
SOFTWARE DOCUMENT

VS1053 STANDALONE PLAYER

VSMPG “VLSI Solution Audio Decoder”

Project Code: VS1053
Project Name: Support

Revision History
Rev. Date Author Description

1.30 2016-06-29 PO Better UART control, VSIDE solution. (WiP)
1.20 2016-06-29 PO New play loop for easier control.
1.19 2010-09-23 PO Recorder version.
1.18 2009-10-27 PO VS1053-specific version.

Rev. 1.30 2016-10-07 Page 1(22)

PO

VS1053 STANDALONE PLAYER Support

Contents

VS1053 Standalone Player Front Page 1

Table of Contents 2

1 VS1053 Standalone Player 3

2 VSIDE Solution - Player and Player/Recorder 4
2.1 SPI Boot and MMC/SD . 5

2.1.1 Boot Images . 6
2.2 SCI Control . 8
2.3 Keys . 11

2.3.1 COMPAT_KEYS . 11
2.3.2 DIRECT_KEYS . 11
2.3.3 SCI_KEYS . 12

2.4 UART Control . 13
2.4.1 UART Commands . 13

3 Player and Player/Recorder 15

4 SCI Features 16
4.1 Reading the 8.3-character Filename . 16
4.2 Bypass Mode . 17

5 Example Implementation 18

6 Document Version Changes 20
6.1 Version 1.20, 2016-06-29 . 20
6.2 Version 1.19, 2010-09-23 . 20
6.3 Version 1.18, 2009-10-27 . 20

7 Playing Order 21

List of Figures

1 SPI-Boot and MMC/SD connection . 5
2 SCI connection . 6
3 Five-button interface connection . 12
4 Example of shared access . 17
5 Standalone Player in Prototyping Board 18
6 Play Order with subdirectories . 21
7 Play Order with nested subdirectories . 22

Rev. 1.30 2016-10-07 Page 2(22)

PO

VS1053 STANDALONE PLAYER Support

1 VS1053 Standalone Player

All information in this document is provided as-is without warranty. Features are
subject to change without notice.

The SPI bootloader that is available in VS1011E, VS1003B, VS1053B, and VS1103B
can be used to add new features to the system. Patch codes and new codecs can
be automatically loaded from SPI EEPROM at startup. One interesting application is a
single-chip standalone player.

The standalone player application uses MMC/SD directly connected to VS1053 using
the same GPIO pins that are used to download the player software from the boot EEP-
ROM.

The increased instruction RAM of 4096 words (20 kilobytes) in VS1053 is used for MMC
communication routines, handling of the FAT and FAT32 filesystems, upto a five-button
user interface, and recording features.

Note: you need 32 kB EEPROM 25LC256. The default 8 kB EEPROM is not large
enough for the standalone recorder, and neither for the standalone player with
FLAC support.

Standalone Features:

• No microcontroller is required, boots from SPI EEPROM (25LC256).

• Low-power operation

• Uses MMC/SD/SDHC for storage. Hot-removal and insertion of card is supported.

• Supports FAT and FAT32 filesystems, including subdirectories (upto 16 levels).
FAT12 is partially supported: subdirectories or fragmented files are not allowed.

• Automatically starts playing from the first file after power-on.

• Power-on defaults are configurable.

• VS1053B transfer speed 4.8 Mbit/s (3.5×12.288 MHz clock).

• High transfer speed supports even 48 kHz 16-bit stereo WAV files.

• Three-button interface allows pause/play, shuffle play and loudness toggle, song
selection, and volume control. Recording is possible in the recorder version.

• LED for user interface feedback

With Optional Microcontroller:

• External microcontroller can control the player through SCI or UART.

• Bypass mode allows MMC to be accessed also directly by the microcontroller.

• Code can be loaded through SCI by a microcontroller to eliminate SPI EEPROM.

Rev. 1.30 2016-10-07 Page 3(22)

PO

VS1053 STANDALONE PLAYER Support

2 VSIDE Solution - Player and Player/Recorder

This VSIDE solution contains a project for both a generic music player and a player/recorder
that runs in the vs1053b chip itself. In addition there is a standalone library project, which
contains a lot of routines shared by the player and player/recorder projects.

To increase the readability of the code - at least slightly - there are ow separate source
files for the player (standalone.c) and the player/recorder (recorder.c). Both are con-
figured using pre-processor definitions in the standalone.h header file.

