor

-fsmall-code
Use only 16-bit code address space

-fhuge-code
Code is 32-bit by default (implied far)

-fhuge-data
Data is 32-bit by default (implied far)

-fseparate-data
Section names according to file names

-fusejmpi
Use the instruction JMPI when jumping tonear code

-I include path
Adds a directory to the include search path

-D preprocessor
Defines a preprocessor symbol

-O level
Define optimization level: 0 (off) .. 6 (max)

-fprof proffile
Enable usage of profile data in jump optimization

-W num[,num]* Enable warnings by the warning number
-w num[,num]* Disable warnings by the warning number
-P num[,num]* Promote warnings into errors by the warning number
-p num[,num]* Demote warnings into warnings by the warning number

The environmental variable $VSDSPCPP defines the preprocessor command, default
is ”cpp”. If you have gcc installed into your system, you can use ”gcc -E”.

The identifier VSDSP will be defined in the preprocessor. This can be used in the C
code to identify the target platform for conditional compilation.

If no output filename is given, the base of the input filename is taken and the appropriate
extension is added (.a for assembly and .o for object file output). The option-S causes
the compiler not to run the assembler.

If no input filename is given, the standard input is used.

If one or more profile files are defined, the code optimizer uses the information in jump
optimization.

Rev. 3.2 Page 10 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

2.3 Main Features

2.3.1 Architectural Issues

The VSDSP instruction set offers parallelism. Some instructions like constant loads,
jumps, and loops can not have any parallel operations, but an ALU operation (a binary
or unary arithmetic or logical operation, a multiply, or a multiply-accumulate) and upto
two memory references (load or store) or a register-to-register move can occur in the
same instruction. Instructions are rearranged to use this parallelism to reduce the code
size and thus increase the execution speed.

The parallelism can be poorly exploited in program flow structures likeif-else , but
better in arithmetic operations. Special steps are taken in the code optimization to reduce
the penalty of program flow changes on the overall parallelism.

The separation of registers into three register files (ALU, data address generation and
control) requires that arithmetic and pointer types are allocated to appropriate registers.
However, some pointer arithmetic and other manipulation must still be done in ALU.
This requires register moves between the register files.

In a load/store architecture the operands are first fetched, the operation is performed, and
then the result is stored. This isn’t as such any slower than operations dealing directly
with memory in other architectures, but it causes lower code density if a lot of loading
and storing needs to be done. Because of this all data is kept in registers as long as
possible.

Index register manipulation is done with post-modification only and there is no index
register + constant offset addressing mode. However, accessing stack variables and func-
tion parameters requires pre-modification of the frame pointer. Code optimizer com-
bines these modifications to the previous occurance of the index register: a separate
pre-modification of a register is transformed into a post-modification.

A single post-modification can be in the range of -7..7, otherwise the modification value
must first be loaded into the index register’s pair (modifier register). This of course needs
an extra constant load instruction in addition to requiring another register. This is why
it is better to generate two -7 modifications for an offset value of -14: the same number
of instructions but fewer registers will be used. In addition to this one or both of the
modifications can be either merged or parallelized, unlike the constant load instruction,
which always takes up the whole instruction word.

The three-stage pipeline causes jump delay slots. The next instruction to a jump is al-
ways executed before the instruction in the jump target. Also, if the jump is conditional
(uses ALU flags), the relevant flags may not be changed by the previous instruction.
This causes one delay slot before any jump that uses flags in addition to the actual con-
trol change delay slot. It is important for performance to try to fill both these slots in
instruction scheduling and code optimization.

Rev. 3.2 Page 11 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

2.3.2 Current data types for 16/32-bit architecture

• char , short , andint are single-word types

• long andfloat are double-word types

• double is a triple-word type

• pointer types are single-word (zero-page data) or double-word (far data)

• Q15 and Q31 fractional types supported

• enumerations, arrays, unions, structures and bit-fields supported

2.3.3 Current extensions

• fractional integral types: fract short , fract int , fract long

• force variable allocation to X/Y memories:x , y

• force allocation to 16-bit or 32-bit address spaces:near , far

• allow parameter and return value passing in registers
fract long mac(register fract *a, register y fract *b);

• register variables
register d long sum;

2.3.4 Global optimizer features

• Constant expression evaluation

• Constant merging (e.g. 2+a+4→ 6+a, 2*a*3→ 6*a, 4*a/2→ 2*a)

• Expression rearrangement

– delay constant loads to preserve registers

• Logical expression optimization

– preserves short-circuit evaluation

• Subexpression caching, which is used in

– common subexpression elimination

– variable load elimination

Rev. 3.2 Page 12 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

2.3.5 Code generation features

• Temporaries, register store, and automatic variables use software stack

– recursion fully supported

• Integral arithmetic generates inline code

– 16-bit and 32-bit (40-bit intermediates in V2) arithmetic supported

• Floating point uses a link library

– some builtin functions implemented as inline code

– double/float has 16-bit exponent, and 31/15-bit mantissa + sign bit

• Uses loop hardware for loops if possible. This requires:

– loop is of format:for(init ; check ; update) where

∗ init inializes a loop variable with a constant

∗ check compares the same variable with constant or variable

∗ update uses the loop variable with ++, - -, += or -= with a constant

– loop body does not change the loop variable (nor comparison) value

– loop body contains no labels,goto statements, orreturn statements

It is more efficient if the loop variable is not used at all in the loop body.
Examples:

– for (i=10; i > -1; i--) { *d++ = *s++; }
– for (i=0; i < limit; i+=3) { *d++ = s[i]; }
– for (i=0; i != 200; i++) { sum += *x++ * *y++; }

• Parameter passing possible in registers

• switch-case is generated selectively as cascaded jumps or a jump table

– the implementation which uses less memory is selected

– jump table implementation is constant-time, but also uses data memory

– cascaded jumps use only code memory, but some cases are faster than others

• Control structures are generated with the minimum number of jumps

– Jump condition reversal to minimize the number of jumps

• The original C source code is included in the intermediate assembly file

Rev. 3.2 Page 13 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

Conditionals, i.e. all flow-control expressions, optionally with short-circuit evaluation,
are generated with the minimum number of jumps: one jump for each condition plus one
jump for the whole expression, if fall-through does not contain the other target branch.
The individual conditions are reversed when needed. The backend code optimizer fur-
ther optimizes jumps.

The switch-case construct is generated selectively either as a jump table or as an
if-else cascade. The selection is based on memory consumption. Because data mem-
ory is 16-bit and code memory is 32-bit, the required case density for a jump table im-
plementation is less than 0.5. This means that half of the possible case values between
the lowest- and highest-numbered case must be defined. Other values cause a jump to
the default branch (if one exists) or out of theswitch-case .

Because the current architecture does not have a barrel shifter, 16-bit shifts are per-
formed in the multiplier unit. Constant shifts take a maximum of three instructions,
variable shifts take a maximum of six instructions (possible optimization effects not
taken into account). 32-bit shifts are performed one bit at a time unless a more efficient
way is possible. A constant shift of a 32-bit value by 16 bits is performed in two cycles,
which is usually reduced to one cycle (or no cycles at all) in the code optimizer.

The code generation prefers to generate instruction sequences that can potentially be
shortened in the code optimizer. For example two index register modifications are pre-
ferred over a constant load plus one index register modification.

Because the original C source code is included in the intermediate assembly language
file (source.a), the programmer can keep an eye on the generated code quality if nec-
essary. It is also easier to take a generated function and then further optimize it in the
assembly level, when the original source is there for reference.

2.3.6 Code Optimizer

After code generation the code optimizer works on the result, trying to reduce the num-
ber of operations, parallelize them and minimize the number of no-operation instruc-
tions. Code transformations can be divided into several groups.

• Allows Better Optimization

– merge successive labels, remove unused local labels

– move LDC’s backwards

– move single MV’s backwards

The transformations in this group do not themselves reduce the size or increase
the speed of the code, but they rearrange it so that other optimization possibilities
arise.

Rev. 3.2 Page 14 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

Reducing the number of labels decreases the number of code blocks and increases
the sizes of the remaining ones. Larger code blocks provide better selection of
operations for other optimizations.

Relocation of constant load and register move instructions also group together
operations that can occur in parallel in one instruction, thus indirectly reducing
the code size.

• Redundancy Removals

– eliminate identical LDC’s

– eliminate redundant operations - result and flags not used

– eliminate redundant loads/stores (takes volatile data types into account)

To simplify the code generator, not all special cases are handled separately. Re-
dundant code can be generated, but these transformations remove these unneeded
constructs.

If the result of an instruction is overwritten before it is used, it can be safely
removed. Few operations of this kind exist after the code generation, but other
optimizations can generate them. These other optimizations depend on the redun-
dancy removal transformations to eliminate them.

Some of the ALU operation merging transformations reduce the register usage.
If a register was saved into stack to be used as a temporary, this save and the
corresponding restore are redundant after the removal of the usage. Some of these
can be removed by the redundancy removal transformations. Mostly this doesn’t
decrease the code size, but it will reduce the power consumption because less
functional blocks are activated and memory accesses are reduced (although stack
is almost always in internal memory). Some actual redundant variable loads are
also eliminated.

• Parallelizing Transforms

– move MV’s backwards and parallelize

– remove loads to NULL, move loads/stores backwards, merge index arith-
metic

– move loads backwards over stores with alias detection

– merge ALU operations

– move arithmetic operations backwards, parallelize

Instruction parallelism must be exploited to increase the code density. These trans-
formations take the generated operations and either merge two simpler operations
(such as a register move performed in ALU and a subsequent operation on that
value) or combine two operations (for example an ALU operation and a load) into
one instruction.

Normally memory loads can not be moved over a store, if they use the same
memory bus (X or Y). However, if the optimizer can be certain that a load and

Rev. 3.2 Page 15 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

a store do not reference the same memory location, their execution order can be
safely reversed, unless either one of the memory locations is marked volatile.

• Back-End Jump Minimization

– eliminate chained jumps

– eliminate chained jumps in subroutine call returns

– remove jumps to the next instruction

– remove unnecessary jumps by condition reversal

Although all control flow constructs are generated with great efficiency, when they
are generated back-to-back, some unnecessary jumps may arise. These transfor-
mations combine two jumps together to shorten the code and speed up its execu-
tion.

• Delay Slot and Inter-Codeblock Optimization

– move LDC’s forward to fill delay slots/NOP’s

– fill unconditional jump delay slots

– fill delay slots from fall-through and/or jump target code block

∗ head merging - the same instruction in both branches

∗ jump probability for each jump condition predicted per-function basis.
If more than 45% of the jumps taken, prefer jump target when moving
instructions, otherwise prefer fallthrough. This minimizes the average
execution time.

∗ transform instructions in the jump delay slots to make them movable

∗ if ALU-op in the delay slot, find parallel load

∗ if load in the delay slot, find parallel ALU-op

Most of the previous transformations have been intrablock optimizations. Delay
slot optimization uses and preserves interblock dependencies. Moving instruc-
tions from one block to another causes more opportunities for operation merging
and parallelization.

The profiler output from the simulator can be used (-fprof) to assist the com-
piler in selecting the most often executed branch of the code. When the more
probable branch is shortened, the average runtime is decreased.

• Code Merging

– tail merging - move instructions from jump source

If-else constructs and some other code structures cause very similar opera-
tions to be generated at the end of their code blocks. Moving identical operations
forward, combining two or more of them, reduces the code size and at the same
time makes the target code block larger. Larger code blocks may contain more
opportunities for merging and parallelization of operations.

Rev. 3.2 Page 16 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

• Hardware Loop Optimization

– fill LOOP delay slots

– move LDC’s out of the hardware loop

– move index register modifications out of the hardware loop

Zero-overhead hardware loops are generated from a subset offor statements.
For digital signal processing (DSP) applications multiply-accumulate loops are
usually the most time-consuming parts of the code, so loops are handled as a
special case in the code optimizer. Code that can be safely moved from inside of
the loop to the outside is identified and moved.

These optimizations partly compensate for the lack of high-level strength reduc-
tion transformations in cases where the loop contains only a small amount of
code.

2.3.7 Extensions and differencies to ANSI-C features

• typed function declaration enforced:
K&R-style declarations, i.e. typeless arguments are not allowed

• float is not automatically promoted todouble in function calls, use"%hf"
in printf for float types (Note: float is not fully tested).

• static variable storage is not automatically initialized to zero if there is no
initializer specified. Specify a full or partial initializer if the initial state of the
storage matters.

• packed string support, see section 2.8.8

• binary constants supported:0b10100101 .

Rev. 3.2 Page 17 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

2.4 Link Libraries

Target-system (partial) libraries are provided. See section 2.5.14 for a list of the imple-
mented modules. There are two versions for different code memory models:

1. libc16 for 16-bit code memory (-fsmall-code)

2. libc32 for 32-bit code memory

The 16-bit version only allows 64k words of code, but reduces the function call overhead
and is thus better for digital signal processing tasks. Also, the 16-bit link library routines
do not handle far data. You can still use far data in your programs, because 16-bit data
and 32-bit data addressing can be mixed, but you can’t directly manipulate it with the
library routines.

Separate libraries are used for simulator (libsim.a) and emulator (libc.a).

2.5 Implementation-defined Behavior

This part documents implementation-defined behavior as the ANSI-C standard requires.

2.5.1 Translation

Diagnostic messages are printed to the standard output stream, unless the compiler out-
put is directed there, in which case the messages appear in the standard error stream.

Diagnostic messages are in the following format:

• file:line: warning num: specific message

• file:line: ERROR num: specific message

A result file is produced even if any number of warning messages are produced, but not
if any error message is produced. See warning and error message list for specific error
messages.

2.5.2 Environment

The environment does not provide any arguments to the main function. If any formal
parameters are defined in the main function prototype or declaration, their usage is un-
defined.

All streams are considered interactive, but the output may be buffered on the host side
(with the emulator board).

Rev. 3.2 Page 18 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

2.5.3 Identifiers

All characters are significant in identifiers with and without external linkage. Case dis-
tinctions are significant in all identifiers.

2.5.4 Characters

The source and execution character set is ISO Latin-1. Multibyte characters are not
supported.

The execution character set supports 16 bits. Source character set is directly mapped as
a subset to the execution character set.

Plainchar is consideredsigned .

2.5.5 Integers

Integers are represented as two’s-complement numbers.char , short and int are
16-bit (one word),long is 32-bit (two words).

Converting integer to a shorter signed integer causes the value to get truncated. Convert-
ing an unsigned integer to a signed integer of equal length causes values that can not be
represented to get truncated (they become negative).

Bitwise operations on signed integers behave exactly the same as the corresponding
operations on unsigned integers, i.e. signedness does not affect the result.

Remainder on integer division is non-negative for non-negative division results and non-
positive for negative division results.

Right-shifting a negative-valued signed integral type copies the sign, i.e. it is an arith-
metic shift.

Pointer types are considered unsigned.

2.5.6 Floating Point

Thefloat type has a 16-bit exponent and 16-bit mantissa, including the sign bit. Arith-
metic performed betweenfloat types is done in this format for speed instead of con-
version todouble first. Because of the limited accuracy, this floating point type is not
very usable. Future plans include changing thefloat format to 8-bit exponent and
24-bit mantissa.

Rev. 3.2 Page 19 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

The double type has a 16-bit exponent and 32-bit mantissa, including the sign bit.
More testing has been performed fordouble than for float . Some trigonometric
functions fordouble are included in the link libraries.

2.5.7 Arrays and Pointers

size t isunsigned int for 16-bit address space (with-fsmall-code , i.e. libc16)
andunsigned long for 32-bit address space (without-fsmall-code , i.e. libc32).

With 16-bit address space casting a pointer to an integer preserves the pointer so it can
be without loss converted back to a pointer of the same or other type. With 32-bit address
space a long is required. Casting ashort or int integer type to a pointer preserves
the value so it can be without loss converted back to an integer with the original value.

ptrdiff t is signed int for 16-bit address space andsigned long for 32-bit
address space.

Array initializers can be fully bracketed, incompletely bracketed, or a mixture of both.

2.5.8 Registers, X and Y Memory

Theregister keyword with a register specification of the typea0 causes parame-
ters to be allocated in the corresponding register. The register size and the type size must
match.

Automatic variables can be assigned into registers in the same way. With theregister
keyword but without a register specification the compiler tries to allocate pointer types
into index registers and integral types into arithmetic registers. This works with both
variables and parameters.

Storage can be allocated from either X memory or Y memory by directly specifyingx
and y , respectively. The default is to allocate from X memory. Specifiersfar and

near can be used to specify/force 32-bit and 16-bit linkage, respectively. A pointer to
a storage element specified asfar will be 32-bit, while a pointer to a storage element
specified as near will be 16-bit. Notice that the Y memory space is restricted to 64
kilowords, and is thus alwaysnear .

Notice that a pointer to a far element is different than a far pointer to an element.

• far short * near ptrToFar;

• near short * far ptrToNear;

The first declaration specifies a 32-bit pointer which itself is placed inside the 16-bit
address space, while the second example specifies a 16-bit pointer which is placed inside
the 32-bit address space. The same applies tox and y .

Rev. 3.2 Page 20 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

• y short * x ptrToY;

• x short * y ptrToX;

The first declaration specifies a Y-memory pointer which itself is placed in X memory,
while the second one declares a X-memory pointer which is put in Y memory.

Let us finally consider function pointers and register variables.

• register i2 void (*funcPtr)(void);

• void (* register i2 funcPtr)(void);

The meaning of these declarations may not be self-evident. The first tries to allocate a
pointer to a function which returns avoid value in address registerI2 , but as the sizes
do not match (nothing vs. a 16-bit register), an error is generated. The latter declares a
pointer to a function returningvoid and allocates storage from address registerI2 .

2.5.9 Structures, Unions, Enumerations, and Bitfields

If a member of a union object is accessed using a member of a different type, the be-
havior is undefined, unless the types are of the same size, in which case the bit pattern
is copied.

Plain int bitfield is treated as asigned int type. char , short , and long are
also allowed as bitfield integral types, but they have no direct relevance to the underlay-
ing storage allocation. Specifyingunsigned for bitfields is recommended, because it
generates faster code.

The order of allocation of bitfields proceeds from least-significant bits to most signifi-
cant bits.

A bitfield can not straddle storage-unit boundaries. If this was about to happen, the
current allocation unit is completed and next one is started. If the bitfield specifies a
field larger than can be represented inint , the current allocation unit is completed and
storage for a fulllong type is allocated.

Enumeration types are represented asint .

