
Controlled Document

VS1003 8kHz AEC System

VSMPG “VLSI Solution Audio Decoder”

Project Code:
Project Name: VSMPG

Revision History

Rev. Date Author Description
0.6 2009-12-22 PO Max gain for AGC, 80 Hz highpass filter added.
0.5 2009-12-02 PO Initial version

Rev. 0.6 2009-12-22 Page 1(11)

PO

VS1003 8kHz AEC System

CONFIDENTIAL

VSMPG

Table of Contents

1 System Overview 3
1.1 VS1003 8 kHz AEC System . 4

2 Usage 5
2.1 Initialization . 5
2.2 Control . 5

2.2.1 SCI MODE . 6
2.2.2 SCI VOL . 6
2.2.3 SCI WRAMADDR . 6
2.2.4 SCI AICTRL0 . 6
2.2.5 SCI AICTRL1 . 6
2.2.6 SCI AUDATA / SCI AICTRL3 . 6
2.2.7 SDI / SCI DECODE TIME . 7
2.2.8 SCI HDAT0 / SCI HDAT1 . 7

2.3 SCI Timing . 7
2.3.1 Main Loop Example . 8

3 How to Load a Plugin 10

4 How to Use Old Loading Tables 11

Rev. 0.6 2009-12-22 Page 2(11)

PO

VS1003 8kHz AEC System

CONFIDENTIAL

VSMPG

1. SYSTEM OVERVIEW

1 System Overview

In addition to DAC and earphone driver, the VS1003 contains a microphone input that
can be used in two-way communications in mobile phones or general head-set applications.

VS1003b

Far-end,
for example
internet

Controller

Speaker

Microphone

SDI

SCI

Figure 1.1: Speaker-Phone Application

In speaker-phone applications the microphone also picks up the speaker signal reflected
by the room and people in it, creating a loopback and you will hear your own voice from
the other end. This is very distracting and may make it impossible to have a conversation.
The speaker sound can also travel through the unit chassis to the microphone.

To reduce this problem an acoustic echo cancellation (AEC) algorithm is used. AEC
removes from the mic as much of the speaker signal as possible to reduce this loopback
effect.

Note: Also see the application note “VoIP Acoustic Design” from
http://www.vlsi.fi/en/support/evaluationboards/voipspeakerphone.html .
The chassis must be designed so that the minimum of sound reaches the mic from the
speaker through air or the chassis material. This may require either isolating the speaker
from the PCB and the chassis or connecting it securely to the chassis, depending on the
situation. (See the document for more discussion and details.) Especially the mic must
not overflow from the speaker signal, nor should the speaker signal arrive distorted to
the mic.

Rev. 0.6 2009-12-22 Page 3(11)

PO

VS1003 8kHz AEC System

CONFIDENTIAL

VSMPG

1. SYSTEM OVERVIEW

1.1 VS1003 8 kHz AEC System

The VS1003 8 kHz AEC system block diagram is shown in figure 1.2.

Gain /
Compand

ADC buffer

Speaker data
 buffer

DAC buffer

16000 Hz
Mono

8000 Hz

8000 Hz

8000 Hz
Mono

8000 Hz
mono

8000 Hz
mono

SCIDAC

SDI ADC

+

Conversation
Data Buffer

SCI

Mic Data Buffer

Filter and
Downsample

80 Hz high-pass
filter

Acoustic Echo
Cancellation

Figure 1.2: VS1003 8 kHz AEC System

There are two main data paths with first-in-first-out buffer (FIFO’s). One FIFO is for
the speaker signal, another is for the mic signal. An additional FIFO can be used to read
out the conversation (both AEC-processed mic signal and speaker signal added together).

The speaker signal is transferred through the serial data interface (SDI). DREQ operates
normally (rises when the FIFO starts to become full), but in real-time applications you
can also read the buffer fill state from a SCI register.

The other FIFO’s are read through SCI. The fill status registers should be read first to
see how many data words are available.

