
VLSI
Solution y

Controlled Document

VS1053B IMA Encoding Fix

VSMPG “VLSI Solution Audio Decoder”

Project Code:
Project Name: VSMPG

Revision History

Rev. Date Author Description
1.0 2008-05-23 PO Initial version

Rev. 1.0 2008-05-23 Page 1(4)



VLSI
Solution y

PO

VS1053B IMA Encoding Fix VSMPG

1. DESCRIPTION

1 Description

The new VS1053 audio path provides a low-delay monitoring of mono and stereo analog-
to-digital conversion through DAC. It also allows a wide range of sample rates for the
encoded data. However, the transfer of encoded data never starts in VS1053B. This
problem can be corrected with a small patch code.

Chip File IRAM Description
VS1053B imafix.c 0x10 .. 0x1d old atab+dtab array format
VS1053B imafix.plg 0x10 .. 0x1d new compressed plugin file

This patch uses the SRC interrupt vector, so the patch should be loaded after the IMA
ADPCM mode has been started.

So, first start the IMA ADPCM mode in the way shown in the datasheet, then load the
patch to start the data transfer through HDAT0 and HDAT1.

There are two versions: one with the old loading tables, and one with the new compressed
plugin format. The new compressed plugin format is recommended, because it saves data
space and future plugins, patches, and application will be using the new format.

Rev. 1.0 2008-05-23 Page 2(4)



VLSI
Solution y

PO

VS1053B IMA Encoding Fix VSMPG

2. HOW TO LOAD A PLUGIN

2 How to Load a Plugin

A plugin file (.plg) contains a data file that contains one unsigned 16-bit array called
plugin. The file is in an interleaved and RLE compressed format. An example of a
plugin array is:

const unsigned short plugin[10] = { /* Compressed plugin */

0x0007, 0x0001, 0x8260,

0x0006, 0x0002, 0x1234, 0x5678,

0x0006, 0x8004, 0xabcd,

};

The vector is decoded as follows:
1. Read register address number addr and repeat number n.
2. If (n & 0x8000U), write the next word n times to register addr.
3. Else write next n words to register addr.
4. Continue until array has been exhausted.

The example array first tells to write 0x8260 to register 7. Then write 2 words, 0x1234
and 0x5678, to register 6. Finally, write 0xabcd 4 times to register 6.

Assuming the array is in plugin[], a full decoder in C language is provided below:

void WriteVS10xxRegister(unsigned short addr, unsigned short value);

void LoadUserCode(void) {

int i = 0;

while (i<sizeof(plugin)/sizeof(plugin[0])) {

unsigned short addr, n, val;

addr = plugin[i++];

n = plugin[i++];

if (n & 0x8000U) { /* RLE run, replicate n samples */

n &= 0x7FFF;

val = plugin[i++];

while (n--) {

WriteVS10xxRegister(addr, val);

}

} else { /* Copy run, copy n samples */

while (n--) {

val = plugin[i++];

WriteVS10xxRegister(addr, val);

}

}

}

}

Rev. 1.0 2008-05-23 Page 3(4)



VLSI
Solution y

PO

VS1053B IMA Encoding Fix VSMPG

3. HOW TO USE OLD LOADING TABLES

3 How to Use Old Loading Tables

Each patch contains two arrays: atab and dtab. dtab contains the data words to write,
and atab gives the SCI registers to write the data values into. For example:

const unsigned char atab[] = { /* Register addresses */
7, 6, 6, 6, 6

};
const unsigned short dtab[] = { /* Data to write */

0x8260, 0x0030, 0x0717, 0xb080, 0x3c17
};

These arrays tell to write 0x8260 to SCI WRAMADDR (register 7), then 0x0030, 0x0717,
0xb080, and 0x3c17 to SCI WRAM (register 6). This sequence writes two 32-bit instruc-
tion words to instruction RAM starting from address 0x260. It is also possible to write
16-bit words to X and Y RAM. The following code loads the patch code into VS10xx
memory.

/* A prototype for a function that writes to SCI */
void WriteVS10xxRegister(unsigned char sciReg, unsigned short data);

void LoadUserCode(void) {
int i;
for (i=0;i<sizeof(dtab)/sizeof(dtab[0]);i++) {

WriteVS10xxRegister(atab[i]/*SCI register*/, dtab[i]/*data word*/);
}

}

Patch code tables use mainly these two registers to apply patches, but they may also
contain other SCI registers, especially SCI AIADDR (10), which is the application code
hook.

If different patch codes do not use overlapping memory areas, you can concatenate the
data from separate patch arrays into one pair of atab and dtab arrays, and load them
with a single LoadUserCode().

Rev. 1.0 2008-05-23 Page 4(4)