Note that not all options can be used together for two main reasons: either the options
are alternative and thus mutually exclusive by nature, or an option may take too much
instruction memory to fit into memory with some other option.

The options can be divided into a few classes:

• Control options (SCI, UART, keys)

• UART input and output type (human-readable, raw binary)

• Generic options

• Special options

Rev. 1.30 2016-10-07 Page 4(22)

PO

VS1053 STANDALONE PLAYER Support

2.1 SPI Boot and MMC/SD

The software is loaded from SPI eeprom at power-up or reset if GPIO0 is pulled high
with a pull-up resistor. The memory has to be an SPI EEPROM with a 16-bit or 24-
bit address. The player code currently requires around 11 kB, thus at least 16 kB SPI
EEPROM is recommended. The recorder code currently requires over 16 kB, thus at
least 32 kB SPI EEPROM is recommended.

CLK

SO

SI

SCK

CS

CS

GPIO0

GPIO1

GPIO2

GPIO3

DREQ

25LC640

RX

XRESET

swMISO

swMOSI

swCLK

Note: MMC’s /CS and CLK has been swapped from previous version

swCS

swCS2

CMD/DI

DATA/DO

VS10XX

MMC/SD

Figure 1: SPI-Boot and MMC/SD connection

SPI boot and MMC/SD usage redefines the following pins:

Pin SPI Boot Other
GPIO0 swCS (EEPROM XCS) 100 kΩ pull-up resistor
GPIO1 swCS2 (MMC XCS) Also used as SPI clock during boot
DREQ swMOSI
GPIO2 swMISO 100 kΩ between xSPI & swMISO, 680 kΩ to GND
GPIO3 swCLK (MMC CLK) Data clock for MMC, 10 MΩ to GND

Pull-down resistors on GPIO2 and GPIO3 keep the MMC CLK and DATA in valid states
on powerup.

Some MMC cards can drive the CMD (DI) pin until they get the first clock. This inter-
feres with the SPI boot if MMC’s drive capability is higher than VS10xx’s. If you have
powerup problems when MMC is inserted, you need something like a 330Ω resis-
tor between swMOSI (DREQ) and MMC’s CMD/DI pin. Normally this resistor is not
required.

Because the SPI EEPROM and MMC share pins, it is crucial that MMC does not drive
the pins while VS10xx is booting. MMC boots up in mmc-mode, which does not care
about the chip select input, but listens to the CMD/DI pin. MMC-mode commands are

Rev. 1.30 2016-10-07 Page 5(22)

PO

VS1053 STANDALONE PLAYER Support

protected with cyclic redundancy check codes (CRC’s). It seems that some MMC’s react
even to commands with invalid CRC’s, which messes up the SPI boot.

To fix this issue MMC’s chip select and clock inputs were swapped. This way MMC
does not get clocked during the SPI boot and the system should work with all MMC’s.
The swap only occurs on the MMC pins, the SPI EEPROM connection must remain
unchanged!

2.1.1 Boot Images

The SPI EEPROM boot images are created by the post-build step into the VSIDE solu-
tion directory.

Chip File Features
VS1053B player.img Player
VS1053B recorder.img Recorder

Power-on Defaults

Power-on Defaults can be changed from c2.s or by adding register writes at the begin-
ning of MyMain() is standalone.c or recorder.c .

The input clock is assumed to be 12.288 MHz. If you want to use a different crystal, the
SCI_CLOCKF value should be changed.

The default value is 0x8000 (3.5× 12.288 MHz) for VS1053b.

swMOSI
DREQxDCS

SI

SCLK

xCS

1 kOhm
minimum

optional LED

SO

to controller

VS10XX

Figure 2: SCI connection

The code can also be loaded through the serial control inteface (SCI) by the microcon-
troller. In this case the boot EEPROM can be eliminated, and the pull-up resistor in
GPIO0 can be changed into a pull-down resistor. GPIO1 should also have a pull-down
resistor to prevent booting into real-time MIDI mode.

Because the SCI/SDI connection is available, the VS10XX chip can be used also nor-
mally in slave mode. When standalone playing from MMC/SD is wanted, the code is
loaded and started through SCI. Software or hardware reset returns the chip to slave
mode.

Note that the connection from SCLK to DREQ is not used with vs1053b. VS1053b can
read the buttons directly without using SCLK / SDATA.

