
VLSI
Solution y

Preliminary Document

VS1000 Programmer’s Guide

VSMPG “VLSI Solution Audio Decoder”

Project Code: Support.VS1000
Project Name: VSMPG

All information in this document is provided as-is without warranty. Features
are subject to change without notice.

This is a preliminary version of the document. It may contain mistakes and
typing errors. Please contact VLSI if you suspect an error.

Revision History

Rev. Date Author Description
0.1 2007-03-23 PKP Preliminary version
0.11 2007-04-16 PKP Minor adjustments
0.12 2007-06-28 PKP Additions for version 1.33 of developer tools
0.14 2007-06-28 PKP VS1000B minor update
0.15 2008-06-30 POj vskit1.34: lib and include merged

Rev. 0.15 Preliminary 2008-06-30 Page 1(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

Who needs to read this document

This document describes the programming interface, register map and and integrated
peripherals of the VS1000. It’s primarily meant for those that wish to add to the func-
tionality of the ROM code in VS1000 or design completely new software for the chip.

If you use the USB...

The example “Changing the USB descriptors” should be read by all vendors that have
USB functionality in their end-products. Although the ROM software is functional as is,
all such vendors should change the USB descriptors to identify the vendor and product
ID’s correctly.

Additionally, all vendors that ship devices conforming to the USB Mass Storage Class
specification should change the USB descriptors and create a unique serial number for
each device. Instructions on how to do this are given in the example.

VS1000B/C

VS1000B is an updated version of VS1000A. VS1000B has many small internal fixes and
some additions that remove some of the restrictions in VS1000A. It’s mainly compatible
with VS1000A, but code needs to be recompiled for VS1000B. This guide was originally
written for VS1000A, so it may not show all of the extra features in VS1000B. VS1000C is
another production test version of VS1000B. All new code should be written for VS1000B.

Rev. 0.15 Preliminary 2008-06-30 Page 2(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

Table of Contents

1 Introducing the VS1000 5
1.1 VS DSP Basics . 6
1.2 VS1000B RAM Memory Map . 7
1.3 VS1000 Integrated Peripherals . 7
1.4 VS1000 Register Map and Frequently Used Tables 9

2 Software Tools 14

3 Examples 16
3.1 Hello, World! . 16
3.2 Making the LEDs blink . 20
3.3 Adjusting the Player User Interface . 21
3.4 Hooking custom storage controller . 24
3.5 Setting your own USB descriptors . 28
3.6 Booting from SPI EEPROM . 31
3.7 Booting from NAND FLASH . 35

3.7.1 Nand Flash startup sequence and structure 35
3.7.2 Preparing a nand flash image . 36
3.7.3 Using the VS1000 Demostration/Developer Board as a nand flash

writer . 37
3.8 Additional examples . 39

3.8.1 playloop.c . 39
3.8.2 display.c . 39
3.8.3 execdemo1.c and execdemo2.c . 39
3.8.4 power.c . 40
3.8.5 nandprog.c . 40

3.9 Using an external display . 41

4 Peripheral documentation 42
4.1 VS1000 System Controller . 42

4.1.1 General . 42
4.1.2 Registers . 42
4.1.3 Conserving Power . 44
4.1.4 I/O Pin Routing . 45
4.1.5 VS1000 ROM code usage . 45

4.2 PLL controller v1.0 2006-05-10 . 47
4.2.1 General . 47
4.2.2 DAC Interpolator control . 47
4.2.3 Registers . 47
4.2.4 Overview of VS1000 Clocking . 49
4.2.5 VS1000 ROM code usage . 50

Rev. 0.15 Preliminary 2008-06-30 Page 3(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4.3 Interruptable General Purpose IO (VS1000) v1.0 2002-04-23 51
4.3.1 General . 51
4.3.2 Registers . 51
4.3.3 VS1000 GPIO Pin Mappings . 54
4.3.4 VS1000 ROM code usage . 54

4.4 Interrupt Controller v1.0 2002-04-23 . 56
4.4.1 Registers . 56
4.4.2 VS1000 Interrupt Sources . 59
4.4.3 VS1000 ROM code usage . 59

4.5 SPI v1.3 2005-06-09 . 60
4.5.1 General . 60
4.5.2 The SPI Block . 61
4.5.3 Registers . 63
4.5.4 Interrupts . 66
4.5.5 Changes from 1.2 . 66
4.5.6 VS1000 ROM code usage . 67
4.5.7 Effect of Clock Multiplier . 67

4.6 Byte-wide bus/Nand Flash controller v1.0 2006-05-10 68
4.6.1 General . 68
4.6.2 Block Diagram . 68
4.6.3 Registers . 69
4.6.4 VS1000 ROM code usage . 72

4.7 Timers v1.0 2002-04-23 . 73
4.7.1 General . 73
4.7.2 Registers . 73
4.7.3 Interrupts . 74
4.7.4 VS1000 ROM code usage . 74

4.8 UART v1.11 2007-03-16 . 75
4.8.1 General . 75
4.8.2 Registers . 75
4.8.3 Interrupts and Operation . 76
4.8.4 VS1000 ROM code usage . 77

4.9 Universal Serial Bus Controller v1.0 2006-01-05 78
4.9.1 General . 78
4.9.2 Registers . 78
4.9.3 Receiving Packets from PC (EP0OUT, EP1OUT, ... , EP3OUT) . 81
4.9.4 VS1000 ROM code usage . 84

4.10 Watchdog v1.0 2002-08-26 . 87
4.10.1 General . 87
4.10.2 Registers . 87
4.10.3 VS1000 ROM code usage . 87

Rev. 0.15 Preliminary 2008-06-30 Page 4(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

1. INTRODUCING THE VS1000

1 Introducing the VS1000

VS1000 is a complete DSP system-on-chip that can be used to implement a multitude of
applications such as a single-chip Ogg Vorbis player. VS1000 contains a high-performance
low-power DSP core VS DSP4, NAND-FLASH interface, Full Speed USB port, general
purpose I/O pins, SPI, UART, as well as a high-quality variable-sample-rate stereo DAC,
and an earphone amplifier and a common voltage buffer.

Reference

Regulator

Regulator

Regulator

Common
Voltage
Driver

Voltage
Monitor

Stereo
Earphone
Driver

Stereo
DAC

AVDD1
AVDD2
AVDD3

Serial
Data/
Control
Interface

UART

Clock

NAND
Flash
Interface/
General IO

<1.6VUSB

X RAM

X ROM

Y RAM

Y ROM

I RAM

I ROM

VSDSP4
processor

USBP
USPN

XCS/GPIO1[0]
SCLK/GPIO1[1]

SI/GPIO1[2]
SO/GPIO1[3]

RX/GPIO1[5]
TX/GPIO1[4]

XTALO
XTALI

Data/
GPIO0[0...7]

Control/
GPIO0[8...14]

XRESETTEST

IOVDD

AVDD

CVDD

IOVDD1
IOVDD2

PWRBTNVHIGHRCAPCBUFRIGHTLEFT

reset

Figure 1.1: VS1000 Block Diagram

Rev. 0.15 Preliminary 2008-06-30 Page 5(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

1. INTRODUCING THE VS1000

1.1 VS DSP Basics

At VS1000’s core is the VS DSP4 signal processor. It has a 16-bit Harward architecture
with three separate 16-bit address spaces: X and Y space for data and I space for
instructions (running code). All of these spaces have both ROM and RAM. In addition,
X and or Y spaces can occupy special function registers for peripheral devices.

X memory Y memory

PROGRAM
CONTROL

PC

Program
memory

VS_DSP CORE

DATAPATH

arithmetic
registers

P register

ALU

X and Y
memory

 ADDRESS
CALCULATION

address
registers

Y
 a

dd
re

ss

A
LU

X
 a

dd
re

ss

A
LU

control
registers

decode
 logic

Peripheral
interface

PLL clock
generator

Peripheral
devices

Interrupt
arbitrator

Boot loader

B
us

 s
w

itc
h

Figure 1.2: VS DSP General Architecture

Most of the features of the VS DSP processor can be accessed by using standard C
language, without any specific VS DSP knowledge. But if you need to develop really
powerful DSP algorithms, use the 40-bit datapath, control the pipeline and take the
maximum out of the parallel X, Y and I buses, you need to study the VS DSP architecture
and use assembly language.

Currently the VS DSP4 architecture manual is not freely available from VLSI, but
VS DSP2 User’s Manual is distributed in the VSKIT command line toolset for VS DSP2,
which is downloadable from the VLSI website (vskit120.zip).

Since VS DSP4 is downward compatible with VS DSP2 in all other respects except index
register postmodification modes 010 and 011 (modulo +2 and modulo -2), which have

Rev. 0.15 Preliminary 2008-06-30 Page 6(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

1. INTRODUCING THE VS1000

different meanings in VS DSP4, the VS DSP2 User’s Manual is the best free resource for
learning about the DSP core operation of VS1000.

1.2 VS1000B RAM Memory Map

0000

3800

0400

0800

0c00

1000

1400

1800

1c00

2000

2400

2800

2c00

3000

3400

3c00

4000

mallocAreaX

System variables

(Vorbis heap)

audio buffer

mallocAreaY

IMDCT workspace

Y RAM (16−bit)

System Y
variables

User Y statics
Static user variables

IMDCT workspace

Vorbis
workspace

1A00

1B32

1BFF

1F85

X RAM (16−bit)

USB Receive

USB Send

4096 words
(8192 bytes) (8192 bytes)

4096 words

2K words (4K bytes)

I RAM (32−bit)
Interrupt vector (80 words)

USER CODE
1968 words = 7872 bytes

Reserved user static memory: 7872 bytes I + 2240 bytes X + 412 bytes Y, total: 10524 bytes

9216 words
(18432 bytes)

ing vorbis and disk cache,
when USB is connected)

(Vorbis heap when play−

Total stack space: 1024 bytes X + 1024 bytes Y, total: 2048 bytes (for user and system)
Total RAM space: 26624 bytes X + 32768 bytes Y + 8192 bytes I, total: 67584 bytes

stack space and function local variables

Figure 1.3: VS1000B RAM layout

1.3 VS1000 Integrated Peripherals

VS1000 contains several integrated peripherals. They are controlled by memory-mapped
special function registers. From the programmer’s point of view this means reading and
writing special memory locations. The peripheral registers in VS1000 are located in the
X address space.

VS1000 chip has the following integrated peripherals:

• 21 GPIO pins multiplexed with peripherals, each capable of generating an interrupt

• SPI port with master/slave operation and programmable Frame Sync

• UART port with programmable bit rate and framing error detection

Rev. 0.15 Preliminary 2008-06-30 Page 7(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

1. INTRODUCING THE VS1000

• USB port with 12 Mbit/s signaling rate and 4 KiB of buffer memory

• Digital-to-Analog converter and integrated earphone driver

• Byte-wide Bus / Nand Flash controller with fast 32-byte buffer and ECC calculation

• 2 32-bit timers with shared master clock divider

• Interrupt controller, 11 interrupt sources

• 3 programmable linear regulators for generating analog, I/O and core voltages

• Internal oscillator for external crystal, can also use external oscillator

• Integrated Clock Generator with PLL and clock multiplier and low-speed modes

• Watchdog timer

The VS1000 has 76 KiB of program ROM and 8 KiB of program RAM. While the latter
might seem like a small amount, note that the ROM code contains many useful routines,
interfaces and tables the RAM code can access. Many internal functions can be replaced
or augmented by hooking a handler vector of a ROM routine.