Note that returning structures or unions from functions can lead to inefficient code.

2.5.10 Qualifiers

Any reference to an object whose type is qualified by the keywordvolatile is con-
sidered an access to that object. A read or write will not be optimized and the order of
accesses will not be altered.

Rev. 3.2 Page 21 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

2.5.11 Declarators

Any number of declarators can modify an arithmetic, structure or union type. The num-
ber of successive pointer modifiers in declarations is limited to 32, but you can have
more by using typedefs.

2.5.12 Statements

Any number ofcase values are allowed in aswitch statement.

2.5.13 Preprocessing Directives

An external preprocessor is currently used.

2.5.14 Library Functions

Target-system (partial) libraries are provided.

libc16 libc16 provides routines that use the 16-bit-code-only calling convention for
functions. This mode is used for simple applications where all of the code can be fitted
into the 16-bit code address space. 32-bit addressing can still be used for data, but the
library functions only supports 16-bit addressing.

libc32 libc32 is used for applications where the code and/or data space needs to be
bigger than 64 kilowords. The calling convention uses full 32-bit call and return ad-
dresses, and the library functions use 32-bit data addresses.

• errno.h
– errno not supported as most errors are handled on the host side

• float.h

• limits.h

• math.h

• stddef.h

• assert.h

• ctype.h
– ISO Latin-1 supported

• stdarg.h

• stdio.h
– formatted input/output (*printf, *scanf) partially supported

– available functions perform the operations in the host environment

Rev. 3.2 Page 22 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

• stdlib.h
– memory management and similar functions are left to the application or OS

– random() / srandom() added for better pseudo-random number generation

• string.h

2.5.15 Locale-specific Behavior

No locales are implemented.

2.6 Pragma Statements

VCC currently understands one#pragma statement:
#pragma msg num [on|off]

This pragma can be used to turn warnings on and off in the code, for example disable a
specific warning for a portion of the code.

#pragma msg 137 off
long __fract af = 0x5555eeee, bf = 0x11112222;

#pragma msg 137 on

Only messages that are warnings can be disabled.

2.7 Warning and Error messages

Individual warnings can be disabled with the-w option. A comma-separated list of
warning numbers can be specified, and also several-w options can be used. Errors can
not be disabled. Warnings can be enabled with the-W option: warnings 132, 150, 153,
and 334 are disabled by default, because they can be mainly used for debugging to detect
possible differences between systems.

It is also possible to promote warnings into errors by using the-P option. A promoted
warning can be demoted back into a warning with the-p option. These options have no
effect on genuine errors.

The following list contains the identification codes and explanations of the error and
warning messages of VCC.

Rev. 3.2 Page 23 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

2.7.1 Syntax and Sematic Errors

0 internal error
Some internal assumptions failed in the code generation.

0 Invalid expression
Invalid expression encountered when evaluating an expression type.

0 unknown operator
Unknown operator encountered when evaluating an expression type.

0 assembler stage failed
Code was generated with no errors, but the assembler run failed for some reason.

0 syntax error
A syntax error was encountered in the source code. Sometimes the reported line
number is not exactly where the syntax error is.

0 Can’t combine derived types -- a missing semicolon?
If you leave out the semicolon after a structure type definition, you may get this
error. Check that the semicolon is in the right place.

1 invalid pragma line: ’ line’
The pragma line has the wrong number of parameters or contains an invalid com-
mand.

8 invalid type conversion
The specified type conversion is not possible. For example an object type can’t be
converted into another object.

9 undefined identifier ’ id’
An identifier was used in an expression, but it has not been previously declared.

10 need an integral value for array index

10 need a pointer for array base
Array indexing needs the base to be of a pointer (or an array) type, and the index
to be of an integral type (or vice versa, because of the definition of the indexing
operation). This error is generated if this kind of pointer-integral pair is not used.

11 Too many successive pointer references in declaration
Only 32 consequtive pointer modifiers can be used in declarations. If you need
more, use typedefs.

12 ’ type’ has an incomplete type

12 incomplete structure/union

Rev. 3.2 Page 24 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

12 invalid cast into an incomplete type
A type is used, but it has not been completely defined before the usage. The usual
reason is that an array type does not have the size defined, a structure or union
does not have the field list defined, or a function type does not have the parameter
list defined.

12 invalid structure/union reference
A structure or union indirection or member reference was specified for an incom-
plete or invalid type, or a type which was neither a structure nor a union.

13 struct/union member name missing
A structure or union indirection or member reference doesn’t specify a name.

14 undefined struct/union member ’ name’
A field with the specified name was not found from the structure or union. Either
the structure or union does not have that field, or the definition is incomplete.

15 invalid function call
A function call doesn’t contain an address specification or its type is not a function
or a function pointer.

16 too few parameters for call
A function call expression specifies less parameters than the function specification
(prototype).

17 too many parameters for call
A function call expression specifies more parameters than the function specifica-
tion (prototype).

20 invalid constant expression for case
Case selectors must have constant values and an integral type.

30 parameter n is a pointer to a different page

30 assignment argument is a pointer to a different page

30 assignment argument is a pointer to a different object
Because storage can be allocated from either X or Y memory, pointer types point-
ing to storage in different pages must not be mixed. In parameter passing and
assignment the storage of the pointer itself doesn’t matter.

31 pointer to a constant object used as a pointer to
a non-constant

31 pointer to a constant object assigned to a pointer to
a non-constant
Storage for constants may be allocated from ROM areas and trying to change
constants does not work. Mixing pointers to constant and non-constant storage
may sometimes cause subtle errors.

Rev. 3.2 Page 25 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

33 initializer already specified for ’ var’
One variable can only have one initializer, although it can be declared multiple
times.

34 braces missing from structure initializer for ’ var’

34 braces missing from union initializer for ’ var’

34 extra braces in initializer for scalar variable ’ var’
Structure and union initializers require braces to delimit the initializer. Partial
bracing is only allowed for arrays. Bracing is not allowed for scalar variables.

34 malformed initializer
This error is generated if dimensions in an array initializer do not match with the
array type dimensions.

35 initializer for an incomplete type (variable ’ var’)
Variables with invalid and incomplete types can not have initializers.

36 control cannot reach this statement
This warning is generated whenever the compiler knows that a certain statement
can’t be reached. The reason may be a prematurereturn statement, infinite loop
withoutbreak statements, or a constant flow control statement.

37 duplicate statement label ’ label’ (see file: line)
Statement labels must be unique inside a function. If there are two labels with the
same name, the location of the previous one is also displayed.

38 control reaches end of non-void function
A value must be returned by a function but the end of the function (fall-through)
can be reached. Areturn statement should be added before the end of the func-
tion.

40 break not inside loop or switch
A break statement was reached but it isn’t contained in a loop or aswitch
statement.

41 case not inside switch
A case or default statement was reached but it isn’t contained in aswitch
statement.

42 case expression not integral
Case selectors must have constant values and an integral type.

43 duplicate case value (see file: line)
Case values in aswitch must be unique.

44 continue not inside loop
A continue statement was reached but it isn’t contained in a loop.

Rev. 3.2 Page 26 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

46 duplicate default (see file: line)
Only onedefault case is allowed for aswitch .

52 missing if expression

52 invalid if expression
The flow-control expression in anif statement is missing or invalid.

54 switch expression not integral

55 invalid switch expression
The flow-control expression in aswitch statement does not have an integral
type.

56 no case values for switch

57 empty body for switch
A switch statement does not have any case values or does not have a body (e.g.
switch(1);)

59 invalid storage class
Some storage class specifiers are mutually exclusive.

60 invalid type specifier combination
Some types are impossible, for examplefloat double andshort long .

61 invalid array size size] (near array can only be size words)

Arrays in near storage can only be of certain size.

62 ANSI-C prohibits the use of 0-size arrays
Zero-sized arrays are not possible in ANSI-C.

63 integral constant value needed for enum
Enumeration values must be integral constant expressions.

67 illegal object
Variables with the typevoid are not possible.

68 illegal object for structure/union
Structure and union members can not be function types.

69 structure/union includes an instance of itself
Recursive structures and unions are not allowed. A missing asterisk (*) may be
the reason.

72 type clash in redeclaration of ’ type’ (previous in file: line)
A previous declaration of a type exists and the declarations are inconsistent.

78 undefined statement label ’ label’
A goto statement uses a label that is not declared in the function.

Rev. 3.2 Page 27 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

79 enum type type has duplicate values enum1 and enum2= value
This warning is given if two enumerations in an enumeration type have the same
value. If you do not want to have this warning, disable it using the-w79 compiler
option or the pragma statement#pragma msg 79 off .

83 indexing (n) outside the array bounds (0.. N)
A constant index is outside the array.

85 return type mismatch for function ’ func’
The expression type in thereturn statement does not match with the return type
of the function.

92 statement without effect
An expression statement without any side effects is encountered.

93 possibly unused variable ’ var’
A variable is not used, as far as the compiler can determine.

94 variable ’ var’ may be used uninitialized
A variable could be used before it has been initialized, at least as far as the com-
piler can determine.

99 constant object can not be changed
An assignment tries to modify a constant object.

2.7.2 Expression Errors

100 Register type (reg) and type size (size) do not match
Variable or parameter specification defined a register, but the size does not match
the type size.

101 formal parameter n specifies a void type
Only the first and only formal parameter should have the void type.

102 parameter n has an incompatible type
The actual parameter can not be automatically type converted into the formal
parameter type. This happens for example when an object is passed instead of a
pointer to the object.

103 mismatching parameter types for selection statement
The parameters in the selection statement (?:) are not compatible.

104 invalid selector for selection statement
The selector expression must be an integral or pointer type.

105 invalid parameters for logical or/and
Logical operations require integral or pointer types.

Rev. 3.2 Page 28 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

106 invalid parameter for unary ˜
Unary not requires an integral type.

107 invalid parameter for unary !
Unary logical not requires an integral or pointer type.

108 invalid parameters for binary |

108 invalid parameters for binary ˆ

109 invalid parameters for binary &
Bitwise operations require integral types.

110 unary & requires a non-register parameter

111 unary & requires a non-bitfield object

112 the parameter for unary & must be a lvalue
The address-of operator required an object located in memory that is not a bitfield
object. The parameter must also be a lvalue expression.

113 invalid parameters for equality comparison
Only arithmetic and pointer types have equality and non-equality comparisons.
Comparison of pointers to the integral value zero is also allowed.

114 invalid parameters for comparison
Only arithmetic and pointer types have smaller-than and greater-than operations
defined.

115 invalid parameters for shift expression
Bit shifting is only possible on integral types and by integral number of bits.

116 Invalid parameters for binary +
Only arithmetic and pointer-integral additions are possible.

117 incompatible pointer types for binary -
Pointer difference requires that both pointers have the same type.

118 invalid parameters for binary -
Only arithmetic, pointer-integral, and pointer-difference subtractions are possible.

119 invalid parameters for binary *
Multiplications are only defined for arithmetic types.

120 invalid parameter for unary *
The indirection operation requires a pointer type.

121 invalid parameters for binary /
Division is only defined for arithmetic types.

122 invalid parameters for binary %
Modulo is only defined for integral types.

Rev. 3.2 Page 29 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

123 pre/post in/decrement expression must be a lvalue
The post/pre increment/decrement expressions require a lvalue expression.

124 pre/post in/decrement only valid for arithmetic or
pointer type
Increment/decrement expressions are only valid for arithmetic and pointer types
that point to an object (other than void).

125 invalid sizeof() expression

126 sizeof() of an incomplete type

126 incomplete/invalid type for sizeof()
The size of the type or object could not be determined. Either the type or object
does not exist, has an incomplete or invalid type, or is a function type.

127 need a modifiable lvalue for assignment
Assignment needs an expression which evaluates into an object address.

128 invalid type for assignment
For example function types can not be assigned. Function pointers can, however.

129 invalid parameters for assignment
Invalid type combination for assignment or operation-assignment.

130 function ’ func’ called without a prototype

133 parameters specified for a prototypeless function
Take these warnings very seriously, if you are mixing near and far code or are
using register parameters. If you are calling a function without a prototype, no
parameter checking can be performed. Even when you are using stack parameters,
the responsibility of passing correctly sized values falls on you.

132 parameter num will be promoted
If an arithmetic parameter needs a type conversion, this warning is generated. This
warning is disabled by default, use-W132 to enable.

134 obfuscated C not recommended
Although ANSI-C allows the indexing operator to have the base (pointer type)
and index (integral type) in either order, usingindex[base] obfuscates the
meaning of the code and should not be used.

136 fract converted to integral type (bitwise copy)

137 integral type converted to fract (bitwise copy)
Fractional types have values smaller than one and greater or equal to minus one
and converting them into non-fractional integral types and vice versa is meaning-
less as such. Because of this, conversion between fractional and non-fractional
integral types is handled as a bitwise copy of the bit-pattern. Note that this warn-
ing is not generated from explicit type conversions.

Rev. 3.2 Page 30 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

138 float type used as a parameter in logical or/and
Logical expressions can use pointer and integral types as truth values. If a floating
point type is used, this warning is generated and the expression is converted into
integral type.

139 integral value converted to pointer
This warning is generated when an integral type is implicitly converted to pointer
type. Note that this warning is not generated from explicit type conversions.

140 pointer value converted to integral
This warning is generated when a pointer type is implicitly converted to integral
type. Note that this warning is not generated from explicit type conversions.

141 overflow in conversion from floating to integral type
Type conversion in the constant expression evaluation caused an overflow.

142 value float too large for fractional type
Converting a floating type constant could not be performed because it was too
large. Only values from [-1..1) can be converted into signed fractional types, [0..2)
can be converted into unsigned fractional types. Note that support for unsigned
fractional types is not fully implemented yet and may change in the future.

143 unable to evaluate constant cast expression
Evaluation of type conversion for a constant failed.

144 bitwise not (’˜’) of a logical value is always true
If a bitwise not is performed on a logical value, it evaluates to either -1 or -2. This
warning is generated if this expression is used as a truth value.

145 negative shifts undefined
Negative shifts have undefined behavior. In the case of constant shifts, negative
shifts can be detected, a warning generated, and the shifting corrected: the order
of the shift is reversed. However, trying to use non-constant negative shifts will
fail utterly.

146 constant divide by zero
Constant expression evaluation detected a division by zero.

147 possible division by zero ignored
Constant expression evaluation removed a division in the form of0/a . This re-
moval is not valid ifa is zero.

148 unsigned constant value exceeds range

149 signed constant value exceeds range
Constant value no longer fits into the type in the constant expression evaluation.

150 shift amount is handled as a short quantity
Only 16 bits are used as a shift amount. This warning is disabled by default, use
-W150 to enable.

Rev. 3.2 Page 31 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

151 a pointer type cast into a shorter type

152 a function type cast into a shorter type
Because mixing 16/32-bit pointers can cause hidden bugs, converting pointers
into smaller types is reported. If you want to extract part of the pointer value, cast
it first into long and then into shorter type:(short)(long)pointer .

153 a type cast into a shorter type
This warning is disabled by default, use-W154 to enable.

154 pointer to page cast into pointer to page
If a pointer is implicitly converted to point to another page, this warning is gener-
ated. Explicit conversions between pages are allowed without warnings.

2.7.3 Code Generation Stage Errors

200 symbol ’ sym’ has an incomplete type
Storage could not be allocated for an object because the size of the object is not
known.

201 invalid initializer
Automatic (stack) variables can only be initialized if they are scalars, pointers,
arrays, or they have constant initializers.

202 constant strings need a char array type
String initializer can only be used in conjunction with a pointer or array variable.

203 constant strings require char array type

204 constant strings normally initialize char arrays
String initializer can not initialize non-integral types, such as floating point types.
The compiler allows you to initializechar , short , andint arrays with string
initializers because they are the same size, but warning 204 is generated. Other
types cause error 203 to be generated.

205 bitfields can not hold pointers
Bitfields can not hold pointers.

206 invalid initializer for ’ var’
The initializer has an invalid type, is not a constant expression when one is re-
quired, or the constant value can not be converted into a floating point initializer,
because it contains a relocatable memory address.

208 bitfield initializer can not include symbols
The initializer can not be converted to bitfield value, because it contains a relocat-
able memory address.

Rev. 3.2 Page 32 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

209 invalid type in initializer of ’ var’
The initializer contained an invalid type.

210 can’t have initializers with this type of variable (’ var’)
Variables with very strange types may not have initializers.

211 invalid case type
Case value must be 16- or 32-bit (non-fractional) integral type.

212 return in a non-function
return statement was encountered although the object was not a function. Ac-
tually, this is one of the errors that should be impossible to get.

213 return without expression in a function returning a value
return statement without expression was encountered, but the function should
return a value.

214 invalid for initialization expression
for statement’s initialization expression was not empty, but had an invalid type.

215 invalid for update expression
for statement’s update expression was not empty, but had an invalid type.

216 invalid for loop expression
for statement’s loop expression was not empty, but had an invalid type. Note: an
empty expression means an infinite loop.

217 invalid do expression
do statement’s loop expression had an invalid type.

218 invalid while expression
while statement’s loop expression had an invalid type.

220 invalid asm expression
Note: inline assembly is not yet supported.

222 automatic conversion from float to integral type
The float value in an initializer was converted to an integral value.

224 automatic conversion from integral to float type
The integral value in an initializer was converted to a float value.

225 auto variables changed to static in func
Stack variables were changed to static variables for a function containing no re-
cursion as requested with-fauto-to-static option.

227 constant switch() expression
switch selection expression is a constant.

Rev. 3.2 Page 33 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

228 invalid operator for floating type
Modulo operator is not defined for floating type.

229 invalid types (or not implemented)
Some type combinations are not implemented for division and modulo operators.

231 invalid assignment
Assignment has incompatible, invalid, or incomplete types.

235 register variable value not currently available
Too many registers were used and a register variable value has become temporar-
ily unavailable. Rephrase the expression by changing the evaluation order or per-
form it in smaller pieces.

236 invalid symbol
A type name or a function was used as a variable.

240 too many register parameters for a function

241 register ’ reg’ specified twice for a function
A register can be used only once in a formal parameter list. The same register can
be used as a parameter and as a return value register.

243 currently only either x or y allowed (symbol ’ sym)’ Only
either x or y is allowed, not both.

244 too large bit field d (D max)
Bit fields upto the size of thelong type are possible. Larger field sizes are not
allowed, after all, the full range couldn’t be manipulated if the size were larger
than the largest type size.

247 typedef not allowed in function prototype!
Creating new types can’t be performed in function prototypes.