Rev. 1.30 2016-10-07 Page 6(22)

PO

VS1053 STANDALONE PLAYER Support

Code Loaded through SCI

Normally the code is loaded through SCI by the microcontroller. In this case the boot
EEPROM can be eliminated, and the pull-up resistor in GPIO0 can be changed into a
pull-down resistor. GPIO1 should also have a pull-down resistor to prevent booting into
real-time MIDI mode.

Because the SCI/SDI connection is available, the VS10XX chip can be used also nor-
mally in slave mode. When standalone playing from MMC/SD is wanted, the code is
loaded and started through SCI. Software or hardware reset returns the chip to slave
mode.

The application loading tables and compressed plugins for the microcontroller are avail-
able in the code/ subdirectory. To start the application after uploading the code, write
0x50 to SCI_AIADDR (SCI register 10). Before starting the code, you should initialize
SCI_CLOCKF and SCI_VOL. Other registers are initialized by the loading tables. You
can change the defaults by modifying the loading tables.

Chip File Features
VS1053B player.plg player, compressed plugin
VS1053B recorder.plg recorder, compressed plugin

If your microcontroller does not have enough memory for the code loading tables, the
player or recorder can also be loaded from SPI-EEPROM.

Rev. 1.30 2016-10-07 Page 7(22)

PO

VS1053 STANDALONE PLAYER Support

2.2 SCI Control

Controlling the player by modifying the SCI registers through the serial control interface
is the preferred control method when you load the code from the microcontroller through
SCI. It can also be used if the vs1053b loads its code from the SPI EEPROM.

All non-application SCI registers can be used normally, except that SM_SDINEW must
be kept at ’1’ to enable GPIO2 and GPIO3. If the code is loaded through SCI, SCI_CLOCKF
should be set by the user, preferably before starting the code.

SCI_AIADDR, SCI_AICTRL0, SCI_AICTRL1, SCI_AICTRL2, and SCI_AICTRL3 are
used by the player, see below for their functions.

SCI registers
Reg Abbrev Description
0x0 MODE Mode control, SM_SDINEW=1
0x1 STATUS Status of VS10xx
0x2 BASS Built-in bass/treble control
0x3 CLOCKF Clock freq + multiplier
0x4 DECODE_TIME Decode time in seconds
0x5 AUDATA Samplerate and channels
0x6 WRAM RAM write/read
0x7 WRAMADDR Base address for RAM write/read
0x8 HDAT0 Stream header data 0
0x9 HDAT1 Stream header data 1
0xA AIADDR Player private, do not change
0xB VOL Volume control
0xC AICTRL0 Current song number / Song change
0xD AICTRL1 Number of songs on MMC
0xE AICTRL2 -
0xF AICTRL3 Play mode

The currently playing song can be read from SCI_AICTRL0. In normal continuous play
mode the value is incremented when a file ends, and the next file is played. When the
last file has been played, SCI_AICTRL0 becomes zero and playing restarts from the first
file.

Write 0x8000 + song number to SCI_AICTRL0 to jump to another song. The high bit will
be cleared when the song change is detected. The pause mode (CTRL3_PAUSE_ON),
file ready (CTRL3_FILE_READY), and paused at end (CTRL3_AT_END) bits are au-
tomatically cleared. If the song number is too large, playing restarts from the first file.
If you write to SCI_AICTRL0 before starting the code, you can directly write the song
number of the first song to play.

SCI_AICTRL1 contains the number of songs (files) found from the MMC card. You can
disable this feature (CTRL3_NO_NUMFILES) to speed up the start of playback. In this
case AICTRL1 will contain 0x7fff after MMC/SD has been successfully initialized.

SCI_AICTRL2 holds the loudness value. SCI_BASS will be exclusive-ored with this
value when loudness is toggled. The lowest bit should be 1 for the loudness indication
to work correctly.

Rev. 1.30 2016-10-07 Page 8(22)

PO

VS1053 STANDALONE PLAYER Support

SCI_AICTRL3 controls play mode, random play and other miscellaneous functions. AIC-
TRL3 should be set to the desired play mode by the user before starting the code. If
AICTRL3 is changed during play, note that the various play modes can put the player
into pause mode.

