
VLSI
Solution y

Controlled Document

VS10xx DAC Mode Application

VSMPG “VLSI Solution Audio Decoder”

Project Code:
Project Name: VSMPG

Revision History

Rev. Date Author Description
1.2 2009-07-09 PO Documentation updated
1.1 2009-03-13 PO Added VS1002 version
1.0 2009-02-18 PO Initial version

Rev. 1.2 2009-07-09 Page 1(5)

VLSI
Solution y

PO

VS10xx DAC Mode Application VSMPG

1. DESCRIPTION

1 Description

DAC Mode Application provides a low-delay 16-bit mono or stereo PCM sample output.
SDI FIFO fill states can be monitored to adjust the samplerate for streaming applications.

There are two first-in-first-out (FIFO) buffers in VS10xx: a data FIFO for the received
SDI bytes and an audio FIFO for samples going to the digital-to-analog converter (DAC).
Both FIFO’s are required in normal decoder use to even out the consumption of the
bitstream data and to spread out the cycles needed for decoding. The audio buffer can
receive a whole audio frame immediately when it has been decoded, so work on the the
next frame can be started and cycles are not lost waiting for the audio buffer to empty.

However, the FIFO’s also cause a considerable delay from the data input to the DAC,
especially with small samplerates and bitrates. This delay in unnecessary with uncom-
pressed data.

The DAC application minimizes the SDI to DAC delay by keeping the audio buffer as
empty as possible and letting the user read the SDI FIFO fill state from AICTRL3 to
control the input delay.

Note: Other application code can not be running at the same time.

Chip File IRAM Description
VS1053B dacmode1053-plg.h 0x50 .. 0x101 new compressed plugin file
VS1053B dacmode1053-ctab.h 0x50 .. 0x101 old atab+dtab array format
VS1033C dacmode1033c-plg.h 0x50 .. 0x111 new compressed plugin file
VS1033C dacmode1033c-ctab.h 0x50 .. 0x111 old atab+dtab array format
VS1033D dacmode1033d-plg.h 0x50 .. 0x111 new compressed plugin file
VS1033D dacmode1033d-ctab.h 0x50 .. 0x111 old atab+dtab array format
VS1003B dacmode1003-plg.h 0x50 .. 0x137 new compressed plugin file
VS1003B dacmode1003-ctab.h 0x50 .. 0x137 old atab+dtab array format
VS1002D dacmode1002-plg.h 0x50 .. 0x111 new compressed plugin file
VS1002D dacmode1002-ctab.h 0x50 .. 0x111 old atab+dtab array format
VS1011E dacmode1011e-plg.h 0x50 .. 0x111 new compressed plugin file
VS1011E dacmode1011e-ctab.h 0x50 .. 0x111 old atab+dtab array format

• Give a software reset if you have other user code loaded.
• Wait for DREQ to rise and load the plugin. It will be started automatically.
• Set the playback rate by writing the samplerate to SCI AUDATA.
• Select the correct linear 16-bit playback format by sending “RAWm” (mono little-

endian), “RAWM” (mono big-endian), “RAWs” (stereo little-endian), or “RAWS”
(stereo big-endian) to SDI. After receiving any of these strings the plugin will go
to decoding mode and copy the low 16 bits of mode to SCI HDAT1.

• Send data at the proper rate.

Rev. 1.2 2009-07-09 Page 2(5)

VLSI
Solution y

PO

VS10xx DAC Mode Application VSMPG

1. DESCRIPTION

• Volume control is available during play.
• Bass and treble controls are available except in the VS1011e and VS1002d version.
• SCI AICTRL3 contains the fill state of the SDI FIFO. If it starts to fill up, you

can increase the samplerate temporarily by writing to SCI AUDATA.
• SCI AICTRL2 contains the number of stereo samples in the audio FIFO. Normally

you don’t need to monitor this register. Zero samples are automatically inserted to
the audio FIFO if there is not enough data in SDI FIFO. In VS1053 the signal is
faded towards zero.

• You can return to normal decoding mode by giving a software reset.

If you are not sending samples from a file, send samples only when the stream buffer is
sufficiently empty. If the samples are received from a real-time source instead (such as
USB audio or from Internet), you need to adjust the vs10xx samplerate dynamically to
keep audio delay in control.

Check the stream fill state either before or after sending an audio packet to vs10xx, and
try to keep the value to for example three times the audio packet size.

If the fill state is below your threshold, slow down the samplerate, if the fill state is
sufficiently above, speed up the samplerate. In the middle set the nominal rate.