248 redefinition of symbol ’ sym’ (previous in file: line)
A symbol in the same scope was declared twice.

249 typedef not allowed in function parameters!
Creating new types can’t be performed inside a parameter list.

250 symbol ’ sym’ hides previous declaration (file: line)
A symbol hides a previous declaration.

252 extra initializers for array ’ sym’ (dim d)
More initializers were specified than there is room in an array.

253 initializer for an incomplete type (variable ’ var’)
Variables with incomplete types can be declared, but these can’t contain initializ-
ers.

Rev. 3.2 Page 34 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

254 ’ type’: can’t have initializers with this variable type ’ num’

If you manage to create some obscure types, it may be that the compiler is not able
to create initializations for them.

255 integral value needed for dimension (symbol ’ sym’)

256 constant value needed for dimension (symbol ’ sym’)
Array dimension has to be a constant integral value.

257 typedef not allowed in structure field!
Creating new types can’t be performed in structure definitions.

258 invalid base type for bit field (integral type required)
Only integral types are allowed for bit field base types. Floating point and pointer
types are not allowed, and it would be quite futile to specify structure or union
types or arrays.

259 too large bit field for this type of variable
The base type is too small to include all the bit field bits.

260 integral expression needed for bit-field size

261 non-constant bit-field size

262 invalid bit-field size specification
Bit field specification needs to be a constant integral expression.

264 redefinition of type ’ type’ (previous in file: line)
A type was redefined but the definition was not compatible.

265 redefinition of structure ’ struct’ (previous in file: line):
member ’ memb’ name differs (’ name’)
A structure type was redefined, but there were differences in the structure mem-
bers. A member name was different between the definitions.

267 redefinition of structure ’ struct’ (previous in file: line):
member ’ memb’ type differs (’ name’)
A structure type was redefined, but there were differences in the structure mem-
bers. A member type was different between the definitions.

268 redefinition of structure ’ struct’ (previous in file: line):
member ’ memb’ field size differs (’ name’)
A structure type was redefined, but there were differences in the structure mem-
bers. A bit field size was different between the definitions.

265 redefinition of union ’ union’ (previous in file: line):
member ’ memb’ name differs (’ name’)
A union type was redefined, but there were differences in the union members. A
member name was different between the definitions.

Rev. 3.2 Page 35 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

267 redefinition of union ’ union’ (previous in file: line):
member ’ memb’ type differs (’ name’)
A union type was redefined, but there were differences in the union members. A
member type was different between the definitions.

268 redefinition of union ’ union’ (previous in file: line):
member ’ memb’ field size differs (’ name’)
A union type was redefined, but there were differences in the union members. A
bit field size was different between the definitions.

269 redefinition of structure ’ struct’ (previous in file: line):
too few members
A structure type was redefined, but there were less members in the new definition.

269 redefinition of union ’ union’ (previous in file: line):

too few members
A union type was redefined, but there were less members in the new definition.

270 redefinition of structure ’ struct’ (previous in file: line):

extra members
A structure type was redefined, but there were more members in the new defini-
tion.

269 redefinition of union ’ union’ (previous in file: line):
extra members
A union type was redefined, but there were more members in the new definition.

271 redefinition of enumeration type ’ type’(previous in file: line)

An enumeration type was redefined.

272 specifying unsigned and signed creates an unsigned type

If both signed andunsigned is specified, the result type will beunsigned .

273 too few structure initializers for ’ struct’
A structure initializer did not initialize all members.

274 too many structure initializers for ’ struct’
Extra initializers were specified for a structure.

275 trailing NUL not included in initializer of ’ var’
An array can be initialized with a string, which always includes a trailing NUL
character. In this case, the NUL character is not included in the array.

276 too large bit field, a full variable allocated
If a bit field size is larger than the basic storage element size, i.e. 16 bits, a 32-bit
storage location is allocated.

277 uninitialized constant ’ const’
A variable with a constant type can not be written to. Because of this, constants
should always have initializers specified or their values remain unspecified.

Rev. 3.2 Page 36 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

278 enum type ’ type’ value ’ name’ = ’ val’ out of range
The specified value for an enumeration does not fit into asigned short type.

279 redundant keywords in type declaration
A type declarator has the same keyword specified more than once. This can hap-
pen easily if typedef types are used.

280 external identifier ’ id’ can not be initialized
Combining an external variable with an initializer is not allowed.

281 enum type ’ type’ contains no members
An empty enumeration type is kind of useless. Note that you can have incomplete
enumeration types; an empty enumeration list is different than missing enumera-
tion list.

282 value is not part of the enumeration type
A constant value was cast into an enumeration type, but it is not part of the enu-
meration. Another case where you get this warning is if a case statement used a
constant that is not part of the enumeration type used in the switch selector.

283 hex constant too large for char, high bits may be lost

Character constants can be inserted into strings using the hex escape “\x1234”,
but large values do not fit into the 16-bit character type.

284 invalid number
A floating point or integral constant was malformed.

285 operation invalid for pointer to void
Pointer arithmetic is not possible for void pointers.

286 switch did not specify cases for all enum ’ enum’ values

You get this warning if not all enumeration values are handled in a switch and
there is nodefault case.

287 symbol ’ sym’: no prototype declared for function pointer

A function pointer has an empty formal parameter list.

288 no statement after label
The C syntax originally requires that there is a statement after each label.

290 structure or union return value must be assigned to a
variable in X memory
Structure and union return values are always written to X memory.

299 non-ANSI use of ellipsis punctuator
The ellipsis (...) can only be used as the last formal parameter and it can not be
the only parameter for a function.

300 initializer specified for an external object
If an object is declaredextern , it should not have an initializer.

Rev. 3.2 Page 37 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

334 short * short -> short
If a program assumes that int is a 32-bit type, multiplying short types may present
a surprise, because the result type, although int, is also a 16-bit type. This warning
is disabled by default, use-W334 to enable.

Rev. 3.2 Page 38 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

2.8 Specific Information about Implementation

2.8.1 Function Calls

Functions preserve all registers except

1. the return value register, if any (A0, A, or A/B0 unless specified explicitly)

2. parameter registers, if values are passed in registers

3. the multiplier pipeline registerP

4. I7

5. Guard bits - may be set according to base register value

Stack parameters are located so that the stack pointer register (I6) points to the last word
of the first actual parameter when control is transferred to the function. All parameters
are located in X-memory.long values are placed into memory lowest part first (i.e. in
lower address). The caller removes the parameters from stack.

If a function is declared with theauto storage specifier, the caller advances the stack
pointer before the call. In this case, the stack pointer points directly above the first
parameter. In effect, the firstLDX (I6)+1,NULL in the function is eliminated. Be
extra careful with prototypes, if you use this feature.

2.8.2 Stack Frame

I4 Offset X Y]

new SP .. rest of the parameters unused
..+M+1 start of call parametersunused

..+N register save register save
..+2 3rd var 2nd var HI
+1 1st var 2nd var LO

new FP +0 new FP old FP
-1 LR0 I5
-2 MR0 I7

old SP -3 1st parameter unused
..-4 rest of the parameters unused

2.8.3 Bitfield Allocation

Bitfield allocation proceeds from least-significant bits to most significant bits. The allo-
cation is always performed from 16-bit words. A bitfield is always allocated fully inside
one word, it can’t continue from one word to another. If a field larger than 16 bits is
specified, storage for along type is allocated.

Rev. 3.2 Page 39 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

struct NOSTRADDLE {
unsigned var1:8; /* bits 0..7 of the 1st word */
unsigned var2:4; /* bits 8..11 of the 1st word */
unsigned long var3:24; /* 32 bits, 2nd and 3rd word */
unsigned var4:4; /* bits 0..3 of the 4th word */

};

Because bits are allocated from lowest to highest and multiword variables are also stored
in memory from least-significant word to most-significant word, the size of the actual
bitfield storage unit size does not usually matter.

2.8.4 Multiplications

Becauseint is a 16-bit type, and C type promotions convertshort values toint for
most binary operations, i.e. operations onshort values have 16-bit results (int), and
not 32-bit like in most other systems. Specifically this means that you should be very
careful with code constructs containing multiplications, because their result usually do
not fit in 16-bit int . To do things safely, one of the multiplication operands must be
cast into thelong type to assure that the result will be 32 bits long.

• Wrong:(sVal1*sVal2 + sVal3) >> 14

• Right: ((long)sVal1*sVal2 + sVal3) >> 14

Note: as an implementation side-effect, specific down-shifts of multiplication results
will shift the 32-bit result, although their result is 16 bits.

• Works, but wrong:sVal1*sVal2 >> 14

• Right: (long)sVal1*sVal2 >> 14

Multiplications are performed in fractional mode (shifting up the result by one bit)
whenever either one of the values is fractional. Full precision is retained in the result, i.e.
for 32x32-bit and 16x32-bit fractional multiplication, full 32 bits of result are calculated.

Fractional values can also be multiplied by integral values, in which case the fractional
shift is not performed and the lower part of the multiplication gives the result, i.e. mul-
tiplying fractional value by integral value 2 will double the fractional value. For frac-
tional multiplications, use either a cast to fractional type or a floating point constant.
Because fractional types are higher in precedence than floating point types in promotion
type selection, the floating point constant will be automatically converted into fractional
number by the constant expression evaluator. The following statements are therefore
equivalent:

• f32 w = (fract long)13408963 * f32 x;

Rev. 3.2 Page 40 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

• f32 w = 0.00624403497204185 * f32 x;

Because of the as-if-rule of the C standard, the multiplication is performed with as
short operands as possible, i.e. casts which do not affect the value are skipped when
evaluating the operands. Depending on the values to multiply, 16x16-bit multiplication
with either 16- or 32-bit result, 16x32-bit multiplication with 32-bit result, and 32x32-
bit multiplication with 32-bit result are generated. Also, unsigned multiplications are
supported, so that a cast from signed short to unsigned long does not cause a longer
multiplication to be generated.

2.8.5 Fractional Division

32-bit and 16-bit fractional divisions (Q15/Q15→ Q15, Q31/Q31→ Q31) are sup-
ported. The result is also fractional. The absolute value of the dividend must be less
than the absolute value of the divider for correct results. Currently you can’t divide
fractional values by integral values.

Fractional modulo operator is not implemented.

2.8.6 Generation of Constants

VS DSP has two special registers called NULL and ONES. These registers are used
when possible to generate constants in ALU (allowing other operations in parallel) in-
stead of using a load constant operation, which occupies a full instruction word. This is
the reason constants0, 1, -1 (0xffffU), and32767 (0x7fff) are better than others.

Note that constant0xffff is by default signed, thus a long value. Append U to make
it an unsigned short value (0xffffU).

2.8.7 Grouping of Values

If a program uses a lot of global state information, a lot of address loading will be gener-
ated. Each variable reference generates a load constant instruction. If multiple variables
are accessed right after eachother, you can get rid of some of the address loads by com-
bining the variables into a structure. Then only the first access needs to load the address,
subsequent accesses can get the address by modifying the existing one in parallel with
other operations.

Rev. 3.2 Page 41 Aug 15, 2002

Software Tools User’s Manual
VS DSP 2. VCC - VS DSP OPTIMIZING C COMPILER

2.8.8 Using Packed Characters

New in 1.12 -A special extension is provided to allow packing two 8-byte characters
into one 16-bit word. If you declare a string constant with a leading escape\p, the string
will be packed and the type is unsigned short pointer instead of signed char.

unsigned short *packedStr = "\pThis string packs two bytes "
"into each word\n";

The first byte is packed into high bits of the first word, the second byte to the low eight
bits of the first word and so on. If the string length is odd, the second to last word will
have the lower eight bits set to zero. The string always ends in aNULcharacter, so that
you can copy packed strings with the normal string functions.

Packed strings can be also used with initializers.

unsigned short packedStr[] = "\pThis string packs two bytes "
"into each word\n";

Notice thatsizeof() and for examplestrlen() return the length of the packed
string, not the number of original characters. The original size can be calculated with
the following code.

int packedstrlen(__far const unsigned short *s) {
int size = 2*strlen(s);
if (size && (s[size/2-1] & 0xff) == 0)

size--;
return size;

}

Packed strings are mainly intended to be used in applications where a lot of strings have
to be stored and manipulating them is not time-critical. Strings can be stored packed in
EEPROM and then depacked into RAM for processing.

void unpackstr(__far char *d, __far const unsigned short *s) {
register __d __far const unsigned short *sr = s;
register __c __far unsigned char *dr = d;
while (1) {

register __b0 unsigned short sd = *sr++;
if ((*dr++ = (sd>>8)) == 0)

break;
if ((*dr++ = (sd & 0xff)) == 0)

break;
}

}

Rev. 3.2 Page 42 Aug 15, 2002

Software Tools User’s Manual
VS DSP

Chapter 3

VSA - VS DSP Symbolic Assembler

3.1 Synopsis

vsa [-o objFile | -ol objFile | -mf memFile | -m] [-v] [-V]
[-l listFile] [-L] [-c confFile] [-w] [-W] [-I preIncDir ...]
[-i postIncDir ...] [-D ppSymbol ...] sourceFile

Command line options may appear in any order.

3.2 Description

VSA is a powerful and fast macro assembler for the VSDSP processor. This docu-
mentation will cover all the details of the compiler not decribed in the VSDSP User’s
Manual.

Before using VSA, it is a good idea to set the operating system environmental vari-
ableVSDSPDIR to point to the directory containing the hardware configuration file
hw desc and memory configuration filememdesc . In UNIX, this can typically be
done with the following command:
setenv VSDSP_DIR /vsdsp/config
where the directory mentioned should be the correct directory. In a DOS window under
Windows 95 or Windows NT the command is:
set VSDSP_DIR="C:\vsdsp\config"

All keywords may be written in either upper-case or lower-case. For the sake of clarity
all of them are written in upper-case in this document.

Rev. 3.2 Page 43 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

3.3 Options

Zero or one link options (-o , -ol , -m and-mf) can be defined for one compilation. If
none of the link file options is defined, the compiler will try to replace the source file
name (e.g.test.s) with a corresponding object file name (e.g.test.o), and write
the output in COFF format.

-o objFile
Define the COFF object file to write the generated program
to. If the program has no unresolvable references, the
resulting file will be executable, otherwise it can be used
by the VS_DSP linker to get an executable program.

-ol lodFile
Output to the given lod file.
The program must be executable, i.e. there must not be any
unresolvable references.

-m Use the default memory description file when compiling.
An output file is created for each section of the program,
named <sectName>.m, where <sectName> is the name of the
program section.
The program must be executable, i.e. there must not be any
unresolvable references.

-mf memFile
Use the given memory description file, otherwise like -m.

-v Verbose mode on: tell about the compilation after finished.
-V Verbose mode off: be quiet if nothing was wrong with

the compilation. (default)
-l listFile

Define a file where to output a verbose listing of the
program. If neither this nor a -L is defined, no list file
is written.

-L Like -l, but write the listing to stdout.
-c confFile

Define a hardware configuration file where to read the
hardware configuration from. If not defined, the standard
hardware configuration file is used. If no hardware
configuration file is found, a warning is displayed and an
internal default configuration is used.

-w Turn warning of unused labels on.
-W Turn warning of unused labels off. (default)
-I dir

Add a directory before the current directory but after all
other -I directories to the #include <file> search tree.
A ’/’ may end the directory name, but is not required. This
option may be repeated.

-i dir
Add a directory to the end of the #include <file> search

Rev. 3.2 Page 44 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

tree. A ’/’ may end the directory name, but is not
required. This option may be repeated.

-D ppSym
Defines preprocessor symbol ppSym. This can be used for
conditional compilation with the preprocessor directive
#ifdef. A value can be defined by using an equal sign
(sym=value).

3.4 Examples

vsa -o test.o test.s -L
Reads test.s and creates a COFF file called test.o. Will also send a listing of the
file to stdout .

vsa -o test.o test.s -I first -i second last/ -I second
-i last
Reads test.s and creates a COFF file called test.o. The search path for#include
<file > commands is: ”first/ ”, ” second/ ”, ” ./ ”, ” second last/ ”,
” last/ ”.

3.5 Preprocessor

Whenvsa is started, the input is first fed through a C-like preprocessor. The C pre-
processor reads its input, divides it into tokens, parses the input, replaces macros and
definitions, inserts whitespace characters between the tokens, and outputs the result one
character at a time to the main compiler.

It is important to understand that the preprocessor works on a token basis. A token is
any reserved word or identifier, a number, a string, or a special character like ’#’, ’,’, ’(’,
or ’.’. A whitespace is always added between tokens, and a line is always converted by
the preprocessor as follows:

Original:
ldc 0,d1

Output from the preprocessor:
ldc 0 , d1

Rev. 3.2 Page 45 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

If adding spaces between tokens is for some reason not desirable (like in some macros),
a ’#’ character between two tokens can be added to force them not to be separated:

Original:
ld#c 0#,#d#1

Output from the preprocessor:
ldc 0,d1

The example above is not a particularly great one, but this feature can be really useful in
some macros where the programmer wants to, for instance, define a register name that
is to be used by the macro:

// Macro scales Reg1 up by n-bits. _ScaleUpCoef is used
// by this macro
#macro ScaleUp Reg1, Reg2, _ScaleUpCoef

MULSS Reg1#1, _ScaleUpCoef
ADD NULL, P, Reg2
MULUU Reg1#0, _ScaleUpCoef
ADD NULL, P, Reg1
OR Reg2#0, Reg1#1, Reg1#1

#endm

ScaleUp d,a,c1 // A valid call to the macro

Please notice that at this moment the parsing of ’#’ characters is only done at the output
stage of the preprocessor.

3.5.1 Preprocessor directives

A preprocessor directive always starts with a ’#’ as the first non-blank character on
the line, and it takes up the whole line. At this moment, the following preprocessor
directives are supported:

#include "file.i" | #include <file.i >
#include "file.i"
Includesfile.i in the current working directory as if the code infile.i was
written instead of the#include command.

#include <file.i >
As the previous form, but may search the file from several directories. First, direc-
tories added with the command line directive-I are searched. Then the current
directory is searched. Finally the directories added with-i are searched.

Rev. 3.2 Page 46 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

#define x | #define x y
#define x
Defines the preprocessor symbolx . Any instance ofx in normal code will be
removed.

#define x y
Defines the preprocessor symbolx to be replaced byy . If y is an expression,
it is a good idea to enclose it in a pair of parenthesis, like#define base
(old+7) .

#undef x
Undefines the preprocessor symbolx .