SCI_AICTRL3 bits
Name Bit Description
CTRL3_BY_NAME 8 0=normal, 1=locate file by name
CTLR3_AT_END 6 if PLAY_MODE=3, 1=paused at end of file
CTLR3_NO_NUMFILES 5 0=normal, 1=do not count the number of files
CTLR3_PAUSE_ON 4 0=normal, 1=pause ON
CTLR3_FILE_READY 3 1=file found
CTLR3_PLAY_MODE_MASK 2:1 0=normal, 1=loop song, 2=pause before play,

3=pause after play
CTLR3_RANDOM_PLAY 0 0=normal, 1=shuffle play

If CTRL3_RANDOM_PLAY is 1, a random song is selected each time a new song starts.
The shuffle play goes through all files in random order, then goes through the files in a
different order. It can play a file twice in a row when when new random order is initiated.

The play mode mask bits can be used to change the default play behaviour. In normal
mode the files are played one after another. In loop song mode the playing file is re-
peated until a new file is selected. CTRL3_FILE_READY will be set to indicate a file
was found and playing has started, but it will not be automatically cleared.

Pause before play mode locates the file, then goes to pause mode. CTRL3_PAUSE_ON
will get set to indicate pause mode, CTRL3_FILE_READY will be set to indicate a file
was found. When the user has read the file ready indicator, he should reset the file
ready bit. The user must also reset the CTRL3_PAUSE_ON bit to start playing.

One use for the pause before play mode is scanning the file names.

Pause after play mode plays files normally, but goes to pause mode and sets the
CTRL3_AT_END bit right after finishing a file. AICTRL0 will be increased to point to the
next file (or the number of files if the song played was the last file), but this file is not yet
ready to play. CTRL3_PAUSE_ON is set to indicate pause mode, The user must reset
the CTRL3_PAUSE_ON bit to move on to locate the next file, or select a new file by writ-
ing 0x8000 + song number to AICTRL0. CTRL3_PAUSE_ON, CTRL3_FILE_READY,
and CTRL3_AT_END bits are automatically cleared when new file is selected through
AICTRL0.

Pause after play and loop mode are only checked when the file has been fully read.
Pause before play is checked after the file has been located, but before the actual playing
starts. Take this into account if you want to change playing mode while files are playing.

You can speed up the start of playback by setting CTRL3_NO_NUMFILES. In this case
the number of files on the card is not calculated. In this mode AICTRL1 (SCI_AICTRL2
for VS1103b) will contain 0x7fff after MMC/SD has been successfully initialized. This
affects the working of the shuffle mode, but the bit is useful if you implement random or
shuffle play on the microcontroller. You probably want to determine the number of files
on the card once to make it possible to jump from the first file to the last.

Rev. 1.30 2016-10-07 Page 9(22)

PO

VS1053 STANDALONE PLAYER Support

Open by Name

Since the 1.18 version, you can open specific files by using the CTRL3_BY_NAME bit.

You should first set pause mode bit CTRL3_PAUSE_ON and the open-by-name bit
CTRL3_BY_NAME in AICTRL3, then write the 8.3-character filename into memory, then
write 0xffff to AICTRL0 to select the song. After a file has been located you can check
the file name to see if the file was located or not. You can also check SCI_AICTRL0: if
it is non-zero, the file has been located, otherwise you have to check the file name to be
certain.

To write the file name, first write 0x5800 to SCI_WRAMADDR, then the 6 words of the
file name to SCI_WRAM.

The MSDOS 8.3-character filename does not include the point, so instead of sending
"00000002.MP3" you need to send "00000002MP3\0", i.e. without the . and pad with a
zero.

Rev. 1.30 2016-10-07 Page 10(22)

PO

VS1053 STANDALONE PLAYER Support

2.3 Keys

The user interface can be controlled by buttons. There are three different arrangements.
Define the appropriate preprocessor definition in standalone.h .

• COMPAT_KEYS - three buttons, compatible with VS10xx prototyping board, not
possible with SCI / SDI control.

• DIRECT_KEYS - when you need more than 3 buttons.

• SCI_KEYS - SCI/SDI pins cannot be used with SCI control, so GPIO4 to GPIO6
are used instead.

If none of the key options are defined, the key interface is not used.
With COMPAT_KEYS and DIRECT_KEYS the SCI and SDI can’t be used.

2.3.1 COMPAT_KEYS

VS1011 and vs1003 do not have any spare GPIO’s to connect keys, so the VS10xx
Prototyping Board takes advantage of the SDI interface to connect three keys. COM-
PAT_KEYS is provided to be compatible with the Prototyping Board. If you are using the
Prototyping Board, check that the COMPAT_KEYS pre-processor definition is active in
standalone.h.

The three-button interface provides the most needed controls for the player. The keys
function slightly differently in the recorder.

