
Controlled Document

VS1053B ADC Mix

VSMPG “VLSI Solution Audio Decoder”

Project Code:
Project Name: VSMPG

Revision History

Rev. Date Author Description
1.3 2011-11-07 PO Added channel swap and mono versions. Does not

turn ADC off to avoid DECIM-restart bug.
1.2 2010-05-27 PO Small bugfix for left and right input versions.
1.1 2009-11-05 PO Separate versions for left and right input.

Gain control added.
1.0 2009-06-29 PO Initial version

Rev. 1.3 2011-11-07 Page 1(5)



PO

VS1053B ADC Mix VSMPG

1. DESCRIPTION

1 Description

The new VS1053 audio path provides a lot of tricks not previously possible. For example
it allows ADC monitoring while performing normal decoding. This way you can mix
stereo line inputs with other audio.

This plugin has several versions. One takes both ADC channels and routes them to left
and right outputs. The second one swaps channels. Two other versions take either left
or right ADC input and plays them using both left and right outputs. The mono version
mixes both left and right inputs and plays them using both left and right outputs.

There plugins are distributed in two formats: the new compressed plugin, and the old
loading tables. The new compressed plugin format is recommended, because it saves
data space and future plugins, patches, and application will be using the new format.

Chip File IRAM Description
VS1053B admix-stereo.plg 0xf00 .. 0xf37 Stereo version
VS1053B admix-swap.plg 0xf00 .. 0xf37 Stereo channel swap version
VS1053B admix-left.plg 0xf00 .. 0xf31 MIC/LINE1 version
VS1053B admix-right.plg 0xf00 .. 0xf31 LINE2 version
VS1053B admix-mono.plg 0xf00 .. 0xf34 LINE1+LINE2 version

Chip File IRAM Description
VS1053B admix-stereo.c 0xf00 .. 0xf37 old atab+dtab format
VS1053B admix-swap.c 0xf00 .. 0xf37 old atab+dtab format
VS1053B admix-left.c 0xf00 .. 0xf31 old atab+dtab format
VS1053B admix-right.c 0xf00 .. 0xf31 old atab+dtab format
VS1053B admix-mono.c 0xf00 .. 0xf34 old atab+dtab format

This patch uses the ADC interrupt vector, so it can not be used with other encoding
modes. However, it can be used with the vs1053b-patches package.

1.1 Control

Register Description
SCI MODE Clear SM LINE1 bit for MIC, set for LINE1
SCI AICTRL0 Gain: -3 (0xfffd, max volume) to -31 (quiet).
SCI AIADDR 0x0f00 to activate, 0x0f01 to deactivate

First load the appropriate plugin using the .plg file.

Rev. 1.3 2011-11-07 Page 2(5)



PO

VS1053B ADC Mix VSMPG

1. DESCRIPTION

Then set the SCI MODE register value. The reset value for SCI MODE has SM LINE1
bit set, so if you want the MIC input to be used, remember to clear it.

Then set the suitable monitoring gain by writing to SCI AICTRL0. The gain is set in
3 dB steps. -3 (0xfffd) is the highest value you should use. -4 is -3 dB, -5 is -6 dB, etc.
upto -31. Gain can also be changed when the plugin is active.

And finally, activate the plugin by writing 0x0f00 to SCI AIADDR. SCI AIADDR will
be cleared automatically when the plugin has started.

You can deactivate the plugin by writing 0xf01 to SCI AIADDR. SCI AIADDR will be
cleared automatically when the plugin has deactivated itself. You can also deactivate the
plugin by giving a software reset.

Rev. 1.3 2011-11-07 Page 3(5)



PO

VS1053B ADC Mix VSMPG

2. HOW TO LOAD A PLUGIN

2 How to Load a Plugin

A plugin file (.plg) contains a data file that contains one unsigned 16-bit array called
plugin. The file is in an interleaved and RLE compressed format. An example of a
plugin array is:

const unsigned short plugin[10] = { /* Compressed plugin */

0x0007, 0x0001, 0x8260,

0x0006, 0x0002, 0x1234, 0x5678,

0x0006, 0x8004, 0xabcd,

};

The vector is decoded as follows:
1. Read register address number addr and repeat number n.
2. If (n & 0x8000U), write the next word n times to register addr.
3. Else write next n words to register addr.
4. Continue until array has been exhausted.

The example array first tells to write 0x8260 to register 7. Then write 2 words, 0x1234
and 0x5678, to register 6. Finally, write 0xabcd 4 times to register 6.

Assuming the array is in plugin[], a full decoder in C language is provided below:

void WriteVS10xxRegister(unsigned short addr, unsigned short value);

void LoadUserCode(void) {

int i = 0;

while (i<sizeof(plugin)/sizeof(plugin[0])) {

unsigned short addr, n, val;

addr = plugin[i++];

n = plugin[i++];

if (n & 0x8000U) { /* RLE run, replicate n samples */

n &= 0x7FFF;

val = plugin[i++];

while (n--) {

WriteVS10xxRegister(addr, val);

}

} else { /* Copy run, copy n samples */

while (n--) {

val = plugin[i++];

WriteVS10xxRegister(addr, val);

}

}

}

}

Rev. 1.3 2011-11-07 Page 4(5)



PO

VS1053B ADC Mix VSMPG

3. HOW TO USE OLD LOADING TABLES

3 How to Use Old Loading Tables

Each patch contains two arrays: atab and dtab. dtab contains the data words to write,
and atab gives the SCI registers to write the data values into. For example:

const unsigned char atab[] = { /* Register addresses */
7, 6, 6, 6, 6

};
const unsigned short dtab[] = { /* Data to write */

0x8260, 0x0030, 0x0717, 0xb080, 0x3c17
};

These arrays tell to write 0x8260 to SCI WRAMADDR (register 7), then 0x0030, 0x0717,
0xb080, and 0x3c17 to SCI WRAM (register 6). This sequence writes two 32-bit instruc-
tion words to instruction RAM starting from address 0x260. It is also possible to write
16-bit words to X and Y RAM. The following code loads the patch code into VS10xx
memory.

/* A prototype for a function that writes to SCI */
void WriteVS10xxRegister(unsigned char sciReg, unsigned short data);

void LoadUserCode(void) {
int i;
for (i=0;i<sizeof(dtab)/sizeof(dtab[0]);i++) {

WriteVS10xxRegister(atab[i]/*SCI register*/, dtab[i]/*data word*/);
}

}

Patch code tables use mainly these two registers to apply patches, but they may also
contain other SCI registers, especially SCI AIADDR (10), which is the application code
hook.

If different patch codes do not use overlapping memory areas, you can concatenate the
data from separate patch arrays into one pair of atab and dtab arrays, and load them
with a single LoadUserCode().

Rev. 1.3 2011-11-07 Page 5(5)