#if expr
Tests for preprocessor expressions. If the expression is true, the following com-
mands and directives upto the next#else or #endif are performed. For more
information on how expressions can be made, see section 3.5.3.

#ifdef x
Tests, whether preprocessor symbolx is defined or not. If it is, the following
commands and directives upto the next#else or #endif are performed.

#ifndef x
Tests, whether preprocessor symbolx is defined or not. If it isn’t, the following
commands and directives upto the next#else or #endif are performed.

#else
Reverses the effect of an earlier#ifdef , #ifndef or #else . Note, that it is
allowed to have multiple#else s for one#ifdef or #ifndef .

#endif
Ends a condition set up by an earlier#ifdef or #ifndef .

Rev. 3.2 Page 47 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

#macro name [par1 [,par2 [,par3 ...]]]
#macro name
Defines the macro symbolname and begins macro recording. Any instance of
name in normal code will be replaced by the contents of the macro.

#macro name par1 [,par2 [,par3 ...]]]
Defines the macro symbolname and begin macro recording. Any instance of
name with correct arguments in normal code will be replaced by the contents of
the macro.

Example:

#macro multiply a,b
(a*b)

#endm

Which will be called as follows:

multiply 2,3

A macro can consist of several lines. However, the last line feed is taken away
from the macro. This will result in the fact that one-line macros like the one above
can be used as a part of a program line. In the example case the macro would
evaluated as(2*3) without a line feed.

When calling a macro, the parameters are not surrounded with parenthesis. Be-
cause of this, the end of the parameter list must be recognized differently. A macro
parameter list is terminated by any of the following events:

• An end-of-line character is reached.

• A semicolon (”;”) is reached.

• The preprocessor is parsing the last parameter, and a comma (”,”) is reached.

It is not possible to define a macro inside a macro.

#endm
Ends macro recording.

Rev. 3.2 Page 48 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

3.5.2 Preprocessor constants

By default, the preprocessor has some predefined constants, that reflect the configuration
of the core. Programmers can use these values to check whether the algorithm is suitable
for the given core or to make it possible to write scalable code.

COREVERSION
The core version number fromhw desc.

DATAWORD(8..64)
The datapath size.

DATAADDRESS(8..23)
Address size (<= DATAWORD).

PROGRAMWORD(32)
Instruction size.

PROGRAMADDRESS(11..20)
Program address size (<= DATAWORD).

GUARDBITS(0..16)
Guard bits for accumulators.

LOOPREGS(0..8)
Number of loop register sets.

ADDRESSMODE(0..7)
Address mode. The following bits are defined:

• bit 0 = modulo (if set,ADDRESSMODEMODULOis set to 1, otherwise 0)

• bit 1 = bitrev (if set,ADDRESSMODEBITREV is set to 1, otherwise 0)

• bit 2 = <reserved>

Rev. 3.2 Page 49 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

3.5.3 Preprocessor #if and expressions

The VSA preprocessor’s #if directive can handle complex expressions that can be used
for conditional compilation. An #if expression has the following form:

expr : and-expr
| or-expr ".or." and-expr
;

and-expr: not-expr
| and-expr ".and." not-expr
;

not-expr: compare-expr
| not-expr ".not." compare-expr
;

compare-expr
: bin-or-expr
| compare-expr ".gt." bin-or-expr
| string ".gt." bin-or-expr /* Don’t use */
| compare-expr ".gt." string /* Don’t use */
| string ".gt." string
| compare-expr ".ge." bin-or-expr
| string ".ge." bin-or-expr /* Don’t use */
| compare-expr ".ge." string /* Don’t use */
| string ".ge." string
| compare-expr ".lt." bin-or-expr
| string ".lt." bin-or-expr /* Don’t use */
| compare-expr ".lt." string /* Don’t use */
| string ".lt." string
| compare-expr ".le." bin-or-expr
| string ".le." bin-or-expr /* Don’t use */
| compare-expr ".le." string /* Don’t use */
| string ".le." string
| compare-expr ".eq." bin-or-expr
| string ".eq." bin-or-expr
| compare-expr ".eq." string
| string ".eq." string
| compare-expr ".ne." bin-or-expr
| string ".ne." bin-or-expr
| compare-expr ".ne." string
| string ".ne." string
;

Rev. 3.2 Page 50 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

bin-or-expr
: bin-and-expr
| bin-or-expr ’|’ bin-and-expr
;

bin-and-expr
: add-expr
| bin-and-expr ’&’ add-expr
;

add-expr
: mul-expr
| add-expr ’+’ mul-expr
| add-expr ’-’ mul-expr
;

mul-expr
: neg-expr
| mul-expr ’*’ neg-expr
| mul-expr ’/’ neg-expr
| mul-expr ’%’ neg-expr
;

neg-expr
: prim-expr
| ’˜’ prim-expr
| ’-’ prim-expr
;

prim-expr
: ’(’ or-expr ’)’
| pos-int-const
;

As can be seen from the syntax, the expression types are introduced in an ascending
precedence order. Thus, anadd expr is of lower precedence than amul expr .

Rev. 3.2 Page 51 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

Notice:

• Preprocessor directives are not short boolean evaluated.

• An empty #if line is evaluated as FALSE.

• All truth expressions evaluate to either 0 or 1, where 0 is FALSE and 1 TRUE.
This will not change in the future so it may be used by the programmer. Example:
To see if at least 2 out of 3 conditions are true, the following expression can be
used:
#if ((f1 .eq. f2) + (f3 .eq. f4) + (f5 .eq. f6)) .ge. 2

• Unlike all other preprocessor directives, #If expressions are evaluated for macros
and preprocessor replacements. However, the author strongly discourages redefin-
ing the word ”if”. In that case, preprocessor behaviour is undefined.

The following example code demonstrates how to use the #if directive:

#define one 1
#define two 2
#define sum (one+two)

#if sum .ge. 3 // Evaluates: (1+2) .ge. 3 -> 1, i.e. TRUE
/* TRUE */

#else
/* FALSE */

#endif

#if lfsr .gt. reference // Untrue, ’l’ is before ’r’
#endif

#if string .lt. 3 // Dont compare names to numbers
// with .gt. .le. .lt. .le.

#endif

#if string .ne. 3 // Always true, since string is always
// different from any number
// (unless string #defined to be 3)
#endif

Rev. 3.2 Page 52 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

3.6 Program lines

A program line consists of an optional label and an optional directive or an optional
command line. This may be followed by an optional to-end-of-line comment.

A command line consists of one or more instructions that can be inserted in one VSDSP
instruction word. The instructions are separated with a semicolon.

The following lines are syntactically valid program lines:

.sect code,MyProgram
multi:

add null,p,a
myJump: ldc 0x7fff,c0 // Starts the subroutine

// Intentionally empty line
sub NULL,ONES,a0; ldx (i6)+1,c0

.end

3.7 Comments

VSA understands two kinds of comments: Block comments and to-end-of-line com-
ments. C++ -conventions are used for the comments.

Block comments begin with a ’/* ’ and they end with a ’*/ ’. Block comments can not
be nested.

To-end-of-line comments start with a ’// ’ and continue until the end of the line.

Rev. 3.2 Page 53 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

3.8 Directives

.SECT stype , name | .SECT stype
Defines a new section.stype may be one of the following:CODE, CODEFAR,
DATAX, DATAY, DATAXY, DATAFAR. If no name is defined, it will be the
same as the type. If a section with the given name has already been defined, no
new section is created, but the following code is output to the end of the section.

There must always be a.SECT directive before any code or data is written.

.IMPORT label [,label [...]]
Tells the compiler these labels are externally defined. This has no effect on lod or
M files.

.EXPORT label [,label [...]]
Tells the compiler these labels are to be shown externally. This has no effect on
lod or M files.

.WORD expression | string , ...
Tells the compiler there is raw data that must be inserted as is. The range of the
words is -(1<<(NO OF BITS-1)) .. ((1<<NO OF BITS-1)-1). Strings are not
null-terminated automatically. Example:

.WORD 17, -0b1011011, @+2, -2.2, @+(lbl1-lbl2), 0xFA

.WORD "Hello, world!\n\0"

.UWORD positive integer | string , ...
Tells the compiler there is raw data that must be inserted as is. Note that only
constant values (not expressions) are allowed. The range of the words is 0 ..
((1<<NO OF BITS)-1). Strings are not null-terminated automatically. Example:

.WORD 17, 0b1011011, 0xFA, "Hello, world!\n\0"

.ORG positive integer [, positive integer]
Tells the compiler to what address the next program or data word is to be com-
piled. The first value gives the link (virtual) address, and the second, optional
value gives the load (physical) address. The link address must match the possibly
defined alignment.

Rev. 3.2 Page 54 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

.ALIGN positive integer
Specifies which alignment to use for a section and the next data generated into a
section. The value must be a power of two, i.e. 1, 2, 4, 8, 16, 32,... If used before
any data is generated into a section, the section start will be aligned according
to the value. If some data is already generated into the section, generates enough
empty space (if needed) so that the next code/data will be correctly aligned.

.FRACT positive integer
Tells the compiler how many bits are to be used as the fractional part of fractional
numbers. The default value is (NOOF BITS-1), i.e. 15 in the default core.

.ZERO expr
Adds given number of zero-valued data words.

.BSS expr
Reserves the requested number of words from a section. If a section does not
contain initialized data, a COFF BSS section is generated, which uses no file
space other than the section header.

.END
Every program must end with this directive, otherwise a warning is displayed. No
lines after this one are read from the input file.

3.9 Expressions

Whereever the ”VSDSP Specification Document” mentions aconstant , it can be
replaced by an expression in VSA. An expression has the following form:

expr32 : expr
| LO (expr)
| HI (expr)
;

expr
: bin-or-expr
| label
| label +- (shift-expr)
| label +- (label - label)
| label +- pos-int-const
| label - label
;

Rev. 3.2 Page 55 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

bin-or-expr
: bin-xor-expr
| bin-or-expr ’|’ bin-xor-expr
;

bin-xor-expr
: bin-and-expr
| bin-xor-expr ’ˆ’ bin-and-expr
;

bin-and-expr
: shift-expr
| bin-and-expr ’&’ shift-expr
;

shift-expr
: add-expr
| shift-expr "<<" add-expr
| shift-expr ">>" add-expr
;

add-expr
: mul-expr
| add-expr +- mul-expr
;

mul-expr
: neg-expr
| mul-expr * neg-expr
| mul-expr / neg-expr
| mul-expr \% neg-expr
;

neg-expr
: prim-expr
| - neg-expr
| ˜ neg-expr
;

prim-expr
: int-const
| fract-expr
| (bin-or-expr)
| (label - label)
;

As can be seen from the syntax, the expression types are introduced in an ascending
precedence order. Thus, anadd-expr is of lower precedence than amul expr .

The label pairs in thelabel - label subexpressions must be from the same section.
A special label name ’@’, that refers to the location of the current code word, is allowed
instead of the firstlabel in expr .

Rev. 3.2 Page 56 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

Examples of valid expressions are:

• 27

• 0x3b + (1-5)*17

• lab1 - (6 | 8)

• lab1 + (23.6-7 >> 2) // Dangerous mixing of int and float

• lab1 + ((lab2 - lab3)*-5)

• lo(200000)

3.10 Labels

Labels are used in defining symbolic names for addresses. A label definition looks like
the following:

• Format 1 -label name:

• Format 2 -$ positive integer:

3.10.1 Label format 1 - labelname:

A label of this kind may begin with one of the following letters: ”A-Z”, ”a-z”, ”.” or ””,
followed by zero or more letters from the group: ”A-Z”, ”a-z”, ”.”, ””, ”0-9”.

A label definition can be in the beginning of any program line or alone on its own line. A
label may also be used as a beginning of a constant expression. (see also Expressions).

An example fragment of a short program using labels:

j myLoop
nop

dblLoop:
... do something ...
j dblLoop
nop

myLoop: ldc 1,i0
...

Rev. 3.2 Page 57 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

An example of a program calling a subroutine:

j store
ldc @+1,LR0 /* Set return address in delay slot */
...

store:
add NULL,p,a ; ldx (i6)+1,null
stx a0,(i6)+1 ; sty a1,(i6)
jr
stx a2,(i6) /* Remember the delay slot! */

3.10.2 Label format 2 - $positiveinteger:

A label of this kind begins always with a ”$”, followed by a positive integer number.

The second format can be used when the programmer wants to make a quick loop or
something similar without reserving any global names for local labels. This format cre-
ates a local label name that is valid only until the next label of format 1. An example:

myFirstLab: // Starts a new local label scope
...code...

$1: // Definition of local label
...code...
j $1 // Jump two steps backwards

mySecondLab: // A new scope is defined
...code...
j $1 // Jump two lines down to the next $1
...code...

$1: // Here the new $1 is defined

If a local label is defined before the first proper label, the name will be generated as
follows: section name + "@@" + label number

Otherwise, the label is generated using the following formula:last label name +
"@" + label number

Thus, the first $1 would translate in the above example tomyFirstLab@1 and the
second tomySecondLab@1.

Rev. 3.2 Page 58 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

3.11 How the compiler works internally

This section discusses in depth how the compiler works internally. By reading this chap-
ter the reader may avoid some common mistakes.

3.11.1 Steps needed to compile a program

This section goes through the steps made by the compiler to compile a whole program.
The operations here are described in the order they happen in the compiler.

The command line options are read and processed.

The hardware configuration is read. If no configuration file is defined in the command
line options, the hardware configuration is read from the filehw desc , or if that fails,
$(VSDSP DIR)/hw desc . On error, an error message is shown.

If a source file name is defined, the source file is opened for reading. If an error in
opening the source file is encountered, an error message is shown and the compiler
exits.

If a listing file name is defined, the listing file is opened for writing. If an error in opening
the list file is encountered, a warning message is shown.

The internal compiler data structures, the lexical analyzer and the preprocessor are
initialized. While initializing, the possible compiler extensions are read from the file
extensions , or if that fails, from$(VSDSP DIR)/extensions . At this point
both upper and lower case versions of the extended commands are added as preproces-
sor macros.

The source file is read and compiled into memory. So far the expressions are not evalu-
ated. Thus ”3-5” is stored as a subtraction expression, not as the result ”-2”.

After the whole source file is read or too many errors are encountered, the lexical ana-
lyzer and preprocessor are reset.

If there were no errors this far, all expressions are resolved. If a faulty expression is
found, or the output is something other than coff and the program can’t be made exe-
cutable, an error message is shown. If warning for unused labels is enabled, the warnings
are shown.

If there were no errors this far and an output file name has been defined, the destination
file is opened for writing. If an error in opening the destination file is encountered, an
error message is shown.

If there were no errors this far the object file is written. If writing or closing the object
file fails, an error message is shown.

Rev. 3.2 Page 59 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

The final message is shown, which tells either of the completion or failure of the com-
pilation.

If the source file name was defined, the source file is closed.

The compiler internal structures are freed.

The compiler exits.

3.11.2 Steps needed to compile one program line

This chapter discusses in depth how a single line is compiled with the main emphasis
on the preprocessor. The operations here are described in the order they happen in the
compiler.

A line from the source file is read by the preprocessor.

The source line is broken into tokens with the help of the lexical analyzer. The lexical
analyzer removes all comments at this point.

One of the following actions take place:

• If in normal mode, and the line starts with a ’#’, the preprocessor symbols are
gone through. If the preprocessor symbol is ’#macro, macro mode is initialized.
However, if the preprocessor is in skip mode, only #ifdef, #ifndef, #else and #endif
directives are handled. They, in turn, can set or unset the skip mode.

• If in normal mode, but the line doesn’t start with a ’#’, the tokens are gone through
one by one, and preprocessor symbols are looked for. If any are found, they are
replaced with their corresponding data. If any replacement took place, the oper-
ation is redone. If it has to be redone more than 64 times, the compiler gives an
error message. However, If the preprocessor is in skip mode, the line is cleared
with the exception of the finishing line feed character before processing.

• If in macro mode, and the line reads ”#endm”, the last line feed character of the
current macro is stripped, the current macro is closed down, and normal mode is
resumed.

• If in macro mode, and the line doesn’t read ”#endm”, the line is recorded as a
macro line and all used macro parameters are recognized and remembered.

The program line tokens are again converted to text, and output from the preprocessor.

Rev. 3.2 Page 60 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

3.12 Hints

3.12.1 Fractional numbers

It is very easy to make errors using fractional numbers. Every fractional number is con-
verted immediately to an integer corresponding to its value. Thus, the result of 6.0/2.0
is not 3.0, but 3. The result of 6.0/2 is 3.0. Also, it must be noted that fractional numbers
work correctly only if they are held at the calculating range at all times. Thus, if the
upper limit for a fractional number is< 4.0, an expression 6.0/2 will lead to an incorrect
value.

3.13 A compilable example program

Here is a short example of a stand-alone, ready-to-compile program.

.sect code
// Calculate a single-sample symmetrical FIR
ldc 0x200,mr0 // integer mode

ldc vector,i0
ldc 1,i1
ldc vectorend-1,i2
ldc -1,i3
ldc multiplier,i4
ldc 1,i5
ldc (vectorend-vector)/2-1,c0

sub a,a,a;ldx (i0)*,b0;ldy (i2)*,b1 // delay line vals
add b0,b1,d1;ldx (i4)*,d0 // multiplier

loop c0,@+3
mul d1,d0 ; ldx (i0)*,b0;ldy (i2)*,b1
//----
add b0,b1,d1 ;ldx (i4)*,d0
mac d1,d0,a ; ldx (i0)*,b0 ; ldy (i2)*,b1
//----
add a,p,a // add the last multiplication result

// A = 218 (0xda)
j 0xface // End vssim simulation
nop

.sect data_x

Rev. 3.2 Page 61 Aug 15, 2002

Software Tools User’s Manual
VS DSP 3. VSA - VS DSP SYMBOLIC ASSEMBLER

.export multiplier
multiplier:

.word 1,2,3,4,4,3,2,1

.sect data_xy

.export vector
.word 0

vector:
.word 1,20,3,-4,5,16,27,58

vectorend:
.word 0 // this word is read, but not used

.end

Rev. 3.2 Page 62 Aug 15, 2002

Software Tools User’s Manual
VS DSP

Chapter 4

VSAR - VS DSP Archiver

4.1 Synopsis

vsar [txsprvud]archive[files]

4.2 Description

vsar is an archiver for common object file format (COFF) object files generated by
vsa to be used in the VSDSP software development environment. The VSDSP linker
(vslink) can directly use the archive files created byvsar as link libraries.