Button Short Keypress Long Keypress
SW1 Next song Volume up
SW2 Previous song Volume down
SW3 Pause/Play Play mode: Toggle loudness

Pause mode: Toggle shuffle play

Note that SCI and SDI can not be used to trasfer data simultaneously with the COM-
PAT_KEYS button interface. (See SCI_KEYS.)

2.3.2 DIRECT_KEYS

VS1053 can read some dedicated pins directly, so four buttons can be connected to SI,
xDCS, xCS, and SCLK.

This arrangement is used when DIRECT_KEYS is defined in standalone.h .

All buttons can be read independently so simultaneous presses of several keys can be
detected if required.

If you don’t use the I2S output, GPIO4, GPIO5, GPIO6, and GPIO7 are also free to be
used for extra buttons or LEDs.

It is also possible to connect a 4×4 matrix keyboard by sing GPIO4 to GPIO7 as key
scan outputs.

SW1 and SW2 on the prototyping board can be used for SI and xDCS keys without
changes. SCLK (JP8) and SE3 jumper (JP16) should be removed. The prototyping

Rev. 1.30 2016-10-07 Page 11(22)

PO

VS1053 STANDALONE PLAYER Support

xDCSSI SCLKxCS
1 kOhm
minimum

optional LED

swMOSI

GPIO4

sw1 sw2 sw3 sw4

sw5

Figure 3: Five-button interface connection

board contains a pull-up resistor for xCS and pull-down resistors for GPIO’s, so only the
SCLK pull-up and the SW3, SW4, and SW5 button switches need to be added.

By default only the same 3 buttons are used.
Button Short Keypress Long Keypress
SW1 XDCS Next song Volume up
SW2 SI Previous song Volume down
SW3 XCS Pause/Play Play mode: Toggle loudness

Pause mode: Toggle shuffle play

A LED connected to DREQ can be used for indicating system activity. In play mode
a long blink of the LED indicates loudness ON, in pause mode a long blink indicates
shuffle play ON. Otherwise the LED shows MMC/SD activity. In pause mode the LED
lights up dimly.

Note that SCI and SDI can not be used to trasfer data simultaneously with the DI-
RECT_KEYS button interface. (See SCI_KEYS.)

2.3.3 SCI_KEYS

If you want to use both the SCI control and keys at the same time, buttons cannot be
connected to the SCI or SDI pins.

With SCI control, SCI_KEYS should be defined in standalone.h and buttons are con-
nected to GPIO4 through GPIO6.

In this mode xCS, SI, SO, and SCLK are connected to the host controller’s SPI bus.
xDCS should have a pull-up resistor, or if no other devices share the same SPI bus, the
SHARED_MODE can be set in the SCI_MODE register instead.

Button Short Keypress Long Keypress
GPIO5 Previous song Volume down
GPIO4 Pause/Play Toggle Shuffle
GPIO6 Next song Volume up

Rev. 1.30 2016-10-07 Page 12(22)

PO

VS1053 STANDALONE PLAYER Support

2.4 UART Control

The Player and Recorder also support control through UART at 9600bps data rate (8
data bits, no parity, 1 stop bit) when compiled with UART_BUFFERED enabled in stan-
dalone.h .

When UART control is used, the code is usually loaded from SPI EEPROM and SCI
connection is not needed. The code can also be loaded and controlled through SCI and
UART output used for visual feedback or logging.

Loading the code through UART is possible, but complicated, so code loading through
UART is not detailed here.

2.4.1 UART Commands

Both the player and player/recorder work in one main mode - the playing mode, and
the filemode, where the software waits for a command before playing the next file. In
addition, the player/recorder has a recording mode with slightly different commands.

During playing mode most commands are single-byte commands.

• '+' volume up, responds with a byte indicating the new volume value
• '-' volume down, responds with a byte indicating the new volume value
• "XV\n" sets volume attenuation to X (decimal) in 0.5dB steps, e.g. "24V\n" sets

-12dB.
Volume commands respond with a byte indicating the new volume value.
• 'C' cancel play, in effect replay the same file from the beginning (unless pause-

before-play mode is active)
• '.' next file
• ',' previous file, or if played 5 seconds or more, the same file from the beginning
• "XP\n" play file X (decimal), e.g. "11P\n" plays the 12th file.

Responds with "done\n" at the end of the current file, "files" + two bytes + "\n" for
the total number of files available, then "play FILENAME\n".