The amount of data RAM available varies depending on the application. If Vorbis playing
is not used, it can be over 50 KiB. For programs that do play Vorbis files, at least 2652
bytes can be used when Vorbis files are playing.

The complete peripheral documentation is in its own chapter.

Rev. 0.15 Preliminary 2008-06-30 Page 8(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

1. INTRODUCING THE VS1000

1.4 VS1000 Register Map and Frequently Used Tables

VS1000 Peripheral Register Map
Address Register Function
0xC000 SCI SYSTEM System Controller control
0xC001 SCI STATUS System Controller control and status flags
0xC010 GPIO0 MODE GPIO(0)/Peripheral(1) function for port 0 pins
0xC011 GPIO1 MODE GPIO(0)/Peripheral(1) function for port 1 pins
0xC012 DAC VOL Digital-to-Analog Converter Volume
0xC013 FREQCTLL Interpolator Frequency low part
0xC014 FREQCTLH Interpolator Frequency high part
0xC015 DAC LEFT DAC Left Channel
0xC016 DAC RIGHT DAC Right Channel
0xC020 WDOG CONFIG Watchdog Config
0xC021 WDOG RESET Watchdog Reset
0xC022 WDOG DUMMY Watchdog dummy register
0xC028 UART STATUS Serial Port Status
0xC029 UART DATA Serial Port Data byte
0xC02A UART DATAH Serial Port Data byte shifted 8 bits left
0xC02B UART DIV Serial Port baudrate generator divider
0xC030 TIMER CONFIG Timer 0 and 1 Configuration
0xC031 TIMER ENABLE Timer 0 and 1 Enable/Disable
0xC034 TIMER T0L Low 16 bits of Timer 0 reload value
0xC035 TIMER T0H High 16 bits of Timer 0 reload value
0xC036 TIMER T0CNTL Low 16 bits of Timer 0 current value
0xC037 TIMER T0CNTH High 16 bits of Timer 0 current value
0xC038 TIMER T1L Low 16 bits of Timer 1 reload value
0xC039 TIMER T1H High 16 bits of Timer 1 reload value
0xC03A TIMER T1CNTL Low 16 bits of Timer 1 current value
0xC03B TIMER T1CNTH High 16 bits of Timer 1 current value
0xC040 GPIO0 DDR Port 0 Data Direction (“1”=output)
0xC041 GPIO0 ODATA Port 0 Output Data
0xC042 GPIO0 IDATA Port 0 Input Data (pin state)
0xC043 GPIO0 INT FALL Falling Edge Interrupt Enable
0xC044 GPIO0 INT RISE Rising Edge Interrupt Enable
0xC045 GPIO0 INT PEND Interrupt Pending
0xC046 GPIO0 SET MASK Set output bits high
0xC047 GPIO0 CLEAR MASK Set output bits low
0xC048 GPIO0 BIT CONF Bit router engine 0 and 1 configuration
0xC049 GPIO0 BIT ENG0 Bit router engine 0 data register
0xC04A GPIO0 BIT ENG1 Bit router engine 1 data register

Rev. 0.15 Preliminary 2008-06-30 Page 9(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

1. INTRODUCING THE VS1000

VS1000 Peripheral Register Map (continued)
Address Register Function
0xC050 GPIO1 DDR Port 1 Data Direction (“1”=output)
0xC051 GPIO1 ODATA Port 1 Output Data
0xC052 GPIO1 IDATA Port 1 Input Data (pin state)
0xC053 GPIO1 INT FALL Falling Edge Interrupt Enable
0xC054 GPIO1 INT RISE Rising Edge Interrupt Enable
0xC055 GPIO1 INT PEND Interrupt Pending
0xC056 GPIO1 SET MASK Set output bits high
0xC057 GPIO1 CLEAR MASK Set output bits low
0xC058 GPIO1 BIT CONF Bit router engine 0 and 1 configuration
0xC059 GPIO1 BIT ENG0 Bit router engine 0 data register
0xC05A GPIO1 BIT ENG1 Bit router engine 1 data register
0xC060 NFLSH CTRL Byte-wide Bus (Nand Flash) Controller Control
0xC061 NFLSH LPL Calculated Line Parity for 512-byte block
0xC062 NFLSH CP LPH Calculated Column Parity for 512-byte block
0xC063 NFLSH DATA Buffer Data read/write register
0xC064 NFLSH NFIF Buffer-to-Physical Interface Control
0xC065 NFLSH DSPIF Buffer-to-DSP Interface Control
0xC066 NFLSH ECC CNT Error Correction Code counter
0xC068 SPI0 CONFIG Serial Peripheral Interface Configuration
0xC069 SPI0 CLKCONFIG SPI Clock Configuration
0xC06A SPI0 STATUS SPI Status
0xC06B SPI0 DATA SPI Data read/write register
0xC06C SPI0 FSYNC Frame Sync output bit image
0xC070 INT ENABLEL Low Priority Interrupt Enable
0xC072 INT ENABLEH High Priority Interrupt Enable
0xC074 INT ORIGIN Interrupt Request Status
0xC076 INT VECTOR Last generated vector
0xC077 INT ENCOUNT Interrupt disable level counter
0xC078 INT GLOB DIS Disable interrupts (increase ENCOUNT)
0xC079 INT GLOB EN Enable interrupts (decrease ENCOUNT)
0xC080 USB CONFIG USB Device Config
0xC081 USB CONTROL USB Device Control
0xC081 USB STATUS USB Device Status
0xC082 USB RDPTR Receive buffer pointer (PC → Device)
0xC083 USB WRPTR Transmit buffer pointer (Device → PC)
0xC088 USB EP SEND0 EP0IN Transmittable Packet Info
0xC089 USB EP SEND1 EP1IN Transmittable Packet Info
0xC08A USB EP SEND2 EP2IN Transmittable Packet Info
0xC08B USB EP SEND3 EP3IN Transmittable Packet Info
0xC090 USB EP ST0 Flags for endpoints EP0IN and EP0OUT
0xC091 USB EP ST1 Flags for endpoints EP1IN and EP1OUT
0xC092 USB EP ST2 Flags for endpoints EP2IN and EP2OUT
0xC093 USB EP ST3 Flags for endpoints EP3IN and EP3OUT

Rev. 0.15 Preliminary 2008-06-30 Page 10(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

1. INTRODUCING THE VS1000

VS1000 Interrupt Sources
Name Vector Source
INTV DAC 0 Digital to Analog Converter
INTV SPI 1 Serial Peripheral Interface
INTV USB 2 Universal Serial Bus
INTV NFLSH 3 Byte-wide Bus (Nand Flash) Controller
INTV TX 4 UART Transmit
INTV RX 5 UART Receive
INTV TIM0 6 Timer 0 underflow
INTV TIM1 7 Timer 1 underflow
INTV REGU 8 Input Voltage Monitor
INTV GPIO0 9 I/O Pin Controller 0
INTV GPIO1 10 I/O Pin Controller 1

VS1000 I/O Controller 0 pins and peripheral functions
GPIO Ident LQFP

Pin
Function

GPIO0[0] NFDIO0 2 Nand-flash IO0 / General-purpose IO Port 0, bit 0
GPIO0[1] NFDIO1 3 Nand-flash IO1 / General-purpose IO Port 0, bit 1
GPIO0[2] NFDIO2 4 Nand-flash IO2 / General-purpose IO Port 0, bit 2
GPIO0[3] NFDIO3 5 Nand-flash IO3 / General-purpose IO Port 0, bit 3
GPIO0[4] NFDIO4 9 Nand-flash IO4 / General-purpose IO Port 0, bit 4
GPIO0[5] NFDIO5 10 Nand-flash IO5 / General-purpose IO Port 0, bit 5
GPIO0[6] NFDIO6 11 Nand-flash IO6 / General-purpose IO Port 0, bit 6
GPIO0[7] NFDIO7 12 Nand-flash IO7 / General-purpose IO Port 0, bit 7
GPIO0[8] NFRDY 13 Nand-flash READY /General-purpose IO Port 0, bit 8
GPIO0[9] NFRD 14 Nand-flash RD / General-purpose IO Port 0, bit 9
GPIO0[10] NFCE 15 Nand-flash CE / General-purpose IO Port 0, bit 10
GPIO0[11] NFWR 20 Nand-flash WR / General-purpose IO Port 0, bit 11
GPIO0[12] NFCLE 16 Nand-flash CLE / General-purpose IO Port 0, bit 12
GPIO0[13] NFALE 17 Nand-flash ALE / General-purpose IO Port 0, bit 13
GPIO0[14] CS2 21 General-purpose IO Port 0, bit 14

VS1000 I/O Controller 1 pins and peripheral functions
GPIO Ident LQFP

Pin
Function

GPIO1[0] XCS 22 SPI XCS / General-Purpose I/O Port 1, bit 0
GPIO1[1] SCLK 23 SPI CLK / General-Purpose I/O Port 1, bit 1
GPIO1[2] SI 24 SPI MISO / General-Purpose I/O Port 1, bit 2
GPIO1[3] SO 25 SPI MOSI / General-Purpose I/O Port 1, bit 3
GPIO1[4] TX 26 UART TX / General-Purpose I/O Port 1, bit 4
GPIO1[5] RX 27 UART RX / General-Purpose I/O Port 1, bit 5

Rev. 0.15 Preliminary 2008-06-30 Page 11(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

1. INTRODUCING THE VS1000

VS1000 Handler Vectors (Services)
Address Vector Name Default Handler Remark
0x0000 IdleHook UserInterfaceIdleHook CPU idle
0x0002 InitFileSystem FatInitFileSystem Init storage
0x0004 OpenFile FatOpenFile Open file
0x0006 ReadFile FatReadFile Read file
0x0008 Seek FatSeek Set file position
0x000a Tell FatTell Get file position
0x000c ReadDiskSector MapperReadDiskSector Read 512 bytes
0x000e StereoCopy OldStereoCopy Output samples
0x0015 Sine Test SinTest Sine test
0x0016 Memory Test MemTest Memory test 1
0x0017 Memory Test MemTests Memory tests
0x0018 SetRate RealSetRate Set sample rate
0x001a PowerOff RealPowerOff Close and shutdown
0x001c PlayCurrentFile RealPlayCurrentFile Start playing file
0x001e USBHandler RealUSBHandler USB Task

VS1000 Handler Vectors (Interrupt Controller)
Address Vector Name Default Handler Remark
0x0020 DAC Interrupt dac int Update sample
0x0021 SPI Interrupt int (Default Null Handler)
0x0022 USB Interrupt int (Default Null Handler)
0x0023 Nand Flash Interrupt int (Default Null Handler)
0x0024 TX Interrupt int (Default Null Handler)
0x0025 RX Interrupt rx int ROM Monitor
0x0026 Timer 0 Interrupt tim0 int System timer
0x0027 Timer 1 Interrupt int (Default Null Handler)
0x0028 Power Interrupt int (Default Null Handler)
0x0029 GPIO0 Interrupt int (Default Null Handler)
0x002a GPIO1 Interrupt int (Default Null Handler)

Rev. 0.15 Preliminary 2008-06-30 Page 12(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

1. INTRODUCING THE VS1000

VS1000A Handler Vectors (Services)
Address Vector Name Default Remark
0x002c MSCPacketFromPC RealMSCPacketFromPC MSC cmd or data
0x002e DecodeSetupPacket RealDecodeSetupPacket Control endpoint
0x0030 ScsiTaskHandler RealScsiTaskHandler Disk task
0x0032 LoadCheck RealLoadCheck Clock adjust
0x0034 UnsupportedFile DefUnsupportedFile Unknown format

Additional VS1000B Handler Vectors (Services)
0x0036 KeyEventHandler RealKeyEventHandler Perform actions for

key events
0x0038 MassStorage RealMassStorage USB Mass Storage

code
0x003a USBSuspend RealUSBSuspend Code for low-power

mode, used by USB
and low-power pause

0x003c InitUSBDescriptors RealInitUSBDescriptors Hook to initialize
USB descriptors

0x003e SetVolume RealSetVolume Uses volumeReg
to set DAC VOL
and bassReg to init
bass/treble controls

Rev. 0.15 Preliminary 2008-06-30 Page 13(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

2. SOFTWARE TOOLS

2 Software Tools

Here is a list of the software tools that are necessary to compile and run the examples
of this programming guide. A more complete documentation of the software tools can
be found in the “Tools Manual”, available from VLSI. These command line tools are
available for UNIX and Windows. In addition to these files we recommend using GNU
Make to automatize the compilation process, but you can also compile by typing the
command lines separately in a shell or “MS-DOS Prompt”, or with the help of a suitable
batch file. Some GUI’s can also be configured to run the compiler and linker as external
applications.