Rev. 0.6 2009-12-22 Page 4(11)

PO

VS1003 8kHz AEC System

CONFIDENTIAL

VSMPG

2. USAGE

2 Usage

2.1 Initialization

The application code is loaded to VS1003 using the SCI WRAMADDR and SCI WRAM
registers. See chapter 3 for how to load the code using the plugin file. The AEC ap-
plication is started by writing 0x0030 to SCI AIADDR. After this the system can be
controlled through SCI registers.

Files
Chip 12.288 MHz Description
VS1003B aec12288.plg 8 kHz system for 12.288 MHz clock
VS1003B aec12288.c 8 kHz system for 12.288 MHz clock

12.288 MHz input clock is assumed. With VS1003 the PLL will be set to 4.0× mode
automatically.

Normal mode is restored by setting the software reset bit in the SCI MODE register.

Note that this user application takes full control over the whole system. If any other user
applications or patches are active, you should perform software reset before loading and
activating this code.

2.2 Control

The following SCI registers control the behavior of the 8 kHz system. When the 8 kHz
system software has been started, no other SCI registers should be used.

Register Controls Explanation
MODE Mode Software Reset detected
DECODE TIME SpkFill Indicates speaker data (SDI) buffer fill state
AUDATA ConvData Conversation to PC (both Mic and Speaker data)
WRAMADDR Lowest bit is MIC mute
HDAT0 MicData Microphone data to PC
HDAT1 MicFill Fill state of mic data buffer
VOL Volume Digital volume setting
AICTRL0 Adapt Sets information about speaker-to-mic gain, use default: 2
AICTRL1 Gain Microphone gain (0 = automatic gain control)
AICTRL2 MaxAGC Maximum gain for AGC mode
AICTRL3 ConvFill Fill state of conversation buffer

Rev. 0.6 2009-12-22 Page 5(11)

PO

VS1003 8kHz AEC System

CONFIDENTIAL

VSMPG

2. USAGE

2.2.1 SCI MODE

The SCI MODE register uses the software reset bit (SM RESET). When this bit is set by
the user, the 8 kHz system will return control to the normal firmware code by performing
a software reset.

In addition SCI MODE is used to select ADC source between microphone and line input.

2.2.2 SCI VOL

Only digital volume control is available.

Note that if you change volume, it may affect the AEC operation.

2.2.3 SCI WRAMADDR

Bit 0 is mic mute, bit 1 is AEC disable. To disable MIC, write 1 to SCI WRAMADDR.
If you want to disable AEC, write 2 to SCI WRAMADDR. This is useful when you want
to test the AEC operation (but remember to let the system adapt when you change the
state). For normal operation write 0 to SCI WRAMADDR.

2.2.4 SCI AICTRL0

SCI AICTRL0 is used to indicate to the AEC software the gain of speaker compared to
mic in 3 dB steps. This value is only read at AEC startup. Use 2 as a default value. You
may need to use a higher value if you use speaker with high amplification.

2.2.5 SCI AICTRL1

SCI AICTRL1 controls the microphone gain. Valid values are from one (muted) through
1024 (1× gain) to 65535 (64×, i.e. +36 dB). If the value is 0, automatic gain control is
used. The default value after startup is 0.

2.2.6 SCI AUDATA / SCI AICTRL3

SCI AUDATA can be used to read out the conversation, i.e. both mic and speaker data
mixed together. This is useful when you want to save the conversation to disk.

SCI AICTRL3 gives the fill state of the conversation data buffer.

Rev. 0.6 2009-12-22 Page 6(11)

PO

VS1003 8kHz AEC System

CONFIDENTIAL

VSMPG

2. USAGE

2.2.7 SDI / SCI DECODE TIME

Speaker data should be sent to the serial data inteface (SDI) in 125 µs intervals (i.e.
8 kHz).