There are also other tools for object file management:vslink (object module linker),
vssym (symbol lister) andvsomd (object module disassembler).

Rev. 3.2 Page 63 Aug 15, 2002

Software Tools User’s Manual
VS DSP 4. VSAR - VS DSP ARCHIVER

4.3 Options

-t List the specified files in the order in which they
appear in the archive.

-x Extract the specified archive members into the
files named by the command line arguments.

-s Recreate symbol table. Obsolete option - this is
done automatically each time the archive is changed
or the symbol table does not exist.

-p Write the contents of the specified archive files
to the standard output.

-v Provide verbose output.
-r Replace or add the specified files to the archive.
-u Update files. When used with the -r option, files

in the archive will be replaced only if the version
in the archive is older.

-d Delete files from archive.
archive

The object library to be operated upon.
files

Object files to add/remove/update/extract.

The options are generally compatible with the standard unixar tool.

See thevslink manual page for a simple example on how to usevsar .

Rev. 3.2 Page 64 Aug 15, 2002

Software Tools User’s Manual
VS DSP

Chapter 5

VSLINK - VS DSP Linker

5.1 Synopsis

vslink [-rksv] [-p I[, X, Y]] [-L libpath] [-o ofile] [-l libname]
[-c linkcmd] files

5.2 Description

vslink is a linker for common object file format (COFF) object files generated by
vsa . The linking process combines object files and routines from a link library and
creates an executable file.

There are also other tools for object file management:vsar (object file archiver),
vssym (symbol lister) andvsomd (object module disassembler).

5.3 Options

-r Incremental linking - preserve relocations
-k Keep relocation information
-s Strip symbols
-v Verbose, give extra information about linking
-L libpath

Add a directory to the library search path
-o target

Set the output filename, default is "a.coff"
-l library

Define a link library to use

Rev. 3.2 Page 65 Aug 15, 2002

Software Tools User’s Manual
VS DSP 5. VSLINK - VS DSP LINKER

files
Object files to be linked

-p page
Physical address change to another page

-c linkcmd
Override the default linker command file vslink.cmd

Linking process starts from the object files defined in the command line. Sections that
have the same name are merged, provided that their flags match, i.e. they are of the same
type. Local symbols are removed. New sections are created as needed.

If any symbol references remain unresolved, link libraries are used to resolve them. Link
libraries are used in the order they are defined in the command line. They are searched
from the directories defined with the-L option, under the namelib libname.a . Only
directories defined this way are searched. If no directories are added, the current working
directory is searched.

In the case of non-incremental linking, i.e. vslink is producing an executable file, the
sections are relocated, so that they don’t overlap. First all fixed sections (sections with
the assembler.org directive) are allocated from their respective memories (the mem-
ory description file defines available memory). If fixed sections are successfully allo-
cated, other, non-fixed sections are allocated starting from the first free memory block
big enough in the order they are defined in the memory description file. The sections are
then relocated to their new starting addresses. In incremental linking this isn’t done.

In incremental linking, the resulting object file is then saved. In non-incremental linking,
the object file should now be executable. Because relocations are not needed anymore,
they are removed in this stage, unless the-k option is used to prevent this (needed if
symbol information is required in the simulator disassembly). Also if the-s option is
given, symbol information is stripped.

With the -p option you can change the physical start (load) address of an executable
program. Code and data page numbers can be set independently.

5.4 memdesc

MEMORY
{

page 0: code: origin = 0, length = 400h
return: origin = faceh, length = 1, option = "quit"

page 1: data_x: origin = 0, length = 400h
page 2: data_y: origin = 0h, length = 400h

io: origin = 7000h, length = 8, option = "vsstdio"
}

Rev. 3.2 Page 66 Aug 15, 2002

Software Tools User’s Manual
VS DSP 5. VSLINK - VS DSP LINKER

Memory description file is not used when doing incremental linking. In non-incremental
linking, the file is first searched from the current working directory. If it doesn’t exist,
or can’t be read, the version in the directory pointed by the environmental variable VS-
DSPDIR is used.

Only entries having no option-field are used by the linker.

Memory block start addresses (origin) and lengths (length) do not currently have
restrictions except that they may not overlap. However, the linker expects an entry to be
either near or far memory, so if you have memory in e.g. 0x8000-0x18000, you should
divide this to two memory block entries: one 0x8000-0x10000, the other 0x10000-
0x18000.

Core parameters are compared when linking, if they exist in the object files or link
library objects. Some backward compatibility is taken into account. Consider the case
when an object file is added to another object file. The file to be added can have more
restrictive parameters, i.e. the number of registers can be smaller, and some options that
are selected in the original file may be disabled. The requirements are that the register
numbers match and in essence all the features used in the object file are available in the
original object file.

Currently the link library routines use on-demand loading of object files. This means
that not the whole link library needs to be loaded into memory if just some of its parts
are used. If an object file in a link library defines a symbol that is needed to resolve an
undefined reference, the whole object is taken from the library.

If there are sections with the same name, but different types, a new section is created,
and a dollar-sign and a number is appended to the original name.

The allocation order of sections is

1. Fixed sections - sections containing the .org directive

2. Near sections - sections that are inside the 16-bit address space

3. Far sections - sections that are inside the 32-bit address space

The allocation of memory is performed in the same order as the memory areas are
defined in the memory description file. Allocation uses first-fit.

Far code containing loop instructions can not be allocated inside the first 0x3100 words
of each far code memory page. This is why sometimes the linker may give an out of
memory error although at first glance there seems to be enough memory left.

Forcing Far Code to External Memory

If you want to have far code to be primarily allocated into far (external) memory, put the
far memory area first in the memdesc file. If you want all near functions automatically
allocated into internal memory, put that memory area next. Only if the internal memory
becomes full, will the linker begin to use the external near memory.

Rev. 3.2 Page 67 Aug 15, 2002

Software Tools User’s Manual
VS DSP 5. VSLINK - VS DSP LINKER

MEMORY
{

page 0: code_far: origin = 10000h, length = 30000h
int_prog: origin = 2000h, length = f00h
near_ext: origin = 4000h, length = c000h

page 1: int_x: origin = 0000h, length = 4000h
intx2: origin = 4000h, length = 8000h
const_x_far: origin = f00000h, length = 80000h

page 2: int_y: origin = 0000h, length = 4000h
}

The behaviour is a little different if the far code memory block is declared later than
near code memory in memdesc. Because near sections are allocated first, they will
be located as before, but now the remaining near code memory is filled with far code.
However, this is not usually beneficial as the near code memory is usually internal RAM
and the far code memory is usually FLASH. RAM contents must be loaded at startup,
which slows down the boot and requires some extra FLASH space.

If internal memory is required for a function becaue of the execution speed, the linker
command filevslink.cmd can be used.

5.5 vslink.cmd

A linker command file can be used to map and force sections into specific memory
areas as found inmemdesc . This file is searched from the current working directory
and then from the configuration directory (VSDSPDIR).

A hash mark at the start of a line marks a line as a comment. Two commands are cur-
rently supported.mapgives a preferred memory area for a section (map section name
memory area) and tries another memory area only if this fails.force performs simi-
larly, except that the linking process fails if the section can’t be placed into the specified
memory area.

force data_x data_x
force data_y data_y
force const_y const_y
force const_x const_x
force appcode int_prog
map Interrupt int_prog
map main code_far

Rev. 3.2 Page 68 Aug 15, 2002

Software Tools User’s Manual
VS DSP 5. VSLINK - VS DSP LINKER

5.6 An Example

The following example consists of four source files and a makefile.

Makefile

exe.o: libtest.a startup.o main.o
vslink -vk startup.o main.o -o exe.o -L./ -ltest

libtest.a: routine1.o routine2.o
vsar ruv libtest.a routine1.o routine2.o

main.o: main.asm
vsa main.asm -o main.o

startup.o: startup.asm
vsa startup.asm -o startup.o

routine1.o: routine1.asm
vsa routine1.asm -o routine1.o

routine2.o: routine2.asm
vsa routine2.asm -o routine2.o

clean:
rm -f *.o libtest.a *˜

startup.asm

.import _main

.sect code

.org 0
reset:

J _main
LDC 0x300,i6 // Setup stack

.org 8
interrupt:

/* prologue */
LDX (i6)+1,NULL // increment stack pointer
STX LR1,(i6)
/* Interrupt routine here */
/* epilogue */
LDX (i6)-1,LR1 // decrement stack pointer
RETI
NOP

.end

main.asm

Rev. 3.2 Page 69 Aug 15, 2002

Software Tools User’s Manual
VS DSP 5. VSLINK - VS DSP LINKER

.export _main

.import storeP

.import restoreP

.sect code
_main:

LDC -1,b0
LDC 1234,b1
CALL storeP // store P-register
MUL b0,b1

CALL restoreP // restore P-register
MAC b1,b1,a

J 0xface // exit simulator
NOP

.end

routine1.asm

.export storeP

.sect code
storeP:

ADD NULL,p,a ; LDX (i6)+1,NULL // Free stack pos.
JR
STX a0,(i6) ; STY a1,(i6)

.end

routine2.asm

.export restoreP

.sect code
restoreP:

LDX (i6)-1,a0 ; LDY (i6),a1
JR
RESP a0,a1

.end

The executable file is built by themake tool. First, the filesroutine1.asm and
routine2.asm are compiled (vsa) and they are used by the VSDSP archiver tool
(vsar) to create a link library.

The filesstartup.asm andmain.asm are compiled next, and finally all routines
are linked together withvslink , producing an executable fileexe.coff . A sample
make run is shown below.

iir 101% make

Rev. 3.2 Page 70 Aug 15, 2002

Software Tools User’s Manual
VS DSP 5. VSLINK - VS DSP LINKER

vsa routine1.asm -o routine1.o
vsa routine2.asm -o routine2.o
vsar ruv libtest.a routine1.o routine2.o
vsar: reading libtest.a
r - routine1.o
r - routine2.o
vsar: writing libtest.a
vsa startup.asm -o startup.o
vsa main.asm -o main.o
vslink -vk startup.o main.o -o exe.o -L./ -ltest
vslink: I’m verbose.
vslink: I have 2 files to process.
vslink: main.o: section types for code don’t match
vslink: creating new section "code$0"
vslink: undefined symbols, using link libraries
vslink: trying library .//libtest.a
vslink: found symbol storeP from library test
vslink: test: section types for code don’t match
vslink: merging data to section "code$0"
vslink: found symbol restoreP from library test
vslink: test: section types for code don’t match
vslink: merging data to section "code$0"
vslink: binding fixed section code to 0:0x0..0xc
vslink: binding section code$0 to 0:0xd..0x1f
vslink: keeping relocations
vslink: writing exe.o

Rev. 3.2 Page 71 Aug 15, 2002

Software Tools User’s Manual
VS DSP

Chapter 6

VSOMD - VS DSP Object Module
Disassembler

6.1 Synopsis

vsomd [-o listfile] file

6.2 Description

vsomd is an object module disassembler for common object file format (COFF) object
files generated byvsa to be used in the VSDSP software development environment.

There are also other tools for object file management:vslink (object module linker),
vssym (symbol lister) andvsar (archiver).

6.3 Options

-o listfile Redirect the output to this file
-n No addresses
file Object file to be disassembled

Contents of the named object file or library/archive are disassembled and printed either
to the standard output or to the file specified with the-o option. Instruction and data
word addresses can be suppressed with the-n option. This in especially convenient
when comparing two object files, when most of the code matches, but addresses don’t.

Rev. 3.2 Page 72 Aug 15, 2002

Software Tools User’s Manual
VS DSP

Chapter 7

VSSYM - VS DSP COFF Symbol
Lister

7.1 Synopsis

vssym [-q] [-Q] [-o listfile] file

7.2 Description

vssym is a symbol lister for common object file format (COFF) object files generated
by vsa to be used in the VSDSP software development environment.

There are also other tools for object file management:vslink (object module linker),
vssym (symbol lister) andvsar (archiver).

7.3 Options

-q Quiet, does not print relocation information
-Q Really quiet, only print total memory usage
-o listfile Redirect the output to this file
file Object file to be disassembled

Relocation and symbol information of the named object file or library/archive are printed
to the standard output or to the file specified with the-o option. Relocation information
can be left out with the-q option.

Rev. 3.2 Page 73 Aug 15, 2002

Software Tools User’s Manual
VS DSP 7. VSSYM - VS DSP COFF SYMBOL LISTER

7.4 Output Format

1. Section-by-section listing of section headers and relocation entries

Section 3: vaddr 0x1d00, paddr 0x1d00, size 0x04f, flags 0x240, name int_x

• the section number

• virtual link address - where the code can be run in

• physical load address - where to load the code to

• the section size in words

• section flags (code, data x/y, fixed, far, bss)

• and section name

Relocations
1: type 0, vaddr 0x000d, symbol [9], r_curval 0x1d00 (_intVectors)
2: type 0, vaddr 0x0016, relative to section 6

• relocation number

• type - 0 = 16-bit, 1 = 32-bit low part, 2 = 32-bit high part

• the offset of the word to relocate from the start of the section

• (a) either a section reference, or
(b) a symbol reference - the symbol number, value, and name are shown

2. Symbol listing

[Index] Value Size Type Bind Other Section Name
[1] | 7489| 0|NULL |GLOB |0 |3 |_readyQueue
[2] | 8594| 0|NULL |GLOB |0 |6 |_AddTimer
[3] | 8429| 0|NULL |GLOB |0 |6 |[_SetTaskPri]

• symbol index - the same value is used in relocations

• symbol value

• object size - 0, size information is not currently supported

• symbolic type - NULL, type information is not currently supported

• scope info - LOCAL means a local symbol (eliminated when linking)

• number of auxiliary entries - 0, not currently supported

• the number of section defining the symbol, or DEBUG / UNDEF / ABS

• and the symbol name

The symbol name is included in brackets if it is not referenced from that object
file.

3. code and data memory summary

total code memory size 0x0729 (1833) words
total X memory size 0x1f6e (8046) words
total Y memory size 0x1d05 (7429) words

Rev. 3.2 Page 74 Aug 15, 2002

Software Tools User’s Manual
VS DSP

Chapter 8

COFF2LOD - COFF-LOD Converter

8.1 Synopsis

coff2lod [-a] [-q] [-z] [-l exec] [-e entry] [-p dev] [-x crystal]
[-s speed] [-ts targetspeed] [-sm speedmultiplier]
[-c basic|gps|pem|ngps] [-b I-mirror-base]
[-bc boot-character] [-bc any|none] [-end string] [-o file]

8.2 Description

coff2lod is a COFF to LOD converter program. It can also be used to upload COFF
executable to a VSDSP chip using a serial port. After the executable is sent, the pro-
gram goes into receive mode, where all bytes received are printed on the screen in
hexadecimal or ascii (-a option). With the-q option the program exits after sending
the executable.

The speed multiplier option (-sm) can be used with serial cards that have 2x or 4x speed
options. The target speed option (-ts) together with chip type (-c) and crystal (-x)
options can be used to change the default bootup serial speed. E.g.
coff2lod -s 9600 -c basic -x 26000 -ts 115200 -l flash.coff

Rev. 3.2 Page 75 Aug 15, 2002

Software Tools User’s Manual
VS DSP 8. COFF2LOD - COFF-LOD CONVERTER

8.3 Options

-a ascii mode -- output the serial data as ASCII
-q quit program after sending the COFF file
-z do not convert/send zeros
-l file to convert/send
-e execution address
-p port/device number
-s serial port initial speed (default: 57600)
-sm serial port speed multiplier (1, 2, or 4)
-ts serial port target speed
-x clock crystal in kHz
-bc value which is expected from chip, or ‘any’, or ‘none’
-c chip type - ‘basic’, ‘gps’, ‘pem’, or ‘ngps’
-b sets the mirror base for ‘gps’
-end quits when string received in ascii mode, 8 chars max
-o file output filename if conversion is requested

Rev. 3.2 Page 76 Aug 15, 2002

Software Tools User’s Manual
VS DSP

Chapter 9

VSSIM - VS DSP Simulator

9.1 Synopsis

vssim [-m mem-desc] [-h hw-desc] [-l executable] [lod-file.lod]

[coff-file.coff] [coff-file.cof] [-c cmd-file] [-log log-file] [-prof prof-file]

[-rt rtrace-file] [-i interrupt-mode] [-r rounding-mode]

9.2 Description

vssim simulates the VSDSP core and RAM memories connected to it. Core param-
eters can be changed by using a hardware configuration file. Different memories are
defined in a memory description file. LOD-format or COFF-format executables gener-
ated by thevsa assembler can be loaded into the simulator. Cycle-based simulation can
be controlled both interactively and using a command script file. A command log can
be used so that the simulation actions can be recorded and the simulation rerun in batch
mode later.

9.3 Options

-m mem-desc
Define the memory configuration file

-h hw-desc
-hw hw-desc

Define the core configuration file
-l executable

Object file to be loaded. In order to be executable,

Rev. 3.2 Page 77 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

the file must not contain any unresolved references
-c cmd-file

Command script file to execute
-log log-file

Command log file
-prof prof-file

Execution profile file
-rt rtrace-file

Register trace file (used by VLSI Solution for hardware
verification)

-i interrupt-mode
Interrupt mode selection

-r rounding-mode
Rounding mode selection

Three different interrupt handling modes can be selected with the-i option. If mode
is 0, interrupt requests happening during interrupt handling will be lost. If mode is 1,
interrupt requests happening during interrupt handling will cause one interrupt only
(edge-triggered mode). If mode is 2, each interrupt request happening during interrupt
handling will cause one interrupt (level-triggered mode). Note that interrupts and resets
are handled equally in this mode. If mode is 2, resets and interrupts will both be queued,
so that it is possible that a reset is performed on the wrong cycle.

Four rounding modes can be selected with the-r option. This option overrides the
setting in the hardware configuration file, and the possible setting in the automatically
loaded executable. The rounding modes are 0 - truncation, 1 - rounding, 2 - convergent-
to-0 and 3 - convergent-to-1.

vssim also supports auto-detection of parameters. If a command line parameter has a
suffix ”.lod ”, it is assumed to be a LOD-file and is automatically read in before the
simulation starts. Similarly, for suffix ”.coff ”, ” .cof ” or ” .o ”, a COFF object file is
assumed. If the suffix is ”.cmd ”, a command file is assumed.

If no command file is given with-c option, nor through the auto-detection feature, the
simulation commands are read from the standard input and the simulation is considered
interactive. Interactive simulation has higher fail level, thus redirecting the input of the
simulator from a file isnot the same as to give a command file name to the simulator.