The tools package can be requested by writing an email to VLSI Audio Solution Support
at the e-mail address mp3@vlsi.fi . Please give basic information of your name, position
and if you are working for a company (please give company name and department), or if
you are a student (please give name of educational institution) or hobbyist etc.

vcc

The VLSI C Compiler. Creates a COFF object file from “C” language source file.

Example:
vcc -P130 -O -fsmall-code -I lib -o program.o program.c

vslink

The linker. Creates a binary program file from multiple COFF object files.

Example:
vslink -k -m mem user -L lib -lc -o program.bin lib/c-spi.o lib/rom1000b.o
program.o

vs3emu

The ROM monitor interface. Loads and runs binary program files using RS-232 ca-
ble between PC and VS10xx. Also provides standard input/output and file system for
debugging C code.

Example:
vs3emu -chip vs1000 -s 115200 -l program.bin e.cmd

Rev. 0.15 Preliminary 2008-06-30 Page 14(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

2. SOFTWARE TOOLS

coff2spiboot

Creates bootable EEPROM image from a binary program file.

Example:
coff2spiboot -x 0x50 program.bin eeprom.img

coff2nandboot

Creates a nand flash compatible boot record file from a binary program file.

Example:
coff2nandboot -t 3 -b 8 -s 19 -w 50 -x 0x50 led.bin nand.rec

makenandimage

Creates a prommable binary nand flash image from a nand flash compatible boot record
file.

Example:
makenandimage nand.rec NANDFLSH.IMG

Rev. 0.15 Preliminary 2008-06-30 Page 15(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

3 Examples

3.1 Hello, World!

The first example of writing code for the VS1000 is the traditional “Hello, World!” ex-
ample, which is compiled and linked. Then the RS-232 ROM monitor interface (vs3emu)
is used to load and execute the code.

The contents of the file hello.c is:

/* hello.c : A Hello World example. */

#include <stdio.h>

// main() is the program entry point. It is entered via a vector,

// which is statically linked to address 0x0050 in module c.o

void main(void) {
puts("Hello, World!");

}

Compiling

The “hello.c” file is compiled using vcc with a command line such as:

vcc -P130 -O -fsmall-code -I lib -o hello.o hello.c

This creates a coff object file hello.o. The parameteres that were passed to vcc are:

-P130 Treats warning 130 (“can’t find prototype”) as an error.
-O Optimize
-fsmall-code Use 16-bit code model (uses libc16 libraries)
-o hello.o Output file is hello.o
-I lib subdirectory “lib” contains include files
hello.c input file

Linking

Next the hello.o object is linked using the VS1000 memory map, VS1000 ROM content
addresses and the relevant VSDSP run-time libraries using a command such as:

vslink -k -m mem user -o hello.bin -L lib -lc lib/c-spi.o lib/rom1000b.o hello.o

Rev. 0.15 Preliminary 2008-06-30 Page 16(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

This produces a loadable object file hello.bin using the parameters:

-k keep relocation information
-m mem user use memory areas specified in file mem user
-o hello.bin output file is hello.bin
-L lib libraries can be found in subdirectory “lib”
-lc use library libc.a (in the -L directory)
lib/c-spi.o the vsemu and SPI boot compatible C startup module (in subdirectory

lib). It calls main() and returns to ROM code to a point after
initializations and SPI boot but before Nand Flash init+boot.

lib/rom1000b.o address information of the ROM code (in subdirectory lib)
hello.o user compiled module

Loading

There are many ways to load runnable code to VS1000 chips. Code can be loaded
automatically during boot-up time from an SPI EEPROM or a NAND flash.

During program development it’s usually easiest to load the code using an RS-232 (“COM
port”) emulator interface, which connects to the RX and TX pins of the VS1000. 1

The PC side interface is invoked with:

vs3emu -chip vs1000 -s 115200 -l hello.bin

which instructs the vs3emu interface to use the “vs1000” communication method and
default (COM1) port with line speed 115200 bit/s.

The emulator contacts the VS1000 by sending a special character to the COM port. This
is handled by the UART receive interrupt on the VS1000. If the VS1000 is running with
a 12 MHz crystal, interrupts are enabled and the core is running, it responds with:

VSEMU 2.1 (c)1995-2006 VLSI Solution Oy
Clock 11999 kHz
Using serial port 1, Serial input speed seems to be 115200
COM speed 115200
Waiting for a connection to the board...
Caused interrupt
Chip version "1000"
Stack pointer 0x19e0, bpTable 0x7c0f
User program entry address 0x7398
hello.bin: includes optional header, 4 sections, 441 symbols
Section 1: code page:0 start:80 size:1 relocs:1 fixed
Section 2: const x page:1 start:8096 size:14 relocs:0
Section 3: main page:0 start:81 size:14 relocs:2
Section 4: VS stdiolib page:0 start:95 size:50 relocs:13
>

1This is easiest with a VS1000 Developer Board, but even the VS1000 Demonstration Board could
be used in this fashion by building a suitable RS-232 interface board. It would require connecting a
MAX3232 or equivalent buffer chip to the “RX” and “TX” pads on the Demonstration Board PCB.
Power for the MAX3232 could be taken from the JP1 expansion header.

Rev. 0.15 Preliminary 2008-06-30 Page 17(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

Next the executing address is set to be 0x0050 (statically linked loading vector for main())
by command g 0x50 and executed by command e. On the screen it should look like:

> g 0x50
> e
Hello, World!

This final stage can be automated by writing the commands g 0x50 and e to file e.cmd
and calling the emulator with the command line

vs3emu -chip vs1000 -s 115200 -l hello.bin e.cmd

The emulator can be exited by pressing Ctrl-C.

Note

I
¯
f your board has boot code in the Nand Flash, the Nand Flash boot code runs after

main() exits.

Input and Output

This example uses the vs3emu interface to handle C standard I/O (stdin, stdout).
With it it’s possible to write messages to the user and read input from the PC keyboard.
Also it’s possible to open, read and write files in the PC. The library contains the ele-
mentary functions necessary for input and output. In this example, the library function
puts(), which outputs a line of text and a linefeed to stdout, was used.

Since the memory capacity of the chip is limited, the more advanced and memory con-
suming input/output functions such as printf should not be used. When you need to
print out values of variables, it’s recomended to use a smaller special function for it. As
an example, here is a small function that outputs the value of a 16-bit unsigned integer
as a hexadecimal value:

#include <stdio.h>
#include <vstypes.h>

y const char hex[] = "0123456789abcdef";
void puthex(u int16 a) {

char tmp[8];
tmp[0] = hex[(a>>12) & 15]; tmp[1] = hex[(a>>8) & 15];
tmp[2] = hex[(a>>4) & 15]; tmp[3] = hex[(a>>0) & 15];
tmp[4] = ’ ’; tmp[5] = ’\0’;
fputs(tmp, stdout);

}

Rev. 0.15 Preliminary 2008-06-30 Page 18(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

Also note that if you use puts (or any file input/output) in your code, a connection
with vs3emu is required. You should carefully remove any such code before porting the
code to be loaded via another method than vs3emu such as a boot flash or eeprom. This
could be done by surrounding the I/O code with #ifdef DEBUG and #endif pre-processor
directives.

Rev. 0.15 Preliminary 2008-06-30 Page 19(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

3.2 Making the LEDs blink

The example code below will blink the two LEDs that are connected to VS1000’s SI and
SO pins on the Developer Board and the Demonstration Board. Controlling the pins
directly requires switching the pin modes from Peripheral control to General Purpose IO
control and setting their Output Enable bits to “1”.

#include <vs1000.h>

/// Busy wait i hundreths of second at 12 MHz clock

auto void BusyWaitHundreths(u int16 i) {
while(i--){

BusyWait10(); // Rom function, busy loop 10ms at 12MHz

}
}

void main(void) {

PERIP(GPIO1 MODE) = 0x30; /* UART=peripheral(1) , SPI=GPIO(0) */

PERIP(GPIO1 DDR) = 0x0c; /* SI and SO pins (GPIO1[3:2]) are output(1) */

while(1){
PERIP(GPIO1 ODATA) = 0x04; /* GPIO1[2] (LQFP pin 24) = 1 */

BusyWaitHundreths(50);
PERIP(GPIO1 ODATA) = 0x08; /* GPIO1[3] (LQFP pin 25) = 1 */

BusyWaitHundreths(50);
}

}

The SPI port pins and UART port pins are controlled by the same I/O controller, I/O
controller 1. When disabling peripheral control of the SPI pins, the UART pins (RX,
TX) must remain under peripheral control. Otherwise, the connection with vs3emu is
lost.

For reference, here are the GPIO1 pin mappings of VS1000:

VS1000 I/O Controller 1 pins and peripheral functions
GPIO Ident LQFP

Pin
Function

GPIO1[0] XCS 22 SPI XCS / General-Purpose I/O Port 1, bit 0
GPIO1[1] SCLK 23 SPI CLK / General-Purpose I/O Port 1, bit 1
GPIO1[2] SI 24 SPI MISO / General-Purpose I/O Port 1, bit 2
GPIO1[3] SO 25 SPI MOSI / General-Purpose I/O Port 1, bit 3
GPIO1[4] TX 26 UART TX / General-Purpose I/O Port 1, bit 4
GPIO1[5] RX 27 UART RX / General-Purpose I/O Port 1, bit 5

Rev. 0.15 Preliminary 2008-06-30 Page 20(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

3.3 Adjusting the Player User Interface

The ROM code implements a Vorbis player with a default user interface that has 6
buttons:

• Power/Play/Pause
• Previous/Rewind
• Next/Fast Forward
• Volume -
• Volume +
• EarSpeaker (spatial processing) setting change

In addition to the 6-button interface the ROM contains alternative default key mappings
for a 5-button and 4-button user interfaces.