• 'r' selects random play (shuffle) mode.
• 'c' selects continuous play mode, clears random play mode.
• 'f' selects file play mode (pause before play)
• '=' pause play
• '>' continue play (set 1x play speed)
• '�' (0xbb) play faster (2x, 3x, 4x...)
• '?' request information, will respond with decode time and a value indicating file

read position 0..255 (start..end). You can calculate a percentage by dividing the
value by 2.56 .

Rev. 1.30 2016-10-07 Page 13(22)

PO

VS1053 STANDALONE PLAYER Support

In file mode the player waits for the next command after playing each file. Each com-
mand is a line delimited by the newline character (ASCII 10, ’\n’, ctrl-J). Whenever a
command line is entered, the MMC/SD card communication it tested to detect SD card
removal.
File mode commands

• "?" List the available commands. (if USE_PRINTABLE_INPUT)
• "c" Switch to continuous play mode.
• "L" List all files. List is produced in raw data, the whole 32-byte directory entry of

FAT is displayed for each file.
• "P<filenameogg>" Play the named file. The name should be a 8.3-character file-

name without the ’.’. For example "PFILENAMEOGG".
• "p<number>" Play the name by number. The number is from 0 to the number of

files minus 1.

Some additional filemode commands of the recorder:

• "S<created0> <created1> <created2>" Set recording time and date by 3 16-bit
values. See FAT documentation for the values.
• "R" Start recording without a specific name.
• "R<filename>" Start recording into a file with specific name (8.3 format).
• "D<filename>" Delete file by name. (if DELETE_FILE option defined)

Player/Recorder

SCI registers are used in the same way with the Player/Recorder as with the Player.
SCI_AICTRL3 has one extra bit to start recording mode.

SCI_AICTRL3 bits
Name Bit Description
CTRL3_UPDATE_VOL 15 ’1’ = update volume (for UART control)
CTRL3_BY_NAME 8 ’1’ = locate file by name
CTRL3_RECORD_ON 7 ’1’ = start recording, ’0’ = end recording
CTLR3_AT_END 6 if PLAY_MODE=3, 1=paused at end of file
CTLR3_NO_NUMFILES 5 0=normal, 1=do not count the number of files
CTLR3_PAUSE_ON 4 0=normal, 1=pause ON
CTLR3_FILE_READY 3 1=file found
CTLR3_PLAY_MODE_MASK 2:1 0=normal, 1=loop song, 2=pause before play,

3=pause after play
CTLR3_RANDOM_PLAY 0 0=normal, 1=shuffle play

AICTRL3 should be set to the desired play mode by the user before starting the code. If
it is changed during play, care must be taken to switch modes in the correct order.

When CTRL3_RECORD_ON is set to ’1’ the recording is started. Recording will end
when the CTRL3_RECORD_ON is cleared, or when the available space is used up.
After recording playback will start from the first song.

Note that during the recording mode SCI_AICTRL3 is used by the encoder itself and the
only supported function is to clear CTRL3_RECORD_ON to stop recording.

Rev. 1.30 2016-10-07 Page 14(22)

PO

VS1053 STANDALONE PLAYER Support

3 Player and Player/Recorder

The Standalone Player implements a SD / µSD card player with basic functions.

The Standalone Recorder makes use of the VS1053b microphone input. In addition to
playing files from MMC/SD, audio from the microphone can be written to MMC/SD in
mono linear 16-bit format. By default the sample rate is 24000 Hz. It can be changed
with the RECORD_FS define from standalone.h .

The recording mode automatically locates the free space on the MMC/SD, allocates
a directory entry from the root directory, and also extends the directory if needed (if
EXTEND_DIRECTORY is defined). Directory extension works in FAT32 only, FAT16
just fails if the root directory is full. The maximum recording time is determined by the
available contiguous space.

The key mapping is slightly different in the Recorder. A long press of SW3 will start the
recording mode and a short press will toggle record pause during the recording mode.
Button Short Keypress Long Keypress
SW1 Next song Volume up
SW2 Previous song Volume down
SW3 Pause/Play Start recording

Start of recording will take a few seconds, depending on the speed and size of the
MMC/SD. Recording can be paused and continued by a short press of SW3. Recoding
ends when SW1 or SW2 are pressed shortly or when the available space becomes full.
The file is only created when the recording is ended through one of these methods. A
file is not created if the unit is turned off or given a reset. The maximum filesize created
is 2147483136 bytes, which gives 12 hours 25 seconds of recording time at 24 kHz.