The rate change can also be bigger the further away from your selected value the fill state
is. In VS1000 when we use USB audio, we have allowed the tuning to be +-0.2%, i.e.
from 44011Hz to 44188Hz for 44100Hz nominal rate. For other applications the allowed
range may need to be higher.

The best place to check is each time you have received an Audio packet. Either before
or after you have sent the data to SDI.

An example tuning algorithm:

streamFill = Mp3ReadReg(SCI_AICTRL3);
control = streamFill - (AUDIO_DELAY_FRAMES*AUDIO_PACKET_WORDS);
newRate = nominalRate + control * scale;
if (newRate < nominalRate * 0.998 || newRate > nominalRate * 1.002) {

newRate = nominalRate;
}
if (newRate != oldRate) {

Mp3WriteReg(SCI_AUDATA, newRate);
oldRate = newRate;

}

”scale” depends on AUDIO DELAY FRAMES. The larger the delay, the smaller the scale
can be. If may be a good idea to put a debug printout after the write to SCI AUDATA
and adjust the scale until the operation becomes stable.

For stereo 16-bit 44.1kHz USB audio AUDIO PACKET WORDS would be 2*44100/1000,
i.e. approximately 88 words every ms.

Rev. 1.2 2009-07-09 Page 3(5)

VLSI
Solution y

PO

VS10xx DAC Mode Application VSMPG

2. HOW TO LOAD A PLUGIN

2 How to Load a Plugin

A plugin file (plg) contains a data file that contains one unsigned 16-bit array called
plugin. The file is in an interleaved and RLE compressed format. An example of a
plugin array is:

const unsigned short plugin[10] = { /* Compressed plugin */

0x0007, 0x0001, 0x8260,

0x0006, 0x0002, 0x1234, 0x5678,

0x0006, 0x8004, 0xabcd,

};

The vector is decoded as follows:
1. Read register address number addr and repeat number n.
2. If (n & 0x8000U), write the next word n times to register addr.
3. Else write next n words to register addr.
4. Continue until array has been exhausted.

The example array first tells to write 0x8260 to register 7. Then write 2 words, 0x1234
and 0x5678, to register 6. Finally, write 0xabcd 4 times to register 6.

Assuming the array is in plugin[], a full decoder in C language is provided below:

void WriteVS10xxRegister(unsigned short addr, unsigned short value);

void LoadUserCode(void) {

int i = 0;

while (i<sizeof(plugin)/sizeof(plugin[0])) {

unsigned short addr, n, val;

addr = plugin[i++];

n = plugin[i++];

if (n & 0x8000U) { /* RLE run, replicate n samples */

n &= 0x7FFF;

val = plugin[i++];

while (n--) {

WriteVS10xxRegister(addr, val);

}

} else { /* Copy run, copy n samples */

while (n--) {

val = plugin[i++];

WriteVS10xxRegister(addr, val);

}

}

}

}

Rev. 1.2 2009-07-09 Page 4(5)

VLSI
Solution y

PO

VS10xx DAC Mode Application VSMPG

3. HOW TO USE OLD LOADING TABLES

3 How to Use Old Loading Tables

Each patch contains two arrays: atab and dtab. dtab contains the data words to write,
and atab gives the SCI registers to write the data values into. For example:

const unsigned char atab[] = { /* Register addresses */
7, 6, 6, 6, 6

};
const unsigned short dtab[] = { /* Data to write */

0x8260, 0x0030, 0x0717, 0xb080, 0x3c17
};

These arrays tell to write 0x8260 to SCI WRAMADDR (register 7), then 0x0030, 0x0717,
0xb080, and 0x3c17 to SCI WRAM (register 6). This sequence writes two 32-bit instruc-
tion words to instruction RAM starting from address 0x260. It is also possible to write
16-bit words to X and Y RAM. The following code loads the patch code into VS10xx
memory.

/* A prototype for a function that writes to SCI */
void WriteVS10xxRegister(unsigned char sciReg, unsigned short data);

void LoadUserCode(void) {
int i;
for (i=0;i<sizeof(dtab)/sizeof(dtab[0]);i++) {

WriteVS10xxRegister(atab[i]/*SCI register*/, dtab[i]/*data word*/);
}

}

Patch code tables use mainly these two registers to apply patches, but they may also
contain other SCI registers, especially SCI AIADDR (10), which is the application code
hook.

If different patch codes do not use overlapping memory areas, you can concatenate the
data from separate patch arrays into one pair of atab and dtab arrays, and load them
with a single LoadUserCode().

Rev. 1.2 2009-07-09 Page 5(5)