If these are not sufficient, there are two alternatives:

• Create a custom key → event mapping
• Take full control of the player

The VS1000B ROM function void KeyEventHandler(enum keyEvent event) can han-
dle 17 pre-defined player control events, the 12 first are common with VS1000A.

VS1000B Pre-defined Player Control Events
Value Event Function
0 ke null Do nothing
1 ke previous Play Previous song
2 ke next Play Next song
3 ke rewind Rewind
4 ke forward Fast Forward
5 ke volumeUp Volume Up
6 ke volumeDown Volume Down
7 ke earSpeaker Switch EarSpeaker processing (4 settings)
8 ke earSpeakerToggle Toggle EarSpeaker processing (2 settings)
9 ke randomToggle Random Play on/off
10 ke randomToggleNewSong Play random song
11 ke pauseToggle Pause on/off
12 ke powerOff Close and power down
13 ke ff faster increase play speed (needs ke ff off as release event
14 ke ff slower decrease play speed (needs ke ff off as release event)
15 ke ff off back to normal play speed
16 ke volumeUp2 increase volume by 1.0 dB
17 ke volumeDown2 decrease volume by 1.0 dB

A KeyMapping structure controls the relationship between key-presses, long key-presses
and events. The structure is an array of pairs

Rev. 0.15 Preliminary 2008-06-30 Page 21(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

struct KeyMapping {
u int16 key; // Key Mask
enum keyEvent event; // Event

};

The following program demonstrates changing the key mapping:

// Example on how to change the key mapping of the user interface

#include <vs1000.h>
#include <player.h>

// Define key masks for the buttons on the PCB. This order is

// of the Demonstration Board, leftmost button is "KEY A"

#define KEY A 0x0004
#define KEY B 0x0008
#define KEY C 0x0001
#define KEY D 0x0002
#define KEY E 0x0010

// Define custom key mapping

const struct KeyMapping myKeyMap[] = {
{KEY A, ke volumeUp }, // Key A: Volume step up

{KEY A | KEY LONG PRESS, ke volumeUp }, // Key A: Volume up continuous

{KEY B, ke volumeDown}, // Key B: Volume step dn

{KEY B | KEY LONG PRESS, ke volumeDown}, // Key B: Volume dn continuous

{KEY C, ke previous }, // Key C: Previous song

{KEY D, ke next }, // Key D: Next song

{KEY E | KEY A | KEY LONG PRESS, ke rewind }, // Key E with Key A: rewind

{KEY E | KEY B | KEY LONG PRESS, ke forward }, // Key E with Key B: fast forward

{KEY C | KEY D | KEY LONG ONESHOT, ke powerOff }, // Only one event after long press

{0, ke null} // End of key mappings

};

// Load own key mapping

void main(){
currentKeyMap = myKeyMap; // Use own key mapping

// Note that if there is boot record in NAND, it’s run after

// this point, if this code is run from the emulator

}

The KeyEventHandler can also be called directly. For instance if you wish to advance to
the next song, you can call

KeyEventHandler(ke next);

Rev. 0.15 Preliminary 2008-06-30 Page 22(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

from your source code. In most cases it takes less code space than changing the struct
player directly.

The tools package contains further examples on how to adjust the user interface, use the
embedded LCD font etc.

Rev. 0.15 Preliminary 2008-06-30 Page 23(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

3.4 Hooking custom storage controller

Hooks are software jump vectors, that are linked into fixed positions in the VS1000
RAM. Their function is essentially the same as for instance the interrupt vector of a
80x86 processor. For instance, when the player is playing music, it reads a disk sector
(512 bytes) of data by calling a function ReadDiskSector(u int16 *buffer, u int32 sector).
For this call, the linker generates a call to a fixed address 0x000c. In that address
(which is in RAM) is a jump instruction to the start address of the ROM function
RealReadDiskSector(), which retrieves the data from a logical NAND Flash mapper
interface.

By replacing the jump location of the ReadDiskSector() hook vector, it is easy to replace
the storage device, which contains the files the player plays. Only the service that delivers
a sectorful of data from a storage device is changed while rest of the ROM functionality
remains the same.

The image below demonstrates the disk data flow of VS1000:

MassStorage

USB block
interface

Flash Mapper

Logical Disk +
wear levelling

Flash Physical

Physical disk
interface

minifat

Read only FAT
filesystem

(register __i0 u_int16 *buffer,
 register __a u_int32 sector) {
 /* Own Code */
}

auto u_int16 MyReadSector

storage
Own

when USB connected:

when playing:

Nand Flash

ReadDiskSector

Figure 3.1: Disk Data Flow

Below is an example of hookable disk read function that uses a previously declared
EEReadBlock() function to read 512 bytes to *buffer and returns 0 signifying no error:

auto u_int16 MyReadDiskSector(register __i0 u_int16 *buffer,
register __a u_int32 sector) {

EEReadBlock(sector+FAT_START_SECTOR, buffer);
return 0;

}

This can then be hooked to the ReadDiskSector hook by calling
SetHookFunction((u int16)ReadDiskSector, MyReadDiskSector);

in main() or some other convenient function.

Rev. 0.15 Preliminary 2008-06-30 Page 24(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

The above method is most convenient for preprogrammed storage devices. If you need
write access to your own storage device, you need to write control code for it yourself,
e.g. for downloading a disk image over a serial port etc.

ReadDiskSector is for reading only

As the name suggests, the ReadDiskSector() hook is meant only for reading data. This
limits its usage to the “player” mode only (when the VS1000 is in player mode, it does
not write to the logical disk).

If you want to attach your own device to the USB bus as a mass storage device, you need
to write a mapper interface that has functions for reading and writing+erasing 512-byte
sectors. Then you need to write a function that publishes the interface with name map,
initializes the USB handler (probably by calling InitUSB(USB MASS STORAGE)) and then
calls UsbHandler() in a busy loop until the USB is detached.

The complete example code is below. It uses 253 words of program RAM out of the 1968
words available for plugins.

Rev. 0.15 Preliminary 2008-06-30 Page 25(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

// storage.c : Plug-in for playing from intel "S33" serial flash eeprom.

// For this example, a QH25F640S33B8 chip is connected to SI, SO, SCLK, XCS.

#include <stdlib.h>
#include <vs1000.h>

#define SPI EEPROM COMMAND READ STATUS REGISTER 0x05
#define SPI EEPROM COMMAND READ 0x03

//macro to set SPI to MASTER; 8BIT; FSYNC Idle => xCS high

#define SPI MASTER 8BIT CSHI PERIP(SPI0 CONFIG) = \
SPI CF MASTER | SPI CF DLEN8 | SPI CF FSIDLE1

//macro to set SPI to MASTER; 8BIT; FSYNC not Idle => xCS low

#define SPI MASTER 8BIT CSLO PERIP(SPI0 CONFIG) = \
SPI CF MASTER | SPI CF DLEN8 | SPI CF FSIDLE0

//macro to set SPI to MASTER; 16BIT; FSYNC not Idle => xCS low

#define SPI MASTER 16BIT CSLO PERIP(SPI0 CONFIG) = \
SPI CF MASTER | SPI CF DLEN16 | SPI CF FSIDLE0

void InitSpi() {
SPI MASTER 8BIT CSHI;
PERIP(SPI0 FSYNC) = 0; // Frame Sync is used as an active low xCS

PERIP(SPI0 CLKCONFIG) = SPI CC CLKDIV * (1-1); // Spi clock divider = 1

PERIP(GPIO1 MODE) |= 0x1f; // Set SPI pins to be peripheral controlled

}

void EESingleCycleCommand(u int16 cmd){
SPI MASTER 8BIT CSHI;
SPI MASTER 8BIT CSLO;
SpiSendReceive(cmd);
SPI MASTER 8BIT CSHI;

}

/// Wait for not busy (status[0] = 0) and return status

u int16 EEWaitGetStatus(void) {
u int16 status;
SPI MASTER 8BIT CSHI;
SPI MASTER 8BIT CSLO;
SpiSendReceive(SPI EEPROM COMMAND READ STATUS REGISTER);
while ((status = SpiSendReceive(0)) & 0x01)

; //Wait until ready

SPI MASTER 8BIT CSHI;
return status;

}

Rev. 0.15 Preliminary 2008-06-30 Page 26(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

/// Read a block from EEPROM

/// \param blockn number of 512-byte sector 0..32767

/// \param dptr pointer to data block

u int16 EEReadBlock(u int16 blockn, u int16 *dptr) {
EEWaitGetStatus(); // Wait until EEPROM is not busy

SPI MASTER 8BIT CSLO; // Bring xCS low

SpiSendReceive(SPI EEPROM COMMAND READ);
SpiSendReceive(blockn>>7); // Address[23:16] = blockn[14:7]

SpiSendReceive((blockn<<1)&0xff); // Address[15:8] = blockn[6:0]0

SpiSendReceive(0); // Address[7:0] = 00000000

SPI MASTER 16BIT CSLO; // Switch to 16-bit mode

{ int n;
for (n=0; n<256; n++){

*dptr++ = SpiSendReceive(0); // Receive Data

}
}
SPI MASTER 8BIT CSHI; // Bring xCS back to high

return 0;
}

// Disk image is prommed to EEPROM at sector 0x80 onwards, leaving

// the first 64 kilobytes (1 erasable block) free for boot code

#define FAT START SECTOR 0x80

// This function will replace ReadDiskSector() functionality

auto u int16 MyReadDiskSector(register i0 u int16 *buffer,
register a u int32 sector) {

PERIP(GPIO1 MODE) |= 0x1f; // Set SPI pins to be peripheral controlled

EEReadBlock(sector+FAT START SECTOR, buffer);

return 0;
}

// Initialize SPI and hook in own disk read function.

// This example plays ogg files from a FAT image that has been

// previously written to a serial EEPROM.

void main(void) {
InitSpi();

// Hook in own disk sector read function

SetHookFunction((u int16)ReadDiskSector, MyReadDiskSector);

} // Return to ROM code. Player will now play from EEPROM

Rev. 0.15 Preliminary 2008-06-30 Page 27(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

3.5 Setting your own USB descriptors

Each USB device has a Vendor ID and a Product ID, which are 16-bit numbers that
the operating system uses for determining which device driver to load for the device.
Additionally most USB devices have a vendor name and model name strings that the
operating system can display to the user. All USB string descriptors are 16-bit Unicode
strings (UTF-16).

VS1000’s ROM code holds VLSI’s Vendor ID and Product ID. For prototyping you can
use an unused Vendor ID and Product ID, but when you ship products to customers,
you must use your own Vendor ID and Product ID. A Vendor ID can be obtained from
the USB Implementers Forum, Inc.’s web site, http://www.usb.org .

To comply with USB Mass Storage Specification, each device that is shipped out to
customers should have a unique serial number in the USB descriptors. Windows uses
this serial number e.g. for storing device parameters in the system registry.

VS1000’s ROM is written so that it’s easy to change these descriptors without having to
touch the rest of the USB code. This example shows how you can change the Device De-
scriptor, which holds the Vendor ID and Product ID, and the Vendor/Model/SerialNumber
string descriptors.

USB.descriptorTable[6] holds pointers to the descriptors. A system hook vector called
InitUSBDescriptors can be used to set your own descriptors.