Do not turn off power when recording is active or you risk corrupting the MMC.
Return to play mode first.

The loopback audio monitoring from ADC to DAC is lowered in recording mode to pre-
vent audio feedback.

The recorder can also be used with UART control and SCI control if enabled.

Rev. 1.30 2016-10-07 Page 15(22)

PO

VS1053 STANDALONE PLAYER Support

4 SCI Features

4.1 Reading the 8.3-character Filename

When a file has been selected, the MSDOS short filename (8+3 characters) can be read
from VS10xx memory. The filename is in Y memory at addresses 0x1800..0x1805. The
first character is in the most-significant bits of the first word.

The following pseudocode tries to locate a file named “SONG.MP3”. If it is found, it is
played continuously in a loop.

#define MKWORD(a,b) (((int)(unsigned char)(a)<<8)|(unsigned char)(b))

int song = 0;

WriteMp3Reg(SCI_AICTRL3, (2<<1)); /* pause before play mode */

WriteMp3Reg(SCI_AICTRL0, 0x8000+song); /* select song */

while (1) {

if (ReadMp3Reg(SCI_AICTRL3) & (1<<3)) { /* file ready */

unsigned short ch[6], name[6] = {

MKWORD('S','O'), MKWORD('N','G'), MKWORD(' ',' '),

MKWORD(' ',' '), MKWORD('M','P'), MKWORD('3','\0')};

int i;

WriteMp3Reg(SCI_WRAMADDR, 0x5800);

for (i=0; i < 6; i++) { /* read filename */

ch[i] = ReadMp3Reg(SCI_WRAM); /* first 2 chars */

printf("%c%c", ch[i]>>8, ch[i]);

}

ch[5] &= 0xff00; /* mask away unused bits */

printf("\n");

if (!memcmp(ch, name)) { /* compare filenames */

break; /* filename matched, leave loop */

} else {

/* the right file not found!! */

if (++song == ReadMp3Reg(SCI_AICTRL1)) {

/* The requested file was not on the card! */

} else {

/* clear file ready, keep pause on, pause before play mode */

WriteMp3Reg(SCI_AICTRL3, (1<<4)|(2<<1));

WriteMp3Reg(SCI_AICTRL0, 0x8000+song); /* select next song */

}

}

}

}

/* SONG.MP3 file number is now in the variable 'song' */

/* clear file ready and pause, select loop song mode */

WriteMp3Reg(SCI_AICTRL3, (1<<1));

Rev. 1.30 2016-10-07 Page 16(22)

PO

VS1053 STANDALONE PLAYER Support

4.2 Bypass Mode

VS10xx can be disconnected from MMC to allow direct microcontroller access. A good
way to disconnect VS10xx from MMC is keeping GPIO0 low when reset is deasserted
(software reset can also be used). This bypasses the SPI-boot, leaving GPIO pins as
inputs. SM_SDINEW must be ’1’, this is the default in VS1053. DREQ rises when
normal firmware is ready. In this case an open-collector driver is used to connect DREQ
and the controller’s I/O pin to MMC’s DI-pin.

Because this bypass mode is actually the normal firmware operation mode, the con-
troller can use VS10xx through SCI and SDI normally, for example for audio cues while
accessing the MMC. The controller can upload the SCI-controlled standalone player
through SCI and start it whenever it wants.

Because the MMC can not be returned to MMC mode without power cycling, the con-
troller needs a way to power off the MMC.

DI

CLK

DO

CS

GPIO0

GPIO1

GPIO2

GPIO3

DREQ MMC

XRESET

Controller

VS10xx

power

SCK

SI

SO

XCS

o
p

e
n

−
c
o

lle
c
to

r

power must be cycled to
reset MMC to MMC mode

SO, SI, SCK, and XCS can be multiplexed
with DO, DI, CLK, and CS with external mux
to reduce controller I/O pin count

To access MMC from controller:
1) hardware (XRESET) or software−reset (through SCI) VS10xx
2) DREQ rises when boot complete, GPIO’s remain high−impedance
3) Cycle MMC power to reset it to default state
4) Access MMC with controller in either MMC or SPI mode

To start playing:
1) Cycle MMC power to reset it to default state
2) Reset VS10xx − DREQ will rise when boot complete
3) Upload the code from controller to VS10xx through SCI
4) Start the code, VS10xx accesses the MMC
5) The player can be controlled though SCI commands
Note: controller pins connected to MMC must be high−impedance state

Concept connection diagram for SCI−controlled standalone player
when code is loaded through SCI.