A circular buffer allows you to send upto 255 samples beforehand. If the system runs
out of data (you send samples too slowly), a zero-sample is inserted. If you send samples
too fast, they are accumulated until the input data buffer overruns. If you do not have a
8 kHz timebase, you can use SCI DECODE TIME to see how many samples are waiting
to be played.

SCI DECODE TIME is the speaker data buffer fullness indicator. If you have an exact
8 kHz timebase and are sending samples at the correct frequency, the number of samples
in the input buffer should remain fairly low.

Also the DREQ pin reflects the state of the speaker data buffer. If there is no space,
DREQ stays low, otherwise DREQ is high.

If you have a need to resynchronize, stop sending new samples until the speaker data
buffer is empty.

2.2.8 SCI HDAT0 / SCI HDAT1

Microphone data is read from the SCI HDAT0 register. The number of available samples
is in SCI HDAT1. If you read too much data (or too fast), the previous sample value
is returned. If you read too little data (or too slowly), it is accumulated until the mic
buffer overruns.

Because the software updates the contents of SCI HDAT0, you should read the register
with enough wait in-between (7.5 µs). Otherwise the contents of both SCI HDAT1 and
SCI HDAT0 may not be correct.

SCI HDAT1 contains the number of words waiting in the output buffer.

2.3 SCI Timing

Because the software must react to SCI register reads to update the register contents,
there must be at least a 7.5 µs delay between reads/writes.

Rev. 0.6 2009-12-22 Page 7(11)

PO

VS1003 8kHz AEC System

CONFIDENTIAL

VSMPG

2. USAGE

2.3.1 Main Loop Example

The following shows the basic operation of a main loop. If samples have been received,
they are sent to vs1003 using SDI. If vs1003 has samples ready, the are read out and
sent. The save to file example shows how to save data to a file so that it works correctly
in both big-endian and little-endian systems.

typedef unsigned short u_int16;
..
void main(void) {

SoftwareReset(); /*and wait for DREQ to rise*/
LoadUserCode();
WriteVS10xxRegister(SCI_AICTRL1/*0x0d*/, 0);/*autogain*/
/* Activate User Code */
WriteVS10xxRegister(SCI_MODE /*0x00*/, 0x0800);/*new mode, select mic*/
WriteVS10xxRegister(SCI_AICTRL0/*0x0c*/, 0x0002);/*default*/
WriteVS10xxRegister(SCI_WRAMADDR/*0x07*/, 0x0000);/*flags off*/
WriteVS10xxRegister(SCI_AIADDR /*0x0a*/, 0x0030);/*start application*/

while (1) {
u_int16 reg;
/* Check for speaker data available */
if (SamplesFromFarEnd()) {

reg = GetSampleFromFarEnd();
WriteVS10xxData(reg); /* Send data to Speaker through SDI */

}
/* Check for data from Mic */
reg = ReadVS10xxReg(SCI_HDAT1);
if (reg >= 2) { /* read two values at a time to reduce overheads */

u_int16 dat[2];
dat[0] = ReadVS10xxReg(SCI_HDAT0);
dat[1] = ReadVS10xxReg(SCI_HDAT0);

#if 0 /*save mic data to disk*/
{
unsigned char tmp[4];
tmp[0] = dat[0]>>8;
tmp[1] = dat[0];
tmp[2] = dat[1]>>8;
tmp[3] = dat[1];
if (fp)

fwrite(tmp, 1, 4, fp);
}

#else
/* then send mic data */
SendDataToFarEnd(dat, 2);

#endif
}

Rev. 0.6 2009-12-22 Page 8(11)

PO

VS1003 8kHz AEC System

CONFIDENTIAL

VSMPG

2. USAGE

if (saveConversation) {
reg = ReadVS10xxReg(SCI_AICTRL3); /* conversation fill state */
if (reg >= 2) { /* read two at a time to reduce overheads */
u_int16 dat[2];
dat[0] = ReadVS10xxReg(SCI_AUDATA);
dat[1] = ReadVS10xxReg(SCI_AUDATA);