Descriptor data format

Mostly because the USB has its roots in the 8-bit oriented PC (80x86) architecture, all
USB traffic is transmitted byte by byte. When values that have more than 8 bits, such
as 16-bit integers or 32-bit integers, are transmitted, they are transmitted in the little-
endian (“Little End First”) format, where the least significant (last) byte of a multi-byte
value is sent first.

VS DSP, however, is a natively 16-bit architecture that only handles 16-bit values. Thus
all data in VS DSP must be stored as signed or unsigned 16 (or 32) bit values. To
maintain USB compatibility, care must be taken to transmit descriptors in the correct
byte order. In practice this means that descriptors should be stored in tables of byte-
swapped 16-bit unsigned integers as in the example below.

The serial number is a string of (at least) 12 characters from set {“0123456789ABCDEF”}.
All strings are stored in 16-bit Unicode format. The example code creates a new serial
number string descriptor mySerialNumberStr. The last 8 characters are generated in
the main() function from u int32 mySerialNumber, which should be unique for each
device. You could generate it from e.g. the serial number of the storage memory your
product has. The first 4 characters (“1234” in the descriptor) could be fixed for a specific
program version etc.

Rev. 0.15 Preliminary 2008-06-30 Page 28(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

// usbdesc.c : Example for changing USB descriptors

// We will hook InitUSBDescriptors so that it overrides the default string

// descriptors with our own.

#include <vs1000.h>
#include <usblowlib.h>

#define VENDOR NAME LENGTH 6
const u int16 myVendorNameStr[] = {

((VENDOR NAME LENGTH * 2 + 2) << 8) | 0x03,
’M’ << 8,
’y’ << 8,
’C’ << 8,
’o’ << 8,
’r’ << 8,
’p’ << 8

};

#define MODEL NAME LENGTH 6
const u int16 myModelNameStr[] = {

((MODEL NAME LENGTH * 2 + 2) << 8) | 0x03,
’G’ << 8,
’a’ << 8,
’d’ << 8,
’g’ << 8,
’e’ << 8,
’t’ << 8

};

#define SERIAL NUMBER LENGTH 12
u int16 mySerialNumberStr[] = {

((SERIAL NUMBER LENGTH * 2 + 2) << 8) | 0x03,
’1’ << 8, // You can

’2’ << 8, // put any

’3’ << 8, // numbers you

’4’ << 8, // like here (over the ’1’ ’2’ ’3’ and ’4’)

0x3000, 0x3000, 0x3000, 0x3000, // Last 8 digits of serial

0x3000, 0x3000, 0x3000, 0x3000 // number will be calculated here

};

// This is the new Device Descriptor. See the USB specification!

// Note that since VS DSP is 16-bit Big-Endian processor,

// tables MUST be given as byte-swapped 16-bit tables for USB compatibility!

// This device descriptor template is ok for mass storage devices.

const u int16 myDeviceDescriptor [] = {
0x1201, 0x1001, 0x0000, 0x0040,
0x3412, // byte-swapped Vendor ID (0x1234) Get own from usb.org!

0x4523, // byte-swapped Product ID (0x2345)

0x5634, // byte-swapped Device ID (0x3456)

0x0102, 0x0301
};

Rev. 0.15 Preliminary 2008-06-30 Page 29(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

// When USB descriptors initialized, set defaults with

// RealInitUSBDescriptors(), then install our descriptors.

void MyInitUSBDescriptors(u int16 initDescriptors){
RealInitUSBUSBDescriptors(initDescriptors);
USB.descriptorTable[DT VENDOR] = myVendorNameStr;
USB.descriptorTable[DT MODEL] = myModelNameStr;
USB.descriptorTable[DT SERIAL] = mySerialNumberStr;
USB.descriptorTable[DT DEVICE] = myDeviceDescriptor;

}

const u int16 bHexChar16[] = { // swapped Unicode hex characters

0x3000, 0x3100, 0x3200, 0x3300, 0x3400, 0x3500, 0x3600, 0x3700,
0x3800, 0x3900, 0x4100, 0x4200, 0x4300, 0x4400, 0x4400, 0x4500

};

void main(void) {
u int16 i;
u int32 mySerialNumber = 0x1234abcd; // Unique serial number

// Put unique serial number to serial number descriptor

for (i=5; i<13; i++){
mySerialNumberStr[i]=bHexChar16[mySerialNumber>>28];
mySerialNumber <<= 4;

}

// Hook in function that will load new descriptors to USB struct

SetHookFunction((u int16)InitUSBDescriptors, MyInitUSBDescriptors);

} // Return to ROM code.

Rev. 0.15 Preliminary 2008-06-30 Page 30(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

3.6 Booting from SPI EEPROM

VS1000 supports loading boot-up code from an SPI EEPROM such as the 25LC640.
The ROM code checks the state of XCS pin during boot-up. If XCS is high, the code
attempts to read a boot record from the EEPROM using the SI, SO, SCLK and XCS
pins. In addition to the 16-bit addressing of SPI eeproms such as the 25LC640, the ROM
also supports 24-bit addressing of some larger EEPROMS (possibly up to 16 megabytes).

A program that is to be loaded using the SPI EEPROM must be linked with c-spi.o
object module. The c-spi.o module can also be used with running the code from
vs3emu, but not from the nand flash.

The coff2spiboot tool can be used to create a bootable EEPROM image from the linker
output file with a command such as:

coff2spiboot -x 0x50 led.bin eeprom.img

This reads the previously compiled program led.bin and creates a binary eeprom im-
age eeprom.img, which can be programmed to an SPI EEPROM with an EEPROM
programmer.

A valid boot record starts with identifier 0x564C5349 (’V’,’L’,’S’,’I’) and contains blocks
of binary data that are to be stored at specified addresses. A boot record that is loaded
via the SPI bus must have an execution command as the last block. Description of the
block format is in the datasheet, if it should be needed for some special purpose.

Using a VS1000 Developer Board as an eeprommer

Also a VS1000 Developer Board can be used to program the SPI EEPROM, using
the vs3emu file interface. The next pages contain an example program that reads the
eeprom.img file and writes it to a 25LC640 EEPROM. The promming routine is com-
piled normally to a binary program prommer.bin. It can be run with vs3emu with a
command such as:

vs3emu -chip vs1000 -s 115200 -l prommer.bin e.cmd

If the file eeprom.img is found on the local directory, the contents is programmed to the
EEPROM and you should see output such as

25LC640 EEPROM promming routine for VS1000A
Trying to open eeprom.img
Programming...
Sector 0000 ...
Reading first 2 words of EEPROM: 564c 5349 ("VLSI"), which is a valid VLSI boot

id.

Done.

Rev. 0.15 Preliminary 2008-06-30 Page 31(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

// VS1000A EEPROM Writer Program

// Reads eeprom.img file from PC via vs3emu cable and programs it to EEPROM.

#define MY IDENT "25LC640 EEPROM promming routine for VS1000A"

#include <stdio.h>
#include <stdlib.h>
#include <vs1000.h>
#include <minifat.h>

y const char hex[] = "0123456789abcdef";
void puthex(u int16 a) {

char tmp[8];
tmp[0] = hex[(a>>12)&15]; tmp[1] = hex[(a>>8)&15];
tmp[2] = hex[(a>>4)&15]; tmp[3] = hex[(a>>0)&15];
tmp[4] = ’ ’; tmp[5] = ’\0’;
fputs(tmp, stdout);

}

#define SPI EEPROM COMMAND WRITE ENABLE 0x06
#define SPI EEPROM COMMAND WRITE DISABLE 0x04
#define SPI EEPROM COMMAND READ STATUS REGISTER 0x05
#define SPI EEPROM COMMAND WRITE STATUS REGISTER 0x01
#define SPI EEPROM COMMAND READ 0x03
#define SPI EEPROM COMMAND WRITE 0x02

//macro to set SPI to MASTER; 8BIT; FSYNC Idle => xCS high

#define SPI MASTER 8BIT CSHI PERIP(SPI0 CONFIG) = \
SPI CF MASTER | SPI CF DLEN8 | SPI CF FSIDLE1

//macro to set SPI to MASTER; 8BIT; FSYNC not Idle => xCS low

#define SPI MASTER 8BIT CSLO PERIP(SPI0 CONFIG) = \
SPI CF MASTER | SPI CF DLEN8 | SPI CF FSIDLE0

//macro to set SPI to MASTER; 16BIT; FSYNC not Idle => xCS low

#define SPI MASTER 16BIT CSLO PERIP(SPI0 CONFIG) = \
SPI CF MASTER | SPI CF DLEN16 | SPI CF FSIDLE0

void SingleCycleCommand(u int16 cmd){
SPI MASTER 8BIT CSHI;
SpiDelay(0);
SPI MASTER 8BIT CSLO;
SpiSendReceive(cmd);
SPI MASTER 8BIT CSHI;
SpiDelay(0);

}

/// Wait for not busy (status[0] = 0) and return status

u int16 SpiWaitStatus(void) {
u int16 status;
SPI MASTER 8BIT CSHI;
SpiDelay(0);
SPI MASTER 8BIT CSLO;

Rev. 0.15 Preliminary 2008-06-30 Page 32(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

SpiSendReceive(SPI EEPROM COMMAND READ STATUS REGISTER);
while ((status = SpiSendReceive(0xff)) & 0x01){

SpiDelay(0);
}
SPI MASTER 8BIT CSHI;
return status;

}

void SpiWriteBlock(u int16 blockn, u int16 *dptr) {
u int16 i;
u int16 addr = blockn*512;

for (i=0; i<32; i++){
SingleCycleCommand(SPI EEPROM COMMAND WRITE ENABLE);
SPI MASTER 8BIT CSLO;
SpiSendReceive(SPI EEPROM COMMAND WRITE);
SPI MASTER 16BIT CSLO;
SpiSendReceive(addr);
{

u int16 j;
for (j=0; j<16; j++){ //Write 16 words (32 bytes)

SpiSendReceive(*dptr++);
}

}
SPI MASTER 8BIT CSHI;
SpiWaitStatus();
addr+=32;

}
}

u int16 SpiReadBlock(u int16 blockn, u int16 *dptr) {
SpiWaitStatus();
SPI MASTER 8BIT CSLO;
SpiSendReceive(SPI EEPROM COMMAND READ);
SpiSendReceive((blockn<<1)&0xff); // Address[15:8] = blockn[6:0]0

SpiSendReceive(0); // Address[7:0] = 00000000

SPI MASTER 16BIT CSLO;
{

u int16 i;
for (i=0; i<256; i++){

*dptr++ = SpiSendReceive(0);
}

}
SPI MASTER 8BIT CSHI;
return 0;

}

// This routine programs the EEPROM.

// The minifat module has a memory buffer of 512 bytes (minifatBuffer)

// that is used here as temporary memory.

// The routine does not verify the data that is written, but after

// programming, the eeprom start is checked for a VLSI boot id.