RX

XDCS

Figure 4: Example of shared access

Rev. 1.30 2016-10-07 Page 17(22)

PO

VS1053 STANDALONE PLAYER Support

5 Example Implementation
The standalone player was implemented using the VS10xx prototyping board.

Figure 5: Standalone Player in Prototyping Board

The following example schematics contains a simple implementation for VS1003B. Power
generation and player logic are separated. Note: the schematics is a stripped-down
version of the Prototyping Board. Use the attached schematics only as a basis for
your own designs and refer to the Prototyping Board schematics when you work
with the Prototyping Board.

Rev. 1.30 2016-10-07 Page 18(22)

PO

VS1053 STANDALONE PLAYER Support

Note: MMC’s /CS and CLK of the SD card are swapped. Optional resistor fixes
problems with some MMC’s (chapter2.1). See also Figure 3.

Rev. 1.30 2016-10-07 Page 19(22)

PO

VS1053 STANDALONE PLAYER Support

6 Document Version Changes

6.1 Version 1.20, 2016-06-29

• Rewritten the play loop so decoders can (mostly) exit nicely and the main control
can do things more easily.

• Separated the recorder to a different source file recorder.c .

• Uses buffered human-readable UART control and output.

6.2 Version 1.19, 2010-09-23

• First release with more comments about file saving added to the source code.

6.3 Version 1.18, 2009-10-27

• Filename read example changed to use SCI_WRAM (SCI_AICTRL2 with VS1002
only).

Rev. 1.30 2016-10-07 Page 20(22)

PO

VS1053 STANDALONE PLAYER Support

7 Playing Order

The playing order of files is not the same order as how they appear in Windows’ file
browser. The file browser sorts the entries by name and puts directories before files. It
can also sort the entries by type, size or date. The standalone player does not have the
resources to do that. Instead, the player handles the files and directories in the order
they appear in the card’s filesystem structures.

Since the 1.02 version, if the filename suffix does not match any of the valid ones for the
specific chip, the file is ignored.

Normally the order of files and directories in a FAT filesystem is the order they were
created. If files are deleted and new files added, this is no longer true. Also, if you copy
multiple files at once, the order of those files can be anything. So, if you want a specific
play order: 1) only copy files into an empty card, 2) copy files one at a time in the order
you like them played.

There are also programs like LFNSORT that can reorder FAT16/FAT32 entries by differ-
ent criteria. See "http://www8.pair.com/dmurdoch/programs/lfnsort.htm" .

The following picture shows the order in which the player processes files. First DIR1
and then DIR2 has been created into an empty card, then third.jpg is copied, DIR3
is created and the rest of the files have been copied. song.mid was copied before
start.wav, and example.mp3 was copied before song.mp3 because they appear in their
directories first.

Root

third.jpg

fourth.wma

song.mid

start.wav

example.mp3

song.mp3

jump.wma

1

2

3

4

5

6

DIR1/

DIR2/

DIR3/

Figure 6: Play Order with subdirectories

Because DIR1 appears first, all files in it are processed first, in the order they are located
inside DIR1, then files in DIR2. Because third.jpg appears in the root directory before
DIR3, it is next but ignored because the suffix does not match a supported file type, then
files in DIR3, and finally the last root directory file fourth.wma.

Rev. 1.30 2016-10-07 Page 21(22)

PO

VS1053 STANDALONE PLAYER Support

If DIR2 is now moved inside DIR3, the playing order changes as follows.

Root

third.jpg

fourth.wma

song.mid

start.wav

example.mp3

song.mp3

jump.wma

1

2

3

4

5

6

DIR1/

DIR3/

DIR2/

Figure 7: Play Order with nested subdirectories

Rev. 1.30 2016-10-07 Page 22(22)

	VS1053 Standalone Player Front Page
	Table of Contents
	VS1053 Standalone Player
	VSIDE Solution - Player and Player/Recorder
	SPI Boot and MMC/SD
	Boot Images

	SCI Control
	Keys
	COMPAT_KEYS
	DIRECT_KEYS
	SCI_KEYS

	UART Control
	UART Commands

	Player and Player/Recorder
	SCI Features
	Reading the 8.3-character Filename
	Bypass Mode

	Example Implementation
	Document Version Changes
	Version 1.20, 2016-06-29
	Version 1.19, 2010-09-23
	Version 1.18, 2009-10-27

	Playing Order