9.4 Environment

Memory description file and hardware description file are first searched from the current
working directory. If they don’t exist, or can’t be read, the versions found in the directory
pointed by environmental variableVSDSPDIR are used. If the files can’t be located in
any of these places, default core parameters are used.

Rev. 3.2 Page 78 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

If a LOD-file or a COFF object file is defined in the command line, core parameters are
taken from there and only the memory description file is read.

9.5 Files

The file formats handled by the simulator are the hardware description file (hwdesc),
the memory description file (memdesc), the LOD and COFF executable files, the sim-
ulator command file, the simulator log file, the profiler output file and the register trace
file.

9.5.1 memdesc

MEMORY
{

page 0: code: origin = 0, length = 400h
return: origin = faceh, length=1, option = "quit"

page 1: data-x: origin = 0, length = 400h
page 2: data-y: origin = 0h, length = 400h
page 3: infil: origin = 4800h, length=1, option = "<indata"

outfil: origin = 4801h, length=1, option = ">results"
io: origin = 4810h, length=8, option = "vsdspio"

}

The default name for the memory description file ismemdesc , but any name can be
used, provided that the name is given with the-m option on the command line. If the
memory description file is not found in the current working directory, it is searched for
in the directory pointed by theVSDSPDIR environmental variable.

Each memory entry in the memory configuration file consists of a maximum of five
fields. The first one,page , defines the memory page for that entry. The second field
defines a logical name for the entry, e.g.datax . The third field,origin , sets the
starting address, and the fourth field,length , defines the length of the memory block.
An optional field,option , may be used to define special functions for memory entries.
As can be seen,page definition can be omitted when the page does not change.

Currently three special functions are available:

• quit

• >

• <

• vsdspio

Rev. 3.2 Page 79 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

quit defines an end-address for program execution. If instructions are fetched from
memory address that has this option, the simulation is stopped with success return value.
This option is only available in page 0 of the program memory space.

An option starting with< defines an input file, and option starting with> defines an
output file. These options are only available in pages 1, 2, and 3. Pages 1 and 2 are data
memories X and Y, respectively. Page 3 refers to both of them, meaning that page 3 can
be accessed from both X- and Y-bus.

vsdspio is a special module that provides stream output and cycle counter. Function-
ality is as follows:

Address Read Write
0x0 data = Cycles Cycles = data
0x1 reads stdin writes to stdout as ASCII
0x2 reads stdin writes to stdout as decimal
0x3 random value
0x4..7 reserved

Newoption types can be created for memory-mapped I/O devices.

Memory block start addresses (origin) and lengths (length) do not currently have
restrictions except that they may not overlap.

9.5.2 hwdesc

core parameters for default version
dataword 16 // Datapath size
dataaddress 16 // Address size (<= dataword)
programword 32 // Instruction size (only 32 now)
programaddress 16 // Program address size (<= dataword)
multiplierwidth 16 // Multiplier input width (not used)
guardbits 8 // guard bits for accumulators
indexregs 8 // Number of address/modifier registers
aluregs 8 // Number of ALU registers
modifieronly 0 // 0=interchang. - I0(M1)<>I1(M0) etc.

// 1=odd mod-only I0->I1(M0) I2->I3(M2)
// 2=separate modif. regs I0->M0 I1->M1

loopregs 1 // loop registers sets (0, 1 valid)
addressmode 1 // 0= +-m only, 1,2 = +-n%, 3 = bit-rev
modemask 0x077f

version 2 // 0 for version 1, 2 for v2

Rev. 3.2 Page 80 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

The hardware description file defines the target VSDSP architecture. This file is read
by both the assembler and simulator. Architecture restrictions must be obeyed.

9.5.3 LOD files

The simulator reads LOD-format executable files generated by the assembler. LOD-files
contain the core parameters that were used in the assembler stage. If a LOD file is given
as an argument to the simulator, core parameters from the LOD file are used. If a LOD
file is loaded with the ”load” command, the core parameters that are active at that time
are used. If the active parameters and the parameters in the LOD file do not match,
the loading of the LOD file will fail. LOD files are typically generated for use with a
bootloader and not for simulation purposes.

A LOD file typically looks like the following:

_START test.asm 2.0 32 16 16 16 8 8 0 0 8 16 0 8 8 1 1
_COMMENT vsa 2.0, (C)1995-99 VLSI Solution

_SYMBOL X l1 00000000
_SYMBOL Y l2 00001000
_SYMBOL P p1 00020028
_SYMBOL P p2 00020026

_DATA X 0000
1122 3344 5566 0000 1000 FFFF

_DATA Y 1000
1001 2002 3003
_SYMBOL P sub1 0002002E

_DATA X 0000
1122 3344 5566 0000 1000 FFFF

_DATA Y 1000
1001 2002 3003

_DATA X FFFF
AA55 5AA5 AABB CCDD

_DATA X 1BFFE
1234 5678

_DATA P 20000
00000010 30F30024 00000040 28800186 00000080 000000C0 28800256 00000041
00000081 00000043 00000082 29800B80 00000140 40800024 00000000 288004D5
40900024 001DDDC0 001DDDC1 00000081 288005D4 60900024 61000024 00000040
00000081 40140024 42260024 00000440 00000881 4132400F 00000052 29800B80
00000024 BC820024 00000024 28800985 00000045 00000085 00000004 00000400
00000801 40100024 F1000024 64980024 28800A00 002AF350 20000000 60900024

_END 20000

Rev. 3.2 Page 81 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

9.5.4 COFF files

The simulator also reads COFF executable files generated by the assembler. COFF files
contain the core parameters that were used in the assembly stage. If a COFF file is given
as an argument to the simulator, core parameters from the COFF file are used. If a COFF
file is loaded with the ”coff” command, the core parameters that are active at that time
are used. If the active parameters and the parameters in the COFF file do not match, the
loading of the COFF file will fail. It is recommeded to use COFF instead of LOD for the
simulator, because the relocation information in the COFF files make the disassembly
of the code much more readable.

9.5.5 Command files

Command files work in the same way as the interactive mode. The default fail level is
just lower, so that for any error, the reading of the command file is stopped and an error
value is returned. Command files typically look like the following:

failat 20
si 9
si 10
x 0x3f00
s 8
s
s
r
s 4
r
s 5
r
s
r
x 0x3f00
s 10
quit

9.5.6 Log file

By default no log file is generated. With the-log option it is possible to define a log
file for the simulation. Each command that is entered is recorded, whether the simulator
is run in interactive or batch (command script) mode. The log file is directly usable as a
command file. The log file does not include the simulation output.

Rev. 3.2 Page 82 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

9.6 Profiler listing file

There are two ways to generate a profiler listing file. The first one is to givevssim
the command line option-prof and a filename. Execution data is collected during the
simulation, and when the user exits the simulator (using thequit command or when
an end of file is reached) a profiler listing is generated into the named file.

The last executable file loaded to the simulator must still be available for the profiling
listing generation to be accurate or even possible.

Another way to control the profiling is theprofile command. When using this with-
out arguments profiling is toggled on and off. Using the command with a filename argu-
ment generates the profiling list into that file. Note that profiling increases the memory
usage and decreases the speed of the simulation.

The generated profile listing contains:

1. General information about the executable
name, number of sections and symbols
vsmpg.bin: includes optional header, 68 sections,
113 symbols

2. Disassembly of sections in the order they are in the COFF file

• for each instruction:
67968 0.169% 0xb304 0xfe028445 MULSS A1,A0; LDY (I1)+1,C1

– the number of cycles taken for executing the instruction, decoding the
next instruction and fetching the instruction after that

– percentage of the whole simulation

– instruction address in hexadecimal

– instruction code in hexadecimal

– disassembly of the instruction

• summary after each detected code block:
--- > 7053804 17.516% 4248 1660.500 6 synth 1to1

– total cycles spent in the code block

– percentage of the whole simulation

– the number of times entered

– the average number of cycles spent

– the number of cycles / function length

• summary for each section:
===> 7053804 17.516% [synth 1to1]

Rev. 3.2 Page 83 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

– total cycles spent in the section

– percentage of the whole simulation time

3. Operation usage
for each operation type encountered in the simulation:
Unary ALU 433279 1.076%

• the operation type

• number of times executed

• the percentage of these operations per simulation cycles

And a summary line giving the total number of operations and simulation cycles.
Note that wait states affect the operations per cycle count as well as the percentage
values.

4. Parallel operations utilization
for each operation shows what other operations are in parallel

5. Jumps taken and not taken
for each jump condition (and loop end address matches)

• the jump condition

• the number of times jump taken

• the percentage of jumps taken for this jump condition

• the number of times jump not taken

• the percentage of jumps not taken for this jump condition

• the total number of times this jump condition was used

6. Approximate call graph
for each section or function

• function name

• s: average cycles spent in the function

• the number of times called

• t: average cycles spent, including small-memory subroutine calls

• for each subroutine called

– subroutine name

– average cycles spent, including subroutine calls

– average number of times called per parent function

Rev. 3.2 Page 84 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

The call graph only has approximate numbers for mainly two reasons. Current
interrupts cause some instructions to be fetched more times than they are actually
executed, which may confuse the calculation of how many times a function is
entered. One other reason is that some code (for example in the link libraries)
uses fallthrough to the following function, which also confuses the per-function
cycle counting.

A shortened example profiler output follows.

vsmpg.bin: includes optional header, 68 sections, 113 symbols

.sect code,synth_1to1

.org 0xb2ae

_synth_1to1:
4248 0.011% 0xb2ae 0x36130024 LDX (I6)+1,NULL
4248 0.011% 0xb2af 0x3e12b817 STX MR0,(I6)+1; STY I7,(I6)

...

4248 0.011% 0xb300 0x62340024 SUB B0,B1,B0
4248 0.011% 0xb301 0x242ccd8e LOOP LS,0xb336
4248 0.011% 0xb302 0xf4004091 MOVE B0,I1

67968 0.169% 0xb303 0x33100441 LDX (I3)+1,A0; LDY (I1)+1,A1
67968 0.169% 0xb304 0xfe028445 MULSS A1,A0; LDY (I1)+1,C1

...

4248 0.011% 0xb3b3 0x20000000 JR
4248 0.011% 0xb3b4 0x36f29817 LDX (I6)-1,MR0; LDY (I6),I7

---> 7053804 17.516% 4248 1660.500 6 _synth_1to1
===> 7053804 17.516% [synth_1to1]

Operation Usage
===============
Unary ALU 433279 1.076%
Binary ALU 12079337 29.995%
Conditional Jump (Jcc) 1180567 2.932%
Cond Jump LR0 (JRcc) 735208 1.826%
Jump LR1 (RETI) 0 0.000%
Multiply-Accumulate 1898233 4.714%
Multiply 1923733 4.777%
X-Move 19424553 48.234%
Y-Move 7963587 19.775%
Load Constant 5104524 12.675%
Loop 119234 0.296%
Restore P 0 0.000%
MOVE Reg 1429511 3.550%
CALLcc 454418 1.128%

Rev. 3.2 Page 85 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

Custom 0 0.000%
** No Operation 1027448 2.551% **
52746184 operations executed in 40271697 cycles (1.31 op/cycle)

Parallel Operation Utilization
==============================

UALU BALU Jcc JRcc MAC MUL MV X MV Y LDC LOOP MOVE CALL
UALU100% 0% 0% 0% 0% 0% 15% 12% 0% 0% 0% 0%
BALU 0% 100% 0% 0% 0% 0% 27% 6% 0% 0% 5% 0%
Jcc 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
JRcc 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
MAC 0% 0% 0% 0% 100% 0% 53% 45% 0% 0% 0% 0%
MUL 0% 0% 0% 0% 0% 100% 49% 20% 0% 0% 1% 0%
MV X 0% 17% 0% 0% 5% 5% 100% 29% 0% 0% 0% 0%
MV Y 1% 9% 0% 0% 11% 5% 72% 100% 0% 0% 0% 0%
LDC 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
LOOP 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
MOVE 0% 41% 0% 0% 0% 2% 0% 0% 0% 0% 100% 0%
CALL 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Jumps Taken / Not Taken
=======================
ALWAYS T 518472 100.0% + N 0 0.0% = 518472
CS T 364 0.7% + N 53822 99.3% = 54186
ZS T 99037 48.9% + N 103519 51.1% = 202556
LT T 213571 85.7% + N 35755 14.3% = 249326
LE T 289 22.7% + N 982 77.3% = 1271
CC T 5536 18.6% + N 24198 81.4% = 29734
NC T 413 21.2% + N 1534 78.8% = 1947
ZC T 272710 80.9% + N 64225 19.1% = 336935
GE T 56330 62.3% + N 34110 37.7% = 90440
GT T 149685 99.7% + N 431 0.3% = 150116
LOOPEND T 1071668 90.0% + N 119160 10.0% = 1190828

Approximate Call Graph
======================
df_to_short s 18.13 23 t 18.13
df_mul s 32.20 261 t 32.20
df_add s 24.47 260 t 24.47
_sqrt s 153.25 4 t 1230.22

df_div 316.04 3.0
df_add 24.47 3.8
df_lt 11.60 0.8

_atan s 35.00 2 t 46.60
df_lt 11.60 1.0

Rev. 3.2 Page 86 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

9.6.1 Register trace file

A register trace file can be generated with the-rt option. A single line of output is
generated for each simulated cycle. This option is mainly used for co-verification with
other simulator tools.

The register trace output includes the states of fixed registers in a binary notation in the
following order:A0, A1, B0, B1, C0, C1, D0, D1, LR0, LR1, MR0,
MR1, LC, LS, LE, I0, I1, I2, I3, I4, I5, I6, I7, P, PC . All
of the registers are printed with the configured number of bits. Even if the register does
not exist, it is still displayed.

9.7 Commands

All numerical values for commands may be given in decimal, octal (denoted by a leading
zero) or in hexadecimal (denoted by leading ’0x’). Wherever an address is required, a
symbol (label) can be used. However, the symbol must be defined in the corresponding
memory space (program, X or Y memory). For example, for a command which deals
with the program memory, the symbol must be defined in the program address space.

register = value
Assigns a value into register. The change in the register contents is visible imme-
diately, i.e. the write is analogue to a execute-cycle store stage. Also, the program
counter (PC) and the pseudo-registercycles can be written.

memspace: address = value
Assigns a value into a memory location. Different memory spaces areX for X-
memory,Y for Y-memory, andP for program memory. The change is visible im-
mediately. If the address is a memory-mapped I/O device, everything goes exactly
the same way as the normal instruction execution.

> x 0 1
X: 0x0000: 0x0000

> x:0 = 0x1234
> x 0 1

X: 0x0000: 0x1234

Rev. 3.2 Page 87 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

p register
Prints the contents of one register. The register name must be one of the registers
in the core, or the pseudo-registercycles . The P-register can be accessed only
as a single register, not in separate high and low parts.

> p cycles
cycles: 0
> p i4
I4: 233495261
> p le
LE: -1

help [command]
Gives information on command or the command list.

quit
Quits the simulator

failat level
Failat sets the minimum return value that causes the simulation to quit. To abort
simulation on warnings, ”failat 5 ” can be used. Default fail level in scripts is
10 (errors). Fail level 20 is used in interactively controlled simulations.

fill page: start end+1 value
Fill, as the name implies, fills memory fromstart to end with value . page
must be one ofP, X andY.

run command-file[arguments]
Executes commands from a file. If the command file can not be found from the
current directory, the file is searched from a directory indicated by the environ-
mental variableVSDSPCMDDIR. Returns to interactive mode or to the previous
script file when the file end, quit command, or the quit address is reached. Return
codes bigger than the failat level cause recursive exit from every script file.

The optional arguments can be used in the script file. Only whole words can be
replaced. For exampletest.cmd :

load test.coff
watch regs
s %1

When this command file is invoked from the simulator byrun test.cmd 10 ,
the script loads the COFF file, sets the right watch mode, and then simulates for
10 cycles.%1is the first argument passed to the script,%2is the second, and so
on. If the argument does not exist, no replacement is done.

run can be omitted, if the command file name does not equal any of the internal
commands or their synonyms. In this case the command file is first searched from

Rev. 3.2 Page 88 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

the current working directory, then from theVSDSPCMDDIR. If the command
file is not found, ”.cmd ” is appended to the name, and that file is searched from
the previously mentioned directories.

load executable
Reads in a LOD or COFF format file. If the architecture parameters defined in the
hardware description file and the parameters in the LOD/COFF-file do not match,
warnings are generated for each mismatching parameter.

coff coff-file
Reads in a COFF file. If the architecture parameters defined in the hardware de-
scription file and the parameters in the COFF file do not match, warnings are
generated for each mismatching parameter.

r
Register dump displays all registers, program counter, cycle count and the state
of the pipeline (the address from where the instruction was originally fetched and
the disassembled instruction).

> r
A1 : 0x00fa A0 : 0x00fa B1 : 0x0100 B0 : 0x00ff
C1 : 0x0000 C0 : 0x0000 D1 : 0x003f D0 : 0xffff
LR0 : 0xd52a LR1 : 0x0000 MR0 : 0x0200 MR1 : 0x0000
LC : 0x002e LS : 0xd520 LE : 0xd52a
I0 : 0x9b07 I1 : 0x401c I2 : 0x9b0c I3 : 0x84d2
I4 : 0x4033 I5 : 0xa975 I6 : 0x4038 I7 : 0x92ac
IPR0: 0x0000 IPR1: 0x0000
P : 0x00fffa00 =˜ 16775680
A : 0x00fa00fa =˜ 16384250
B : 0x010000ff =˜ 16777471
C : 0x00000000 =˜ 0
D : 0x003fffff =˜ 4194303
PC : 0x0 0xd523 Cycles: 0x0017200b = 1515531 Operations: 326373

Last Exec: 0xd520 LDC 0x100,B1
Next Exec: 0xd521 LDX (I3),B0 ; LDY (I4)-3,NULL
Fetched: 0xd522 MULUU B1,B0 ; LDX (I4)+3,A1

d [start-address[end-address]]
Displays program memory with disassembled instructions and symbol informa-
tion. If the end address is omitted, 8 entries are displayed. If both the start and the
end addresses are missing, the next 8 addresses are displayed.