Rev. 0.15 Preliminary 2008-06-30 Page 33(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

void main(void) {

FILE *fp;

SPI MASTER 8BIT CSHI;
PERIP(SPI0 FSYNC) = 0;
PERIP(SPI0 CLKCONFIG) = SPI CC CLKDIV * (12-1);
PERIP(GPIO1 MODE) |= 0x1f; /* enable SPI pins */

PERIP(INT ENABLEL) &= ∼INTF RX; //Disable UART RX interrupt

puts("");
puts(MY IDENT);
puts("Trying to open eeprom.img");

if (fp = fopen ("eeprom.img", "rb")){ // Open a file in the PC

u int16 len;
u int16 sectorNumber=0;

puts("Programming...");
while ((len=fread(minifatBuffer,1,256,fp))){

fputs("Sector ",stdout); puthex(sectorNumber); puts("...");
SpiWriteBlock(sectorNumber, minifatBuffer);
sectorNumber++;

}
fclose(fp); // Programming complete.

minifatBuffer[0]=0;
fputs("Reading first 2 words of EEPROM: ",stdout);
SpiReadBlock(0,minifatBuffer);

puthex(minifatBuffer[0]);
puthex(minifatBuffer[1]);

fputs(" (\"",stdout);
putchar(minifatBuffer[0]>>8); putchar(minifatBuffer[0]&0xff);
putchar(minifatBuffer[1]>>8); putchar(minifatBuffer[1]&0xff);

if ((minifatBuffer[0]==0x564c) && (minifatBuffer[1]==0x5349)){
puts("\"), which is a valid VLSI boot id.");

} else {
puts("\"), which is NOT a valid VLSI boot id!");

}
puts("Done.");

}else{
puts("File not found\n");

}

PERIP(INT ENABLEL) |= INTF RX; //Re-enable UART RX interrupt

while(1)
; //Stop here

}

Rev. 0.15 Preliminary 2008-06-30 Page 34(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

3.7 Booting from NAND FLASH

If a nand flash chip is connected to the byte-wide bus interface of VS1000, it can also be
used for booting the VS1000. VS1000 supports natively most single-level cell, single-chip-
select NAND flashes such as the NAND128W3A2 from ST (small page) or K9F2G08U0M
from Samsung (large page).

3.7.1 Nand Flash startup sequence and structure

The nand flash boot is attempted after EEPROM boot. First the I/O voltages are set
according to the input state of GPIO0[7] pin. Then VS1000 attempts to read the first
block of 512 bytes of the nand flash with 8 different access methods, using the nand
flash interface with only CS1 chip select. The access methods cover small and large page
flashes with 4, 5 or 6 address bytes.

Because different types of nand flash chips differ in the access methodology, using a nand
flash is somewhat more complicated than using an eeprom. To ensure proper operation,
a nand flash chip must be programmed with a valid VLSI ID record in the beginning
of block 0. VS1000 looks for the ID record and adjusts the nand access parameters
according to the ID record information.

If the VLSI boot id ’V”L”S”I’ (0x564C5349) is successfully read in the beginning of block
0, the ID record is considered valid. The next words of the ID record specify the overall
size, erasable block size, number of address bytes, block size and speed grade of the nand
flash chip in question in the format specified in the VS1000 datasheet.

The rest of the 512-byte block contain the start of the user boot code and the number
of extra sectors to load. VS1000A needed a chain loader to extend the boot size beyond
one sector.

The first erasable area of a nand flash chip is reserved for boot data. The filesystem that
contains the songs to be played and is visible to the PC as a USB disk starts at a further
offset after the boot area and for security reasons is separate from the boot area.

ID User application code (max 8176 bytes)

Application can take 15 extra sectors

First 512 bytes contain ID, start of the application and
the number of extra sectors to load

Figure 3.2: Structure of the beginning of a Nand Flash in VS1000B

Rev. 0.15 Preliminary 2008-06-30 Page 35(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

3.7.2 Preparing a nand flash image

A program that is to be loaded using the nand flash must be linked with c-nand.o with
a command line such as:

vslink -k -m mem user -o led.bin -L lib -lc lib/c-nand.o lib/rom1000b.o led.o

The binary program led.bin must then be converted into a nand boot record using the
coff2nandboot program with a command line such as:

coff2nandboot -t 3 -b 8 -s 19 -w 70 -x 0x50 led.bin nand.rec

The program coff2nandboot creates a nand boot record starting with a VLSI ID record.
The parameters -t 3 -b 8 -s 19 -w 50 specify that the target nand flash chip used

• is of Type 3 (Large Page, 5-byte address)
• has an erasable block size of 28 × 512 bytes (128 KiB)
• has an overall size of 219 × 512 bytes (256 MiB)
• needs 70 ns wait states

The parameters -x 0x50 led.bin nand.rec instruct that

• executable code starts at address 0x0050
• linked program image is in led.bin
• boot record should be written to nand.rec

Output such as the following can be expected from coff2nandboot:
NandType: 3 Large-Page 5-byte addr, 128kB blocks, 256MB flash
I: 0x0050-0x0086 In: 222, out: 222
In: 222, out: 228

The above parameters are ok for the K9F2G08, which is installed in some of the Demon-
stration Boards shipped by VLSI. Others have NAND128W and for those a suitable
command line is coff2nandboot -t 0 -b 5 -s 15 -x 0x50 led.bin NANDFLSH.IMG

The resulting binary file NANDFLSH.IMG can be prommed to the beginning of a nand flash
with a nand flash programmer.

Rev. 0.15 Preliminary 2008-06-30 Page 36(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

3.7.3 Using the VS1000 Demostration/Developer Board as a nand flash
writer

Because it would be troublesome to remove a nand flash chip that is soldered to a PCB
for programming, the VS1000 contains a number of ways to update the flash contents.
The nand flash contents can be updated by

• programming the nand flash off-pcb using a prommer
• running a flasher program via the vs3emu emulator interface (requires RS-232)
• running a flasher program via an SPI EEPROM
• running a flasher program via the VS1000 USB mass storage backdoor

The last option is most convenient for players that don’t have RS-232 port, such as
the VS1000 Demonstration Board. When the VS1000 is switched to USB Mass Storage
mode by attaching the USB cable when GPIO0[6] is low, it creates a logical drive that
is presented to the USB host as a removable disk.

A special thing happens when the ROM software can’t detect a nand flash chip (by
reading the VLSI boot ID as explained earlier). In that case, the software creates a RAM
disk of a few kilobytes. This can be detected by the disk being empty and having a size of
only about 16 kilobytes. (The RAM disk also has the identifier signature “VLSIFATDISK”
but that is normally not shown by Windows.)

This feature can be used for initial programming of the nand flash since at the first boot-
up of a new VS1000 device with an empty nand flash, the VLSI ID is not yet programmed
into the nand flash and thus the RAM disk appears. Later on, when the nand flash
is programmed and its contents need to be updated, the nand flash detection can be
prevented by pulling CS1 low when powering up the VS1000. In the Demonstration
Board this can be done by shorting TP2 and CS1 pads on the Developer Board PCB.
When connected to the PC, the RAM disk appears and the short should be removed.
The user can now copy files to the RAM disk using Windows/Unix etc.

A special file named VS1000 B.RUN can now be copied to the RAM disk. When the USB
cable is removed, without turning off power, the VS1000B loads and runs a boot
record from that file.

For updating the flash contents, VS1000 B.RUN should contain a flasher program, that
reads another file named NANDFLSH.IMG from the RAM disk and writes its contents to
the beginning of the nand flash. When the VS1000 boots up the next time, with CS1
pulled high, it uses and boots up from the nand flash with the updated software.

The software tools package for VS1000 contains the above VS1000 B.RUN file. Its source
code is shown on the next page as an example of more complicated (and powerful) VS1000
programming that uses the integrated ROM code library.

Rev. 0.15 Preliminary 2008-06-30 Page 37(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

// Program for flashing first sector of a compatible Nand Flash chip

// from file NANDFLSH.IMG on the RAMDISK.

// Since this program is run from file VS1000 A.RUN in the ramdisk, *map already

// points to an existing ramdisk, so OpenFile() etc work from the ramdisk.

#include <vs1000.h>
#include <minifat.h>
#include <vsNand.h>
extern y u int16 mallocAreaY[]; /* for ramdisk */

extern u int16 mallocAreaX[]; /* for ramboot */

extern struct FsNandPhys fsNandPhys;
extern struct FsPhysical *ph;

void main(void) {
register int j = 0;
ph = &fsNandPhys.p; // Physical disk is nand flash handler in ROM

mallocAreaY[29] = 0x3220; // Force disk image to be FAT12

if (InitFileSystem() == 0) { // Reinitialize file system in FAT12 mode

static const u int32 bootFiles[] = { FAT MKID(’I’,’M’,’G’), 0 };
minifatInfo.supportedSuffixes = bootFiles; // Only read .IMG files

if (OpenFile(0) < 0) { // Open first .IMG file on ramdisk

j = ReadFile(mallocAreaX, 0, 2*0x1000) / 2;
if (j==0) goto fail; // Could not read from the file

} else goto fail; // OpenFile() did not find any .IMG file from the ramdisk

// File is now read to mallocAreaX and j contains its length.

((struct FsNandPhys *)ph)->nandType = mallocAreaX[2]; //nandType from imgfile

((struct FsNandPhys *)ph)->waitns = 200; //Set 200 ns wait states

if (ph->Erase(ph, 0)){ // Call ROM routine to erase flash

goto fail; // In case of erase failure

}

// Call ROM routine to write sector, goto fail if chip reports write error

if (ph->Write(ph, 0, (j+255)/256, mallocAreaX, NULL) == 0) goto fail;

/* Programming done, do special LED blink */

while(1){
PERIP(GPIO1 ODATA) = 0x04; /* GPIO1[2] (LQFP pin 24) = 1 */

for (j=0; j<10; j++) BusyWait10();
PERIP(GPIO1 ODATA) = 0x08; /* GPIO1[3] (LQFP pin 25) = 1 */

for (j=0; j<100; j++) BusyWait10();
} // Continue the blinking forever

}

fail:
PERIP(GPIO1 ODATA) = 0x08; // in fail condition constantly light LED 2

while(1)
;

}

Rev. 0.15 Preliminary 2008-06-30 Page 38(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

3.8 Additional examples

The code that is to be run with VS1000B or VS1000C must be compiled from the
vs1000bc directory. The vskit1.34 no longer has support for VS1000A. For information
on how to compile the various binaries for VS1000B or VS1000C, refer to the command
batch file BUILD.BAT in directory vskit134/vs1000bc and README.TXT file in directory
vskit134.

3.8.1 playloop.c

playloop.c is an example on how to take direct control of the player, e.g. replace
the main playing loop. This example programs the player so that each file is repeated
continuously until user selects “next” or “previous” song (by pressing the appropriate
button).

3.8.2 display.c

display.c is the code, which is preprogrammed to the nand flash of the VS1000 Devel-
oper Board (the one that has the OLED display). It contains examples about how to
get information about the currently playing file and update a graphical display based on
that information. It’s also an example of how to access the internal font ROM of vs1000.

3.8.3 execdemo1.c and execdemo2.c

These files contain an example of an Exec() function that loads new user program from
the filesystem. The idea is that a large system can consist of many programs that are
stored in the filesystem in the nand flash.

Since the internal filing system of VS1000 ROM works by enumerating all files with
allowable extensions, the choice of which file to run is made by the file’s extension only.
The idea is that the filesystem contains files ”EXECFILE.PR1” and ”EXECFILE.PR2”.
First file is selected by running the first file with extension ”PR1” and the second file
is run by running the first file with extension ”PR2”. These are created by renaming a
Nand-Flash bootable file such as NAND128W.IMG that is created by the build script.

