
StdWidget Overview

StdWidget is a lightweight framework for rendering graphical user interface elements (widgets) and

managing events that occur when the user interacts with them. It should be noted that StdWidget is not a

full-featured, high level UI library. Merely the aim is to simplify the process of creating VSOS applications

that require a graphical user interface.

StdWidget architecture is divided into three main components:

1. the VSOS application itself

2. Framework

3. Style Manager

An application describes the user interface by providing a list of objects of the type StdWidget. The

StdWidget data structure describes an abstract element of the user interface. The structure is very

minimalistic containing only the bare minimum required to define the properties of the widget. See below

for the definition:

typedef struct StdWidget {

u_int16 flags; // one of the WL* | one of the WT_* | a combination of WF_*

u_int16 symbol; // symbol is used together with (sometimes instead of) the caption

WidgetContent content; // content defines what is shown on the widget

UserEvent userEvent; // system calls this function whenever an event occurs

RenderCallback renderCallback; // function responsible for drawing the widget

u_int16 msgType; // UIMSG

WidgetData data; // the internal state of the widget

} StdWidget;

Each widget is associated with a type. Currently available types are:

• buttons (WT_BUTTON)

• value sliders (WT_SLIDER)

• widget lists (WT_DLIST)

• custom widget (WT_CUSTOM)

Button is the most common generic widget type. A button without an associated function is regarded as a

text label. A list widget is a 'virtual' widget which itself is not drawn but can spawn any number of

(sub)widgets in its place.

Each widget is also associated with a layer. A layer is a conceptual group of widgets. It provides a

mechanism to treat multiple widgets in a uniform way. For example, the contents of a pop-up window can

be assinged to a specific layer so that the layer can be shown or hidden using a single control.

A widget's userEvent is a function which is called when the user interacts with the widget. For example, if

the widget represents a play/stop button of an mp3 player, the application should provide a function which

signals the mp3 model to perform the appropriate action.

A notable property of the StdWidget structure is the absense of positional information (i.e. screen

coordinates). Most of the widgets are also sizeless by default. This way it is possible to define widgets

without making any assumptions on how they will be presented to the user. In other words the UI elements

are defined in a very abstract way, hopefully making it easier to port the application to different

environments.

Framework and Style Manager

The Framework module manages the widget list provided by the application. It sends each widget to the

Style Manager module which takes the level of abstraction down to match the underlying hardware. The

Framework relies mainly on two services provided by the VSOS kernel: LdcFilledRectangle (for sending

pixels to the display) and GetTouchLocation (for receiving user input). The standard Framework is intended

to be used in association with a touch panel. If alternative forms of user input are needed, the Framework

must be modified to reflect this requirement.

The Style Manager is responsible for lowering the level of abstraction so that the widgets can be displayed

on the screen. The process involves determining the size and screen position for all of them. If a widget does

not specify a render callback, Style Manager should assign a render function suitable for the widget type.

The Style Manager module contains basic rendering functionality for standard widget types. The default

implementation relies on a static library called LibGfx4 which contains some graphic routines mostly

dealing with 4-bit pixel data.

Widgets are treated differently depending on the layer they are assigned to. Currently up to 8 layers can be

used. The basic idea is that the Style Manager provides a Layout Manager for each layer. The corresponding

Layout Manager will determine a layout and visual style for all widgets contained in that layer. Layout

Manager maintains its internal state and knows how much screen estate is still available and how much has

been used. When there is not enough space for the widgets anymore, it can issue a signal so that the

Framework will no longer send new widgets to it. A Layout Manager is also responsible for updating any

screen regions that belong to it but are not covered by widgets.

To summarize: an application can define the user interface elements independently from the underlying

hardware. The Framework is also largely independent from the screen resolution etc but is expected to track

input device and provide user events. The Style Manager is the lowest level component. Style Manager's

implementation should take into account the physical characteristics of the target platform.

Initialization and Use

From the application's point of view, using StdWidget is quite straightforward. The first step is to load the

style manager.

libSWStyle=LoadLibrary("MP3STYLE");

mp3Style=SWSGet(libSWStyle);

The next task is to load and initialize the Framework. A reference to the style manager is passed to the

framework.

libStdWidget=LoadLibrary("STDWDGT");

SWInit(libStdWidget,mp3Style,0);

Calling SWUpdate() periodically will update the display and poll for user-generated events. The second

parameter to SWUpdate() is a layer mask. The least significant bits control the visiblity of the corresponding

UI layers. Passing a value zero will display all of them. The third parameter is an array of StdWidget objects.

The list must be terminated by a widget whose type is WT_END_OF_LIST.

 It is important to note that the first call to SWUpdate() will draw and update the screen automatically. After

that, widgets are drawn only per request. The application can set the flag WF_PAINT to request the

rendering of a certain widget. The system will clear the flag once the widget has been drawn.

SWUpdate(libStdWidget, 0, widgetList/*remember to terminate the list!*/);

Whenever the user interacts with any of the widgets, the Framework will invoke the associated event. Below

is an example initializer for a single button UI.:

StdWidget myUI[]={

{WL0|WT_BUTTON,0/*no symbol*/,{"Caption"},

ButtonEventCallback,

0/*use default render callback*/,

0/*UIMSG*/,{0/*ptr param*/,0/*int param*/}},

{WT_END_OF_LIST},

};

There are a couple of special widget types. A widget declared with the UIMSG_BUT_NEXTPAGE value in the

uiMessage field will be automatically assigned to an event which, once invoked, will reveal more widgets if

there was not room for everything in the screen. UIMSG_BUT_PREVPAGE will behave in a symmetrical

manner.

Finally the Framework imports a general purpose function called SWCtrl() which can be used to

communicate with the library. The default framework supports two functions.

SWCtrl(libStdWidget,swcRepaint,0,0) requests a full repaint of the display. Setting the WF_PAINT flag for a

large group of widgets is not always practical so one can request a full repaint instead.

The application can request and provide information about graphic symbols (icons) used by the widgets by

calling SWCtrl(libStdWidget,swcGetIconInfo,0,0). Icon data is unfortunately hardware dependent. For this

reason the application should take note of the format expected by the graphics library. If the application can

provide icon data in the requested format, widget definitions can include a non-zero 'symbol' value to

suggest rendering a graphic symbol instead of (or in addition to) the actual caption. Remember to update

the iconData member of the IconInfo structure to define the icon data to use.

Custom Rendering

The Style Manager (or the application itself) can enforce a visual style for a widget by providing a suitable

render callback function. In order keep the memory footprint as small as possible, the pixel data of a widget

is not buffered as a whole. Instead, rendering takes place one vertical line at a time. For this reason, render

callback function must provide the system with another callback function (called a "rasterizer") which, upon

request, must be able to produce any given scan line of the widget. This means producing an array of pixel

values accepted by LcdFilledRectangle(). Currently pixels are expected in the 16-bit "RGB565" format.

The default rendering functions behave in the following manner: a common graphics buffer is allocated that

is large enough to hold the maximum-sized widget in a ”compressed” format (4 bits per pixel). All rendering

functions draw widgets into the common buffer and return a rasterizer which extracts RGB565 values by

performing a look-up in a color palette containing 16 color entries.

	StdWidget Overview
	Framework and Style Manager
	Initialization and Use
	Custom Rendering