> d 0
code:

0x0000: 0x0000800a LDC 0x200,MR0
0x0001: 0x00000010 LDC 0x0,I0 /* vektori1 */
0x0002: 0x00000051 LDC 0x1,I1
0x0003: 0x00000012 LDC 0x0,I2 /* vektori2 */
0x0004: 0x00000053 LDC 0x1,I3
0x0005: 0x00000584 LDC 0x16,C0 /* vektori1 + 0x16 */
0x0006: 0x6cc30a2b SUB A,A,A ; LDX (I0)*,B0 ; LDY (I2)*,B1

@000:
0x0007: 0x24000244 LOOP C0,0x9 /* @000 + 0x2 */

Rev. 3.2 Page 89 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

> d
0x0008: 0xfe350a2b MULSS B0,B1; LDX (I0)*,B0; LDY (I2)*,B1
0x0009: 0x54330a2b MAC B0,B1,A; LDX (I0)*,B0; LDY (I2)*,B1
0x000a: 0x28000000 J 0x0000
0x000b: 0x4cb20024 ADD A,P,A
0x000c: 0x283eb380 J 0xface
0x000d: 0x00000024 NOP
0x000e: 0x00000000 LDC 0x0,A0
0x000f: 0x00000000 LDC 0x0,A0

>

The disassembly only shows symbols in operations such as jumps and LDC, if
relocations are present in the loaded object file. LOD-files and COFF executables
linked without the ”-k” option do not have relocation information.

> d @000
@000:

0x0011: 0x15000267 LOOP A3,0x13 /* @000 + 0x2 */
0x0012: 0x00000000 NOP
0x0013: 0x38400000 SUB A0,ONES,A0
0x0014: 0x3f100000 SUB A3,A0,A1
0x0015: 0x73500000 CMPZ A1,A1

@001:
0x0016: 0x18000345 JN A1,0x001a /* @001 + 0x4 */
0x0017: 0x00000000 NOP

@002:
0x0018: 0x18000301 J 0x0018 /* @002 */

x [start-address[end-address]]
Displays X-memory with symbol information. If the end address is omitted, 8
entries are displayed. If both the start and the end addresses are missing, the next
8 addresses are displayed.

> x 0x5fd 0x602
X: 0x05fd: 0x0000
X: 0x05fe: 0x0000
X: 0x05ff: 0x0000
X: 0x0600: <unconnected>
X: 0x0601: <unconnected>

y [start-address[end-address]]
Displays Y-memory with symbol information. If the end address is omitted, 8
entries are displayed. If both the start and the end addresses are missing, the next
8 addresses are displayed.

xy [start-address[end-address]]
Displays X and Y-memory with symbol information. If the end address is omitted,
8 entries are displayed. If both the start and the end addresses are missing, the next
8 addresses are displayed.

Rev. 3.2 Page 90 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

> xy 0 3
X: vector1
Y: vector2
0x0000: X: 0x0001 /* 1 */

Y: 0x0001 /* 1 */
0x0001: X: 0x0002 /* 2 */

Y: 0x0002 /* 2 */
0x0002: X: 0x0003 /* 3 */

Y: 0x0003 /* 3 */
>

g address
Sets a new value for program counter and clears the pipeline. Other register con-
tents remain unchanged.

s [cycles]
Simulates the defined number of cycles. If there is an error, the simulation is
stopped. If the cycle parameter is omitted, only one cycle is simulated, which
corresponds to a single-step operation. The information displayed during the sim-
ulation can be changed with the ”watch ” command.

The simulation is cycle-accurate: the pipeline, change-of-flow instructions, loops
and interrupts are simulated. Register contents change at the end of each cycle, so
that both the old value of a register can be used and the register can be updated in
parallel operations within the same instruction.

sb address [times]
Sets a breakpoint where the simulation will be temporarily halted. If thetimes
parameter exists, the execution continues normally the firsttimes number of
times the address is reached.

rb address [address*]
Removes one or more previously set breakpoints.

lb
Lists all breakpoints.

sr cycle-offset
Schedules a reset. The cycle offset defines how many cycles it takes until the reset
becomes active. The reset is detected on the next cycle. If there is another reset or
interrupt active (the first five cycles), the reset is lost. Reset must be scheduled for
five consecutive cycles to be certain that it will be detected, if other interrupts are
scheduled. If both reset and interrupt activates on the same cycle, reset is given
precedence and the interrupt is lost.

si cycle-offset [loop-time]
Schedules a one-shot or a timer interrupt. The cycle offset defines how many cy-
cles it takes until the interrupt request becomes active. The interrupt is detected

Rev. 3.2 Page 91 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

on the next cycle. If loop time is omitted, a one-shot interrupt is scheduled. Other-
wise the interrupt is rescheduled immediately when it becomes active. Loop times
shorter than 6 cycles are not allowed.

> watch execute interrupts
> si 2
> s 8
Executing: 0x0005 SUB A0,A0,A0
Executing: 0x0006 NOP
Executing: 0x0007 JZC 0x0005 /* test */
Interrupt cycle 1

LR1 = fetch address
Executing: 0x0008 SUB A0,A0,A0
Interrupt cycle 2

0x0008 SUB A0,A0,A0 not change-of-flow inst
-> 0x0009 JZS 0x0005 /* test */ cancelled

Executing: 0x0009 NOP
Interrupt cycle 3
Executing: 0x0008 SUB A0,A0,A0
Interrupt cycle 4
Executing: 0x0009 JZS 0x0005 /* test */
Z flag (potentially) changed by previous instruction
1 error executing instruction
Interrupt cycle 5
Executing: 0x000a NOP
Interrupt idle cycle
>

li
Lists all active interrupts. Loop times are displayed for timer interrupts.

> si 5
> si 10 20
> li
Interrupts/resets:
cycle: 0x00000012 interrupt
cycle: 0x00000017 interrupt looptime: 20

Rev. 3.2 Page 92 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

watch [(on | off)] [execute] [decode] [fetch] [interrupts] [regs]
Defines the output during simulation. Default isregsandinterrupts .

off - no output
on - pipeline and interrupt actions
execute - execute-stage
decode - decode-stage
fetch - instruction fetch
interrupts - interrupt actions
regs - show registers each time simulation stops

watch reg regname [on] [off] [write] [read] [Tvalue] [break]
watch reg sets a register under scrutiny.

off - no watch
write - watch writes to the register
read - watch reads from the register
Tvalue - watch register value, T is one of <, >, =, !.

e.g. "watch reg i0 =0x200 break"
break - cause the simulation to be stopped

when write/read reported

watch mem memspace: address [on] [off] [write] [read] [Tvalue] [break]

watch mem sets a memory location under scrutiny.

off - no watch
write - watch writes to the memory location
read - watch reads from the memory location
Tvalue - watch memory location value, T is one of <,

>, =, !. e.g. "watch mem x:0x10 =0x200 break"
break - cause the simulation to be stopped

when write/read reported

write memspace: start end filename
Writes memory into a file in ASCII format, one value per line. Different memory
spaces areX for X-memory,Y for Y-memory, andP for program memory. If the
address is a memory-mapped I/O device, everything goes exactly the same way
as the normal instruction execution.

read memspace: start filename
Reads data into memory from a file, which is in ASCII format, one value per
line. Different memory spaces areX for X-memory,Y for Y-memory, andP for
program memory. If the address is a memory-mapped I/O device, everything goes
exactly the same way as the normal instruction execution.

Rev. 3.2 Page 93 Aug 15, 2002

Software Tools User’s Manual
VS DSP 9. VSSIM - VS DSP SIMULATOR

where
Outputs the name of the section where the execution is currently proceeding. Also
displays the last non-local symbol before the current program counter value.

skip
Executes the code until a breakpoint, error or a return (JR) to the same execution
level (subroutine-wise).Skip is useful in skipping subroutines without single-
stepping.

profile [filename] [on] [off]
Without the filename toggles profiling on/off. All previously gathered profiling
information will be lost when profiling is turned on. If a filename is given, a
profiler listing is created into that file, when the profiling is on.

dump [filename]
Creates a snapshot file of the state of the simulator memory, registers and pipeline.

undump [filename]
Reads a snapshot file of the state of the simulator memory, registers and pipeline.
The simulator configuration must be the same it was when the dump was created,
otherwise the behaviour of the simulator is undefined.

echo [text]
Echoes its arguments to the standard output.

Rev. 3.2 Page 94 Aug 15, 2002

Software Tools User’s Manual
VS DSP

Chapter 10

Installing and First Steps Using
VS DSP Tools

10.1 Overview

This chapter presents the necessary steps the user must take before he can use the
VS DSP tools to compile and link programs and libraries. Also, a programmer new
to the architecture is led step-by-step through the first compilations and software simu-
lations.

The chapter assumes the reader knows ANSI C language and has some idea of what
assembly language looks like. It is also assumed that such terms as ”compiler”, ”linker”
and ”profiler” are familiar.

This is a very brief chapter and does not go into smallest details. While this necessarily
causes some important things to be omitted, this chapter should be able to serve as a
crash course to VLSI Solution’s VSDSP architecture. Further details should be looked
for in VS DSP reference manuals.

10.2 Installing the VS DSP Tools

To install the VSDSP tools the following steps need to be taken:

Copy the files from the distribution directory"bin" to a directory on your hard disc
(e.g.C: \VSDSP\ on a Windows-based computer or/usr/local/bin/vsdsp/ on
a Unix-based computer). Copy also the subdirectories, especially"config" .

If there is no path to the directory, add it (Windows/DOS: add directory to PATH
command of AUTOEXEC.BAT, Unix: Add directory to your appropriate shell startup

Rev. 3.2 Page 95 Aug 15, 2002

Software Tools User’s Manual
VS DSP 10. INSTALLING AND FIRST STEPS USING VSDSP TOOLS

script).

Now that the path is set, you should be able to run the VSDSP programs. Try this by
giving the command"vsa" , which should without any command line options give the
following message:"*** ERROR: No input file defined!"

Now it is time to set the configuration directory. This is done by setting the environmen-
tal variable VSDSPDIR (Windows/DOS: Add ’SET VSDSPDIR C:\VSDSP\CONFIG’,
Unix ’setenv VSDSPDIR /usr/local/bin/vsdsp/config’ (slightly dependent on the shell
used)).

If using a Windows system, reboot the machine to activate the changes, on Unix restart
your shell or run your shell’s startup-script.

After these operations, you might want to copy all the files from directorysrc to your
working directory. Later we’ll be editing these files. Note, that the source files may be
in Unix ascii format with only an LF indicating a new line instead of Windows’ CRLF,
so some old editors may have problems with them.

10.3 Compiling the First Assembly Program with VSA

In directorysrc , which you should copy to your working directory, there are several
test programs. One of them issimple.s . This is a very simple assembly language
program that first copies 4 data words from one location to another, and then copies
yet another 16 data words with a different method. Refer to the source code for further
details.

If running under Unix, have a look atMakefile (it may also be useful under Windows
for those who have a version of GNU Make utility installed). Change the directory for
the VSDSP tools to reflect where you have the tools, and command"make" . This
should compile and link all the example programs mentioned in this chapter.

Under Windows, or if you want to try compiling compile programs by hand in Unix,
command"vsa -o simple.cof simple.s" .

Now you have created a COFF object filesimple.cof .

10.4 Linking the First Assembly Program with VSLINK

To get a running program, you have to link the program to an executable binary file. This
is done as follows under Windows:"vslink -k -L C: \VSDSP\libc16 -lsim
-o simple.bin C: \VSDSP\libc16 \ startup2.o simple.cof" . Under unix,
change the directory name to the location where you put your VSDSP software tools.

Rev. 3.2 Page 96 Aug 15, 2002

Software Tools User’s Manual
VS DSP 10. INSTALLING AND FIRST STEPS USING VSDSP TOOLS

If all went well, you should now have a properly compiled executable COFF file called
simple.bin . The binary is now linked with a simple startup code from library file
startup2.o , which provides a 256-word stack and theexit(); routine.

10.5 Running the First Assembly Program with VSSIM

Now that you have an executable program, you can start VSSIM by commanding"vssim
-m memdesc.sim -l simple.bin -prof simple.prof" . You should get
approximately the following output:

VSSIM 2.0 May 14 2002 16:10:57 (C)1995-2002 VLSI Solution
Reading COFF file
simple.bin: includes optional header, 7 sections, 4 symbols
Section 1: stack_x 1:0x0000..0x0100 [257] fixed
Section 2: stack_y 2:0x0000..0x00ff [256] fixed
Section 3: reset 0:0x0000..0x0001 [2] fixed
Section 4: startup 0:0x0002..0x000d [12]
Section 5: main 0:0x000e..0x001b [14]
Section 6: const_x 1:0x2000..0x2013 [20]
Section 7: data_Y 2:0x2000..0x2013 [20]

Here you can see all the data sections, their types (0=code, 1=X, 2=Y), their link ad-
dresses, their lengths, and whether they are compiled to fixed or relocatable addresses.

If you are interested in the inital state of all the hardware registers, you may try the
command"r" . You will be presented with the following kind of output:

A2 : 0x00 A1 : 0x1acc A0 : 0x1acc
B2 : 0x00 B1 : 0x1acc B0 : 0x1acc
C2 : 0x00 C1 : 0x1acc C0 : 0x1acc
D2 : 0x00 D1 : 0x1acc D0 : 0x1acc
LR0 : 0xdadd LR1 : 0xdadd MR0 : 0x0000 MR1 : 0x0000
LC : 0x0000 LS : 0x0000 LE : 0xffff
I0 : 0xdadd I1 : 0xdadd I2 : 0xdadd I3 : 0xdadd
I4 : 0xdadd I5 : 0xdadd I6 : 0xdadd I7 : 0xdadd
A2 : 0x00 B2 : 0x00 C2 : 0x00 D2 : 0x00
P : 0x00000000 =˜ 0
A : 0x001acc1acc =˜ 449583820
B : 0x001acc1acc =˜ 449583820
C : 0x001acc1acc =˜ 449583820
D : 0x001acc1acc =˜ 449583820
PC : 0x0 0x0000 Cycles: 0x00000000 = 0 Operations: 0

Last Exec: 0x0000 LDC 0x0,A0 /* section startup */
Next Exec: 0x0000 LDC 0x0,A0 /* section startup */
Fetched: 0x0000 LDC 0x0,A0 /* section startup */

Rev. 3.2 Page 97 Aug 15, 2002

Software Tools User’s Manual
VS DSP 10. INSTALLING AND FIRST STEPS USING VSDSP TOOLS

Here you can see the full state of the VSDSP processor core. First all 16-bit arith-
metic registers (A0..D1) and their guard bit registers (A2..D2) are shown, then the return
pointers (LR0/1) and mode registers (MR0/1), then the loop (LC, LS, LE) and address
registers (I0..I7), then the guard bit registers again and the multiplication result register
(P). Then arithmetic register values are reshown as combined values (A2, A1 and A0
combined to a 40-bit full-length register A, and so on), followed by the program counter.
Finally the processor pipeline is shown, and as no instructions have yet been executed,
it is full of zero instruction words.

Now, to run the processor for one clock cycle, command"s" . In this reset cycle all
registers are cleared, and by executing the"s" command a couple times more, you will
see that your first assembly language commands start executing.

Now, if you want to take a look at the X memory constant data area labeled readArea in
the source code, you may do so by issuing the command"x readArea" . The output
should look as follows:

readArea:
X: 0x0100: 0xface /* -1330 */
X: 0x0101: 0xcafe /*-13570 */
X: 0x0102: 0xcace /*-13618 */
X: 0x0103: 0x1234 /* 4660 */
X: 0x0104: 0x0001 /* 1 */
X: 0x0105: 0x0002 /* 2 */
X: 0x0106: 0x0003 /* 3 */
X: 0x0107: 0x0004 /* 4 */

Here you can see 8 addresses with their contents shown in both hexadecimal and decimal
notation. If you want to see further, command"x" without any parameters.

Now if you want to run a few more steps, command"s 5" . This will run the processor
for 5 clock cycles. To finish the simulation, command"s 1000000" . Now the sim-
ulator tries to run 1000000 cycles, but before you ever get close to that, you’ll get the
following message:

Fetched from unconnected memory at 0x001a
Last Exec: [000001] 0x001a J 0xffff
[... register dump ...]

The simulator does not accept illegal read, write or execute operations, and by putting
one operation like that just before the end of the code, one can make sure the simulation
stops when the whole program is executed.

For more details about the numerous commands available in VSSIM, type"help" . For
a particular command, e.g.watch, type"help watch" .

Rev. 3.2 Page 98 Aug 15, 2002

Software Tools User’s Manual
VS DSP 10. INSTALLING AND FIRST STEPS USING VSDSP TOOLS

While you exit the simulator with the command"exit" , an execution profile file called
"simple.prof" is generated. In this profile file you can read some interesting statis-
tics about your program run. See section 11.3 or more details.

10.6 Compiling, Linking, Running the First C Program

Now that you hopefully feel yourself comfortable compiling simple assembly language
programs, we take a step further and try compiling a C source code program. For this
task there is an example program calledprime.c that calculates which numbers be-
tween 2 and 4096 are prime numbers, i.e. divisible only by themselves and 1.

For further details about ANSI C language seeBrian W. Kernighan / Dennis M. Ritchie:
The C Programming Language - Second Edition / ISBN 0-13-110362-8.

Again, we’ll start by compiling. This time the appropriate command is
"vcc -IC: \VSDSP\libc16 -O -fsmall-mem -o prime.cof prime.c" .
The output of VCC looks approximately like this:

Successfully compiled 164 lines (46 in source file)
(150 118 115 115 115)
C 115 CF 0 X 61 Y 256 F 0

The first number on the second line (150) tells how many code words the original length
of the compiled program was, and each successive number tells how much was left after
each recursive optimization step. The number of optimization rounds varies with code
size, and the more there is code, the more steps are generally done.

The last line of the compiler output tells the final size of the object file (in 32-bit code
and 16-bit data words). It is interpreted as follows: C = code, CF = far (32-bit) code, X
= X memory, Y = Y memory, F = far (32-bit) X memory.

The C compiler has now created a file calledprime.a and sent that file forward to the
assembler, which in turn outputsprime.cof . If you want to see what kind of assembly
language code the compiler generated, take a look atprime.a .

The C program is linked like the assembly language program:
"vslink -k -L C: \VSDSP\libc16 -lsim -o prime.bin
C: \VSDSP\libc16 \ startup2.o prime.cof" . Again, remember to change the
directory name according to the location where you put your VSDSP software tools.

Now you can simulate the system as you did with the earlier programsimple . One
interesting command you might like to try in the simulator is"where" , which tells
you which C function you are executing at the moment.