Additionally, parameter passing between programs is demonstrated: Parameter passing
can be done by mapping variables to known same locations in different images. In a large
project this can be done using the assmebler and ORG directive cleanly. But in a small
project there are some tricks such as this one: We use some memory area used by ROM
code that is not active, to store the variables. Normally the Bass Boost is not active, it’s
not activated by ROM code, though user has the option of activating it from software.
We use a 64-word table ”s int16 y btemp[64]” to store variables that can be seen across
different execs.

Since Exec() overwrites the malloc and user program areas, it’s generally not possible to

Rev. 0.15 Preliminary 2008-06-30 Page 39(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

return from Exec() to any other place than the main() function of the newly loaded file.
Thus each file must contain the Exec() function and exit via loading another program via
Exec(). Typically a project would contain “MAIN.PRG” loaded by boot code. It would
then run other programs such as “PROGRAM.PR1”, “PROGRAM.PR2” etc. Each of
them would return by execing to MAIN.PRG file.

Exec() -loadable binaries must be linked with a version of the startup library that resets
the stack, otherwise a stack overflow will eventually occur. The command batch file
BUILD.BAT prepares a properly linked file with file name EXECFILE.PRG, which can
be renamed and dropped to the VS1000 flash disk.

3.8.4 power.c

This file is an example on how to adjust the internal regulator voltages. The file contains
the default settings in ROM.

Note that the 3 regulators: CORE, IO and ANALOG have different maximum and min-
imum voltages and thus the set values will result in different voltages for each regulator.
Note also that it’s possible to adjust voltages over the limits: it’s possible to set e.g. such
a low voltage that the core doesn’t work (at some clock frequency) or such high voltages
that they are harmful to the chip or other chips powered by VS1000. Be careful in your
adjustments!

3.8.5 nandprog.c

This program can be used to reset or program the boot area of the nand flash on a devel-
oper board. Please see README.TXT file in the developer toolkit for more information.

Rev. 0.15 Preliminary 2008-06-30 Page 40(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

3. EXAMPLES

3.9 Using an external display

The VS1000 can be interfaced easily to an external display controller using the SPI
bus. Since all LCD controllers don’t have an embedded character generator, the VS1000
includes a ROM font that can be used to draw alphanumeric characters and symbols.

The ROM font contains

• ASCII symbols 32...127
• Half-width katakana symbols
• Special symbols (play,pause,stop,speaker,usb,cabinet,...)

Additional symbols can be defined in RAM.

The low bytes of u int16 fontData[] contain the low end ASCII shapes and variable-
width symbols:

Figure 3.3: VS1000 variable-width symbols

u int16 fontPtrs[] contains the starting offsets of pixel data for each character.

The high bytes of u int16 fontData[] contain katakana and fixed width special symbols:

Figure 3.4: VS1000 fixed width symbols

For more information, see files romfont.txt and display.c in the Developer Toolkit.

Rev. 0.15 Preliminary 2008-06-30 Page 41(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4 Peripheral documentation

4.1 VS1000 System Controller

4.1.1 General

The System Controller controls various global aspects of VS1000 function such as the
system clock and voltages and I/O pin modes.

4.1.2 Registers

The System Controller is accessed through 2 registers, SCI SYSTEM and SCI STATUS.

SCI SYSTEM: System Power and Clock Control

SCI SYSTEM Bits
Name Bits Description
SCISYSF CLKDIV 15 Divide Clock by 2 (for 24 MHz xtal)
SCISYSF AVDD 14:10 Analog and Usb Voltage setting 2.5V - 3.6V
SCISYSF IOVDD 9:5 I/O Voltage setting 1.8V - 3.3V
SCISYSF CVDD 4:0 Core Voltage setting 1.25V - 2.7V

SCI SYSTEM controls the internal voltage regulator and clock divider of VS1000. Setting
the clock divider while PLL is not used (clock multiplier = 1) makes the system run at
considerably slower clock rate, conserving the system power.

Setting bad voltage values can cause malfuntion and/or even physically harm
the device or, in case of IOVDD, even other devices attached to the I/O Pins.

The default values in reset are:

Default Regulator Output Voltages
Net Default Value Description
AVDD 2.6 V Analog and Usb Voltage
IOVDD 1.8 V I/O Voltage
CVDD 2.2 V Core Voltage

The Core VDD is directly routed to the DSP core and peripheral logic. AVDD and
IOVDD are routed by the PCB, allowing PCB layout to generate fixed AVDD and

Rev. 0.15 Preliminary 2008-06-30 Page 42(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

IOVDD voltages (for AVDD and IOVDD there are separate pins for regulator output
and chip input).

USB powering

When USB is active, USB requires at least 2.5V, which is more than the default IOVDD
value, so the voltage for the USB pins is taken from AVDD output of the internal voltage
regulator.

SCI STATUS: System Flags

The SCI STATUS register is the second System Controller register. It is used to control
and read the state of several system level peripherals.

SCI STATUS Bits (r/w)
Name Bits Description
SCISTF SLOW CLKMODE 15 Divide XTALI by 256
SCISTF USB DN OUT 14 D- pin output state in GPIO mode
SCISTF USB DP OUT 13 D+ pin output state in GPIO mode
SCISTF USB DDR 12 Drive D+/D- pins directly as GPIO
SCISTF VCM OVERLOAD 11 VCM pin overload, CBUF disconnected
SCISTF VCM DISABLE 10 Disable VCM protection
SCISTF USB DP 9 State of D+ pin
SCISTF USB DN 8 State of D- pin
SCISTF USB DIFF ENA 7 Enable USB data input
SCISTF USB PULLUP ENA 6 Activate 1.5kOhm D+ pull-up resistor
SCISTF REGU POWERLOW 5 Regulator input too low for good AVDD
SCISTF REGU POWERBUT 4 State of Power Button (“Play/Pause”) pin
SCISTF ANADRV PDOWN 3 Analog Output Driver power down control
SCISTF ANA PDOWN 2 Analog Core (bias) power down control
SCISTF REGU CLOCK 1 Clock in new regulator voltage values
SCISTF REGU SHUTDOWN 0 Regulator Shutdown control

USB detection

USB detection and device attachment/detachment are handled using the System Con-
troller. Actual USB data traffic is handled using the USB peripheral itself.

It is suggested that bot the D+ and D- pins have a 1 megaohm pull-up resistor on the
PCB. This makes both D+ and D- pins weakly bias to “1” state when the device is not
connected to a USB port. When the USB cable is attached, the 15 kilo-ohm pull-down
resistors of the host USB hub pull D+ and D- low, pulling the pins to “0” state. Thus
detecting SCISTF USB DN = 0 indicates USB cable connect.

Upon detecting the connection of the USB cable, software should switch to USB voltages,

Rev. 0.15 Preliminary 2008-06-30 Page 43(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

change the system clock to 48 MHz (XTALI=12.000MHz, Clock Multiplier 4.0x) and
wait for the clock to stabilize before setting SCISTF USB PULLUP ENA high, which
activates the integrated 1.5 kilo-ohm pull-up resistor of D+, signaling the PC to start
enumeration of the USB device.

4.1.3 Conserving Power

Three main factors affect the power requirement of any CMOS device are clock fre-
quency, voltage, and leakage. Of these, clock frequency has the greatest effect to power
consumption.

The Clock frequency of VS1000 is controlled by

• The XTALI input (crystal oscillator)

• The System Controller

• The PLL (Phase Locked Loop) Controller (Clock multiplier)

The System Controller’s role in clock control is providing two clock dividers between the
crystal oscillator output and the analog block and the PLL controller. First there is a
divide-by-2 block, which is controlled by SCISTF SLOW CLKMODE. After that there
is a divide-by-256 block, which is controlled by SCISYSF CLKDIV.

The divide-by-2 block is normally used when there is a 24 MHz crystal connected to the
XTALI/XTALO pins (normally a 12 MHz crystal is used). Setting SCISTF SLOW CLK-
MODE affects all system frequencies, including the PLL, but it does not prohibit using
PLL.

It should be noted that the analog block requires 12 MHz from System Controller for
proper performance.

The divide-by-256 block is used to considerably cut down power consumption. This is
especially useful when some basic operation is needed (such as the capability to recover
from USB suspend or resume after low-power PAUSE mode) but battery life needs to be
extended.

The PLL must not be used when divide-by-256 is active. The PLL tries and fails to lock
to a frequency below PLL minimum. Switch off PLL (set 1 x clock multiplier) before
setting SCISYSF CLKDIV.

If divide-by-256 is activated without first switching the analog drivers off, the DAC sigma-
delta modulator noise (which is part of normal sigma-delta operation) drops down to au-
dible frequencies, which is undesired. To overcome this, set SCISTF ANADRV PDOWN
before activating SCISYSF CLKDIV. You should also write 0 to DAC LEFT DAC RIGHT
to further diminish digital noise and power consumption. Remember to restore the values
before resuming playback.

If playback will resume directly after recovering from the power down state, it is not rec-
ommended to set SCISTF ANA PDOWN since restoring the bias voltages of the analog

Rev. 0.15 Preliminary 2008-06-30 Page 44(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

block can result in a power-up pop sound. If that is not relevant (such as in a USB sus-
pend condition,) SCISTF ANA PDOWN should be asserted to further minimize power
consumption. Also setting the AVDD, DVDD and CVDD to a lower level will diminish
power consumption.

The divide-by-2 and divide-by-256 blocks can be active at the same time, resulting in a
master clock that is divided by 512. With the standard 12 MHz crystal, this results in a
system clock of just above 23 kHz (23437.5 Hz).

4.1.4 I/O Pin Routing

The System Controller controls the I/O pins of the device, routing signals to/from the
peripherals such as a serial port or GPIO controller.

GPIOn MODE Bits
Name Bits Description
periph/gpioX 15:0 bit vector; 1=peripheral 0=GPIO

GPIO0 MODE and GPIO1 MODE control output signal routing for the I/O pins. Most
pins are multiplexed between general purpose input/output and a peripheral function.
Pins are controlled by peripheral functions by default. Writing “0” to a bit in GPIOn MODE
enables direct control over the pin.

Regardless of GPIOn MODE register value, the input data (1/0 state of pin) can always
be read from the GPIOn IDATA register (See section: Interruptable General Purpose
IO).

Switching a pin to GPIO mode can be used to disable data flow from a pin to a peripheral
function. The following peripheral input signal values are set when the corresponding
pin is in GPIO mode:

Peripheral Function Input Signal Values When pin is in GPIO Mode
GPIO Function Value
GPIO0[7:0] Nand Flash data input 00000000
GPIO0[8] Nand Flash Ready 1
GPIO1[0] SPI Slave Select 1
GPIO1[1] SPI Clock 1
GPIO1[2] SPI MISO 1
GPIO1[3] SPI MOSI 1
GPIO1[5] UART Receive 1

4.1.5 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for the System Controller:

At boot-up time, if pin D7 (pin number 12 in LQFP package) is pulled high, the ROM
software raises IOVDD from 1.8V to 3.3V. If it is pulled low, IOVDD remains at 1.8V.
The pin should not be left floating.

Rev. 0.15 Preliminary 2008-06-30 Page 45(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

The default core voltage has been raised to 2.2V in VS1000B.

The ROM code expects a 12.000 MHz crystal input.