#if 0 /*save conversation data to disk*/
{

unsigned char tmp[4];
tmp[0] = dat[0]>>8;
tmp[1] = dat[0];
tmp[2] = dat[1]>>8;
tmp[3] = dat[1];
if (fp)

fwrite(tmp, 1, 4, fp);
}

#else
/* then save conversation data */
SaveConversationData(dat, 2);

#endif
}

}
if (volumeChanged) {

volumeChanged = 0;
WriteVS10xxRegister(SCI_VOL, volume);

}
}

}

Rev. 0.6 2009-12-22 Page 9(11)

PO

VS1003 8kHz AEC System

CONFIDENTIAL

VSMPG

3. HOW TO LOAD A PLUGIN

3 How to Load a Plugin

A plugin file (.plg) contains a data file that contains one unsigned 16-bit array called
plugin. The file is in an interleaved and RLE compressed format. An example of a
plugin array is:

const unsigned short plugin[10] = { /* Compressed plugin */

0x0007, 0x0001, 0x8260,

0x0006, 0x0002, 0x1234, 0x5678,

0x0006, 0x8004, 0xabcd,

};

The vector is decoded as follows:
1. Read register address number addr and repeat number n.
2. If (n & 0x8000U), write the next word n times to register addr.
3. Else write next n words to register addr.
4. Continue until array has been exhausted.

The example array first tells to write 0x8260 to register 7. Then write 2 words, 0x1234
and 0x5678, to register 6. Finally, write 0xabcd 4 times to register 6.

Assuming the plugin array (plugin[]) is in file aec12888.plg, a full decoder in C lan-
guage is provided below:

#include "aec12288.plg"

void WriteVS10xxRegister(unsigned short addr, unsigned short value);

void LoadUserCode(void) {

int i = 0;

while (i<sizeof(plugin)/sizeof(plugin[0])) {

unsigned short addr, n, val;

addr = plugin[i++];

n = plugin[i++];

if (n & 0x8000U) { /* RLE run, replicate n samples */

n &= 0x7FFF;

val = plugin[i++];

while (n--) {

WriteVS10xxRegister(addr, val);

}

} else { /* Copy run, copy n samples */

while (n--) {

val = plugin[i++];

WriteVS10xxRegister(addr, val);

}

}

}

}

Rev. 0.6 2009-12-22 Page 10(11)

PO

VS1003 8kHz AEC System

CONFIDENTIAL

VSMPG

4. HOW TO USE OLD LOADING TABLES

4 How to Use Old Loading Tables

Each patch contains two arrays: atab and dtab. dtab contains the data words to write,
and atab gives the SCI registers to write the data values into. For example:

const unsigned char atab[] = { /* Register addresses */
7, 6, 6, 6, 6

};
const unsigned short dtab[] = { /* Data to write */

0x8260, 0x0030, 0x0717, 0xb080, 0x3c17
};

These arrays tell to write 0x8260 to SCI WRAMADDR (register 7), then 0x0030, 0x0717,
0xb080, and 0x3c17 to SCI WRAM (register 6). This sequence writes two 32-bit instruc-
tion words to instruction RAM starting from address 0x260. It is also possible to write
16-bit words to X and Y RAM. The following code loads the patch code into VS10xx
memory.

/* A prototype for a function that writes to SCI */
void WriteVS10xxRegister(unsigned char sciReg, unsigned short data);

void LoadUserCode(void) {
int i;
for (i=0;i<sizeof(dtab)/sizeof(dtab[0]);i++) {

WriteVS10xxRegister(atab[i]/*SCI register*/, dtab[i]/*data word*/);
}

}

Patch code tables use mainly these two registers to apply patches, but they may also
contain other SCI registers, especially SCI AIADDR (10), which is the application code
hook.

If different patch codes do not use overlapping memory areas, you can concatenate the
data from separate patch arrays into one pair of atab and dtab arrays, and load them
with a single LoadUserCode().

Rev. 0.6 2009-12-22 Page 11(11)