Rev. 3.2 Page 99 Aug 15, 2002

Software Tools User’s Manual
VS DSP 10. INSTALLING AND FIRST STEPS USING VSDSP TOOLS

10.7 Compiling and Linking Multiple Object Files

To compile multiple object files into one executable program, all you really have to do
is first to separately compile the C and/or assembler source files and then link them
together.

You can try a multiple source file compilation by first compiling the C source file
"vcctest.c" to vcctest.cof , then assembler source file"vcctestasm.s"
to vcctestasm.cof . Just do it as we did with the earlier examples.

Now, linking these two modules together is easy. Just say"vslink -k -L
C: \VSDSP\libc16 -lsim -o vcctest.bin
C: \VSDSP\libc16 \ startup2.o vcctest.cof vcctestasm.cof" .
All the COFF files presented to VSLINK are compiled in the same destination file.

Actually, the program you have created is the same program that is used in optimization
examples in section 11.7. Now, with the help of the profiler, you can try to make the
same speed measurements. After that, you might want to change the programs slightly
or start creating your own programs.

However, before creating your own C programs, it is recommended to read the chap-
ter 11.

Rev. 3.2 Page 100 Aug 15, 2002

Software Tools User’s Manual
VS DSP

Chapter 11

VCC Programming Tips

11.1 General

VCC is a powerful ANSI C compiler that has the potential of creating very efficient and
small code. However, to gain its full potential it is good for the programmer to have some
knowledge of its inner workings and to understand what kind of code is most suitable
for the compiler. By slightly adjusting one’s code, even five-fold speed increments can
be achieved. Usually also the program code size is reduced.

For optimal performance, one who has never worked with a two-data-bus DSP archi-
tecture should pause to consider the possibilities the VSDSP architecture gives: in one
clock cycle, two memory read/write operations may be executed as long as the opera-
tions operate on different data buses, i.e. the other is done to/from X memory (compiler
default) and the other to/from Y memory (must be switched on by the user).

11.2 Pointers, X and Y Memory

Normal variables and tables can easily lie in either X or Y memory; they can be put
where there is space. However, with pointer variables one must take care to keep the
pointer pointing to the correct kind of memory. For instance, the following code is in-
valid and will not compile:

void MyFunc(void) {
static int __y table[256]; /* Table put to Y memory */
int *p = table; /* WRONG! Pointer to X memory! */

[... code ...]
}

Rev. 3.2 Page 101 Aug 15, 2002

Software Tools User’s Manual
VS DSP 11. VCC PROGRAMMING TIPS

The correct way to write the function is as follows:

void MyFunc(void) {
static int __y table[256]; /* Table put to Y memory */
int __y *p = table; /* RIGHT: Pointer in Y mem */

/* points to Y memory */

[... code ...]
}

However, there are times when one wants the pointer to be in other memory, and the
data to be in other memory. If we absolutely want the previous pointerp to be in X
memory, we can write the code as follows:

void MyFunc(void) {
static int __y table[256]; /* Table put to Y memory */
int __y * __x p = table; /* Also RIGHT:Pointer in X mem */

/* points to Y memory */

[... code ...]
}

11.3 Using the Profiler

The VSSIM simulator’s built-in profiler is a very powerful tool when optimizing C
or assembly code. To activate the profiler use the option-prof filename.prof
when starting VSSIM. Alternatively you can use the commandprofile after starting
the simulator.

11.3.1 Reading Profiler Output

When exiting VSSIM, the profiler output is written to the named file. Profiler output will
be provided for each and every instruction word executed. Often, however, the user is
only interested in the total execution times for whole functions. This can be achieved by
searching for those lines in the profile file that have the string" ---" in them (Use e.g.
grepunder Unix, andfind under Windows/DOS. Since the profile file is in a line-based
text format, any general-purpose text-search program will do). The output of the search
is as follows:

---> 4 0.019% 3 1.33 2 reset
---> 7 0.034% 1 7.00 1 startup

Rev. 3.2 Page 102 Aug 15, 2002

Software Tools User’s Manual
VS DSP 11. VCC PROGRAMMING TIPS

---> 4 0.019% 1 4.00 0 _exit
---> 0 0.000% 0 0.00 0 _Void
---> 3100 15.089% 1 3100.00 77 _MemCpy0
---> 2587 12.592% 1 2587.00 69 _MemCpy1
---> 2072 10.085% 1 2072.00 64 _MemCpy2
---> 539 2.624% 1 539.00 18 _MemCpy3
---> 539 2.624% 1 539.00 18 _MemCpy4
---> 321 1.562% 1 321.00 7 _MemCpy5
---> 3338 16.247% 1 3338.00 115 _StrCpy0
---> 2571 12.514% 1 2571.00 122 _StrCpy1
---> 1037 5.047% 1 1037.00 61 _StrCpy2
---> 1037 5.047% 1 1037.00 61 _StrCpy3
---> 447 2.176% 1 447.00 10 _FIR
---> 2658 12.937% 1 2658.00 22 _main
---> 272 1.324% 1 272.00 16 _AsmFIR

The first number (3100 forMemCpy0()) tells the total number of clock cycles spent in
the function.

The second number (15.089 %) tells the relative clock count spent in the function (total
= 100%).

The third number tells (1) how many times the function was called.

The fourth number (3100.00) tells the average clock cycle count for the function.

The last number (77) tells the so-called ”goodness” number for the function. It is the
number of clock cycles spent in the function divided by its length. Thus, the higher the
number, the more is achieved by putting that function to lower-power or faster memory.

11.3.2 Profiler Feedback to Compiler

After running the profiler, its output can be used to recompile the code to be more
efficient. By adding the option-fprof filename.prof to VCC, it uses the output
of the previous profiler run to optimize branches according to real data.

If more than one simulation output is present, multiple-fprof options may be used.

11.4 FIR Filters and C

Writing a FIR filter is one of the tasks that might be best left done in the assembly
code level. However, even a FIR can be written in C. Below is one example. As usual
with DSPs, the other FIR data source is assumed to be in X memory and the other in Y
memory.

Rev. 3.2 Page 103 Aug 15, 2002

Software Tools User’s Manual
VS DSP 11. VCC PROGRAMMING TIPS

In this example the result is shifted down by 13 bits.

Also, it is assumed that the length of the FIR filter is a multiple of 8. This way loop
unrolling will make the code quite a bit faster.

The example C code is as follows:

int FIR(register __y int *s1, register int *s2,
register int len) {

register int i;
register long res = 0;

len /= 8;

for (i=0; i<len; i++) {
res += *s1++ * *s2++; res += *s1++ * *s2++;
res += *s1++ * *s2++; res += *s1++ * *s2++;
res += *s1++ * *s2++; res += *s1++ * *s2++;
res += *s1++ * *s2++; res += *s1++ * *s2++;

}

return (int)((res << 3) >> 16);
}

This code actually performs a filter operation at 1.875 clock cycles per FIR stage. I.e.
it reads two data words, multiplies them and adds to the intermediate result storage in
1.875 clock cycles on average.

Because FIR filters are so widely used, below is presented a fully optimized assembly
version of the same filter. The only functional difference with this filter is that its input
doesn’t necessarily have to be a multiple of 8. However, it must be greater than 0.

This version requires 16 clock cycles per call, plus exactly 1 clock cycle per FIR point.
The example is as follows:

.sect code,AsmFIR

.export _AsmFIR
_AsmFIR:

ldx (I6)+1,NULL; // Move stack pointer up
stx i1,(i6)+1; sty i3,(i6); // Store i1 and i3 to stack
stx MR0,(I6); sty a1,(i6); // Store mode register and a1
ldc 0x200,MR0 // Integer mode, no saturation

ldc 1,i1 // Set i1 to 1, later to be used
// as post-mod register for i0

add a0,ONES,a0; mv i1,i3 // Subtract 1 from a0, i1->i3
ldy (i0)*,d1 ; ldx (i2)*,d0 // Load from (i0) and (i2).

Rev. 3.2 Page 104 Aug 15, 2002

Software Tools User’s Manual
VS DSP 11. VCC PROGRAMMING TIPS

// ’*’ = registers postmodified
// by i1 and i3, respectively

loop a0,LoopEnd-1 // Set A0+1 loops
and a,NULL,a // Clear ’a’ in loop’s delay slot

LoopStart:
mac d1,d0,a; ldy (i0)*,d1 ; ldx (i2)*,d0

// Multiply and ACcumulate, get
// next datas to d1 and d0,
// post-modify i0 and i1,
// all this in 1 clock cycle!

LoopEnd:
add a,p,a; ldy (i6),i3 // Copy multiplier result to A
add a,a,a; ldx (i6)-1,i1 // Begin shifting the result and
add a,a,a // restoring the stack
add a,a,a
add a1,null,a0 // Result is put to a0

jr // Restore final registers in
ldx (i6)-1,MR0; ldy (i6),a1 // jr’s delay slot

.end

To get this filter working, the following prototype needs to be introduced to the calling
C interface:

int FIR(register __i0 __y int *s1, register __i2 int *s2,
register __a0 int len);

It is always a good idea to explicitly introduce the registers used for parameters if reg-
ister parameters are used. This way software compatibility with future versions of the
compiler can be assured.

Also note that if stack parameters are used, they are put to the stack in reverse order, i.e.
the last first. Thus, the first parameter is closest to the stack pointer inside the function.

11.5 File Naming Conventions

It is suggested that the following file name postfixes are used:

• .s or .asm : Hand-written assembly source files

• .i : Hand-written assembly include files

• .coff or .o : COFF object files

Rev. 3.2 Page 105 Aug 15, 2002

Software Tools User’s Manual
VS DSP 11. VCC PROGRAMMING TIPS

• .c : C source code files

• .h : C include files

• .a : Assembly source files created by the compiler (this is the default)

11.6 How to Optimize Your C Code for Speed

11.6.1 Automatic Variables

As with any C compiler, one may introduce new variables in functions or at any new
program scope. An example is below:

int MyFunc(void) {
int a, b, tmp, myT2, q, w, n, i, r, t, t2, t3, tab[256];
char *s, *d;

[... code ...]
}

There are several things that can be made better in this function.

First, as these variables are allocated from the stack, the tabletab[256] may make the
stack too big. Unless you are absolutely sure there is actually enough space, the table
should be introduced as ”static”. This way it will be allocated inbssdata section instead
of stack.

Then, one might consider to have some variables locked into dedicated registers if they
are used often enough. If, say,i , q and tmp are referenced very often, they could be
allocated as register variables. Of the eight 16-bit arithmetic registers, almost always
four to six may be allocated to registers. Of the four 16-bit address registers usually
two may be allocated to variables. So, we’ll allocate hardware registers for these three
variables.

Stack variables are allocated by default from X memory. By changing half of them to Y
memory the code gets smaller and faster. The compiler can parallelize operations better
if variables used very near each other in code are in different memory pages.

Also, because of architecture limitations, if there are more than 7 stack variables on the
same memory page (X or Y), the code will get slower, and if there are more than 15,
the code will get a lot slower. By spreading stack variables across X and Y memory the
needed amount of stack is minimized and the code is smaller and faster.

So, a properly optimized version of the function would look like this:

Rev. 3.2 Page 106 Aug 15, 2002

Software Tools User’s Manual
VS DSP 11. VCC PROGRAMMING TIPS

int MyFunc(void) {
register int tmp, q, i; /* 3 register variables */
int a, b, myT2, w, n; /* 4 variables to x space */
int __y r, t, t2, t3; /* 5 variables to y space */
static int tab[256]; /* static = no stack space */
char *s, *d; /* 2 more to x space (tot 6) */

[... code ...]
}

11.6.2 Parameters

If some of the parameters are used very often in a function, it might be a good idea
to have them as register parameters. This way accessing them is much faster. For in-
stance, a function performing the same as<string.h>’s strcpy() could be implemented
as follows:

void StrCpy2(register char *d, const register char *s) {
while ((*d++ = *s++))

;
}

Four address registers of eight are available. Normally register names don’t have to
be used, unless register parameters are used while interfacing to assembler language
functions.

11.6.3 Local Scopes

Using local scopes the amount of stack space and registers required may be greatly
reduced. The following is an example of code that can be made more register efficient
with scopes:

int MyFunc(register __a0 int n, register __a1 int base,
register __i0 int *p) {

register int i, res; /* Ok, but not optimal */

if (*p > 0) {
res = 0;
for (i=0; i<n; i++)

res += *p++;
} else {

res = base-*p++;
res *= *p;

Rev. 3.2 Page 107 Aug 15, 2002

Software Tools User’s Manual
VS DSP 11. VCC PROGRAMMING TIPS

}

return res;
}

The variablei is needed only in the first branch. Thus, for the other branch one register
would be saved by introducingi only in the branch where it really is used.

int MyFunc(register __a0 int n, register __a1 int base,
register __i0 int *p) {

register int res; /* Only one register required */

if (*p > 0) {
register int i; /* Now ’i’ takes up a register */
res = 0; /* only in this branch */
for (i=0; i<n; i++)

res += *p++;
} else {

res = base-*p++;
res *= *p;

}
return res;

}

In this particular simple example the optimization doesn’t necessarily save anything, but
with more complex codes the differences can be quite dramatic.

11.6.4 Shifting

A good thing to remember is that since the VSDSP doesn’t have a barrel shifter in core
version 2, shifting 32-bit numbers is relatively slow (up to 31 clock cycles), unless one
shifts exactly 16 bits to the left or right. Thus, if one wants to shift a 32-bit fixed-point
number and assign it to a 16-bit value, it is better to shift as little as possible to the
nearest 16-bit jump point.

Thus, if many over 16-bit shifts are expected for 32-bit numbers, the following code
makes shifts faster.

int toShift = something;
long source = something_else, dest;

if (toShift >= 16)
dest = (long)((int)(source>>16) >> (toShift-16);

else
dest = source >> toShift;

Rev. 3.2 Page 108 Aug 15, 2002

Software Tools User’s Manual
VS DSP 11. VCC PROGRAMMING TIPS

Because shifting 16-bit numbers can be easily implemented with the multiplier, the price
for shifting a 16-bit number is much lower, and in the first branch the first 16 bits are
shifted very quickly. Note, that the compilercanoptimize constant shifts, so if the shift
amount is a constant, no playing around like this is needed.

11.7 An Example on How to Optimize Your Code

As an example on how C code may be optimized to better fit VCC and the VSDSP ar-
chitecture, a simple function is presented below. It does the same things as<string.h>’s
memcpy function. The function is called with two string pointers, and a word count
number. In the test runs, 256 words were copied.

11.7.1 MemCpy0, 40 words, 3100 clocks (12.11 clocks/word)

void MemCpy0(char *d, const char *s, int n) {
int i;
for (i=0; i<n; i++)

d[i] = s[i];
}

This might be the most straightforward way to write a memory copying function. How-
ever, 12 clock cycles for copying one data word can by no means be called efficient.

11.7.2 MemCpy1, 37 words, 2587 clocks (10.11 clocks/word)

void MemCpy1(char *d, const char *s, int n) {
int i;
for (i=0; i<n; i++)

*d++ = *s++;
}

In this function, array indexing has been replaced with a simpler pointer arithmetic. This
way 2 clock cycles are saved per one copy operation and we are down to 10 clocks per
copy operation.

11.7.3 MemCpy2, 32 words, 2072 clocks (8.09 clocks/word)

void MemCpy2(char *d, const char *s, int n) {
register int i;

Rev. 3.2 Page 109 Aug 15, 2002

Software Tools User’s Manual
VS DSP 11. VCC PROGRAMMING TIPS

for (i=0; i<n; i++)
*d++ = *s++;

}

Register parameters are a way to greater efficiency: by replacing the loop variablei
with a register version, we gain another two clock cycles. This leads logically to the
next version.

11.7.4 MemCpy3, 29 words, 539 clocks (2.11 clocks/word)

void MemCpy3(char *d, const char *s, int n) {
register int i;
register char *D = d;
register const char *S = s;
for (i=0; i<n; i++)

*D++ = *S++;
}

This is the smallest version of MemCpy(), only 31 program words long. Here we start by
copying the parameters to register pointer variables. Pointer referencing through these
new variablesD andS is very fast, and now we have a very powerful routine, where
we are down to only two clock cycles per copy operation. And, if both the source and
destination addresses are in the same type of memory, be it X or Y memory, this is the
theoretical minimum we can get. It cannot be improved, not even by hand-coding the
function in assembly language.

However, as we see in the next example, the source and destination registers don’t nec-
essarily need to be in the same type of memory.

11.7.5 MemCpy4, 29 words, 539 clocks (2.11 clocks/word)

void MemCpy4(char __y *d, const char *s, int n) {
register int i;
register char __y *D = d;
register const char *S = s;
for (i=0; i<n; i++)

*D++ = *S++;
}

This is very similar to the previous routine. The only real change is that the destina-
tion bufferd is in Y data memory instead of X data memory. MemCpy4() has exactly
the same size and speed as MemCpy3(), but it gives way to a further optimization in
MemCpy5().

Rev. 3.2 Page 110 Aug 15, 2002

Software Tools User’s Manual
VS DSP 11. VCC PROGRAMMING TIPS

11.7.6 MemCpy5, 44 words, 321 clocks (1.25 clocks/word)

void MemCpy5(register __i0 char __y *d,
register __i1 const char *s, register __a0 int n) {

register int i;

/* If n is not divisible by 8, copy modulo amount */
for (i=0; i<(n&7); i++)

*d++ = *s++;

/* Divide n by 8, because 8 words are copied in one loop */
n /= 8;

/* A loop unrolled by a factor of 8 */
for (i=0; i<n; i++) {

*d++ = *s++; *d++ = *s++;
*d++ = *s++; *d++ = *s++;
*d++ = *s++; *d++ = *s++;
*d++ = *s++; *d++ = *s++;

}
}

This is the ultimate example, where we spend only slightly over 1 clock cycle per one
read/write operation. The secret here is loop unrolling.

First, if the number of words to be copied cannot be divided by 8, we copy the odd
words (say, ifn is 126, we copy 6 words). Then, we dividen by 8 (leavingn=15 after
the division). Then, we make 8*n copy operations (8*15 = 120).

The idea with loop unrolling is that the compiler can interleave consecutive simple state-
ments so that it can read the next data in the same clock cycle it is writing the previous
data. Of course this requires that the source and destination data to be in different mem-
ory buses, i.e. that the other is in X and the other in Y memory. However, this is how
one can create extremely fast routines even with C. This particular copier could be made
faster by 0.25 clocks/cycle with hand-optimized assembler, but most of the time the re-
sult isn’t worth the trouble.

Rev. 3.2 Page 111 Aug 15, 2002