Rev. 0.15 Preliminary 2008-06-30 Page 46(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.2 PLL controller v1.0 2006-05-10

4.2.1 General

The Phase-Locked Loop (PLL) controller is used to generate clock frequencies that are
higher than the incoming (crystal-based) clock frequency. The PLL output is used by
the CPU core and some peripherals.

Configurable features include:

• VCO Enable/Disable

• Select VCO or input clock to be output clock

• Route VCO frequency to output pin

• Select PLL clock multiplier

4.2.2 DAC Interpolator control

The DAC interpolator frequency control and PLL controller are controlled using the
same register pair FREQCTLH and FREQCTLL. Output sample rate is derived from
the rollover frequency of a 20-bit interpolator accumulator. Its accumulation rate is
specified by ifreq.

The maximum value for ifreq is 0x80000. Note that the DAC (and thus also the interpo-
lator) clock is not controlled by the PLL (see “VS1000 System Controller” and “Overview
of VS1000 Clocking”).

4.2.3 Registers

Nand flash controller user registers can be divided to three groups: the nand flash in-
terface control registers, the dsp interface control registers and the ECC control/logging
registers. Register map is shown in the next table.

Interpolator Rate (low part)

FREQCTLL bits
Name Bits Description
ifreq[15:0] 15:0 Bits 15..0 of the interpolator accumulation rate

Rev. 0.15 Preliminary 2008-06-30 Page 47(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

Interpolator Rate (high part) and PLL control

FREQCTLH bits
Name Bits Description
pll-lock-read 13 0=lock failed since last test
pll-lock-test 12 1:Sets pll-lock-read to 1 to start lock test
vco-out-ena 11 Route VCO to GPIO pin (VS1000:second cs pin)
use-pll 9 1:System clock is VCO / 0:System clock is inclk
pll-in-divide 8 divide inclk by 2 (for 1.5, 2.5 or 3.5 x clk)
pll-ratectl 7:4 PLL rate control
ifreq[19:16] 3:0 Bits 19..16 of the interpolator accumulation rate

For comprehensive reference on the function of the clock routing bits, see section “Overview
of VS1000 Clocking” below.

At the core of the PLL controller is the VCO, a high frequency oscillator, whose oscil-
lation frequency is adjusted to be an integer multiple of some input frequency. As the
name “Phase-Locked Loop” suggests, this is done by comparing the phase of the input
frequency against the phase of a signal which is derived from the VCO output through
frequency division.

If the system is stable, e.g. the comparison phase difference remains virtually zero, the
PLL is said to be “in lock”. This means that the output frequency of the VCO is stable
and reliable.

The PLL locked status can be checked by generating a high-active pulse (writing first
“1” , then “0”) to pll-lock-test and reading pll-lock-read. Pll-lock-read is set to “1” along
with the high level of pll-lock-test and to “0” whenever the PLL falls out of lock. So if
the “1” remains in pll-lock-read, PLL is in sync.

The PLL controller gets its input clock from the System Controller and its operation
optimized for frequencies around 12..13 MHz. If you activate clock dividers in the System
Controller to get a slow master clock, you should turn the PLL off before (also switch off
analog before setting a clock of less than 10 MHz).

Note that USB requires 48.0 MHz for packet sending/receiving.

It’s recommended to change the PLL rate in small steps and wait for the PLL to stabilize
after each change. For diagnostic purposes, the PLL clock output (VCO) can be routed
to an I/O pin so it can be scanned with an oscilloscope.

Bits [7:4] (pll-ratectl) control PLL multiplication rate. PLL multiplier is (pll-ratectl +
1). When pll-ratectl is 0, the VCO is powered down and output clock is forced to be
input clock (same as use-pll = 0).

Rev. 0.15 Preliminary 2008-06-30 Page 48(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.2.4 Overview of VS1000 Clocking

Below is a diagram showing the basic layout of the clock signal paths in VS1000:

2 1

0

2 1

0

1

0

1

0
Analog BlockXTALI

SCI_SYSTEM[15]

256

FREQCTLH[8]

Multiplier

FREQCTLH[7:4] FREQCTLH[9]

4

CLKI

SCI_STATUS[15]

(should be
12..13 MHz

when playing)

To Core

Figure 4.1: VS1000 Clocking

With a 12.0000 megahertz crystal, the following core clock speeds are within limits:

Core Frequency Calculation XTALIN=12.000 MHz
Register Values Result

SC
I

SY
ST

E
M

[1
5]

SC
I

ST
A

T
U

S[
15

]

F
R

E
Q

C
T

L
H

[9
]

F
R

E
Q

C
T

L
H

[8
]

F
R

E
Q

C
T

L
H

[7
:4

] Registers:
SCI SYSTEM[15] XTALI divide by 2
SCI STATUS[15] XTALI divide by 256
FREQCTLH[9] Use PLL
FREQCTLH[8] Divide PLL input clock by 2
FREQCTLH[7:4] PLL rate control

1 1 0 0 0000 0.02344 MHz (23.438 kHz) (Lower CVDD possible)
0 1 0 0 0000 0.04688 MHz
1 0 0 0 0000 6 MHz
0 0 0 0 0000 12 MHz
0 0 1 1 0010 18 MHz
0 0 1 0 0001 24 MHz
0 0 1 1 0100 30 MHz
0 0 1 0 0010 36 MHz
0 0 1 1 0110 42 MHz
0 0 1 0 0011 48 MHz (required by USB, maximum used by ROM code)
0 0 1 1 1000 54 MHz
0 0 1 0 0100 60 MHz (Possible with high CVDD but not recommended)

Rev. 0.15 Preliminary 2008-06-30 Page 49(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

Note that higher frequencies have higher CVDD requirements and frequencies above 54
MHz are not recommended for production use.

4.2.5 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for PLL:

The clock rate is selected to be 12 MHz by default, 48 MHz when USB is connected and
variable between 12 and 42 MHz when Ogg Vorbis is playing. DAC rate is set to 44.100
kHz when in the USB audio mode. When Vorbis is playing, the sample rate is set to the
sample rate specified in the Ogg file.

Rev. 0.15 Preliminary 2008-06-30 Page 50(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.3 Interruptable General Purpose IO (VS1000) v1.0 2002-04-

23

4.3.1 General

This chapter describes the interrupt-capable 16-bit general-purpose I/O block for VS DSP.

Note that in VS1000, pin function is partly handled also by the System Controller:
GPIOn MODE register bits control whether output data for a GPIO pin is taken from
a peripheral function (mode=“1”) or the GPIO controller (mode=“0”).

4.3.2 Registers

Interruptable General I/O registers, prefix GPIOx
Reg Type Reset Abbrev Description

0 r/w 0 DDR Data direction
1 r/w 0 ODATA Data output
2 r 0 IDATA Data input (I/O pin state)
3 r/w 0 INT FALL Falling edge interrupt enable
4 r/w 0 INT RISE Rising edge interrupt enable
5 r/w 0 INT PEND Interrupt pending source
6 w 0 SET MASK Data set (→ 1) mask
7 w 0 CLEAR MASK Data clear (→ 0) mask
8 r/w 0 BIT CONF Bit engine config 0 and 1
9 r/w 0 BIT ENG0 Bit engine 0 read/write

10 r/w 0 BIT ENG1 Bit engine 1 read/write

Data Direction GPIOx DDR

The data direction register (DDR) configures the directions of each of the 16 I/O pins.
A bit set to 1 in the DDR turns the corresponding I/O pin to output mode, while a bit
set to 0 sets the pin to input mode. The register is set to all zeros in reset, i.e. all pins
are inputs by default. The current state of the DDR can also be read.

Output Data GPIOx ODATA

A write sets the data register value. Change in bits that are configured as outputs are
reflected in the outputs. A read returns the state of data register value.

Note: configuring a pin as input should not reset the state of the corresponding data
register bit. If the data register is first written 0xffff and then all pins are configured as
outputs by writing 0xffff to DDR, all outputs should go to the high state.

Rev. 0.15 Preliminary 2008-06-30 Page 51(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

This operation enables free selection of polarity for outputs, e.g. after reset a pull-up
keeps a control line high, the data register bit is set to 1 and after this the DDR bit is
set to 1 enabling the output.

When a data register bit is set to 0, it is easy to use the I/O pin as open-drain-style
output by changing the direction: as input the line state is 1 by a pull-up, as output the
line is pulled low by the driver.

Possible delays must be documented.

Input Data GPIOx IDATA

The actual logical levels of the I/O pins are seen in the input data register. Possible
delays must be documented.

Falling Edge Interrupt Enable GPIOx INT FALL

If a bit the falling edge interrupt enable register (INT FALL) is set to 1, a falling edge
in the corresponding pin (even when configured as output) will set the corresponding bit
in the interrupt pending source register (INT PEND).

Rising Edge Interrupt Enable GPIOx INT RISE

If a bit the rising edge interrupt enable register (INT RISE) is set to 1, a rising edge in
the corresponding pin (even when configured as output) will set the corresponding bit in
the interrupt pending source register (INT PEND).

Interrupt Pending Source GPIOx INT PEND

If any of the bits in the interrupt pending source register (INT PEND) are set, an inter-
rupt request is generated. Bits in INT PEND can be cleared by writing a 1-bit to the
bit that is to be cleared.

Note: the interrupt request will remain asserted until all INT PEND bits are cleared.

Data Set Mask GPIOx SET MASK

A bit mask is written to the data set mask register. All bits that are set in the mask also
set the corresponding bit in the data output register. Other bits retain their old values.
I.e. a logical-OR operation is performed between the data output register old value and
the mask and the result is written to the data output register.

Rev. 0.15 Preliminary 2008-06-30 Page 52(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

Data Clear Mask GPIOx CLEAR MASK

A bit mask is written to the data clear mask register. All bits that are set in the mask
clear the corresponding bit in the data output register. Other bits retain their old values.
I.e. a logical-AND operation is performed between the data output register old value and
the mask’s inverse and the result is written to the data output register.

Bit Engine Config GPIOx BIT CONF

The bit engine config register (BIT CONF) selects a mapping between an I/O bit and a
data output/input register bit for each of the bit engine registers.

GPIOx BIT CONF Bits
Name Bits Description
GPIO BE DAT1 15:12 Data bit selection (0..15) for bit engine 1
GPIO BE IO1 11:8 I/O bit selection (0..15) for bit engine 1
GPIO BE DAT0 7:4 Data bit selection (0..15) for bit engine 0
GPIO BE IO0 3:0 I/O bit selection (0..15) for bit engine 0

Bit Engine 0 Read/Write GPIOx BIT ENG0

When writing a value to the bit engine 0 register, the data bit specified in the configu-
ration register is copied to the data output register bit specified in the same register.

When reading a value from the bit engine 0 register, the data input register bit specified
in the configuration register is copied to the data bit specified in the same register, other
bits read out as 0.

Bit Engine 1 Read/Write GPIOx BIT ENG1

GPIOx BIT ENG1 works just like GPIOx BIT ENG0.

Rev. 0.15 Preliminary 2008-06-30 Page 53(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.3.3 VS1000 GPIO Pin Mappings

VS1000 I/O Controller 0 pins and peripheral functions
GPIO Ident LQFP

Pin
Function

GPIO0[0] NFDIO0 2 Nand-flash IO0 / General-purpose IO Port 0, bit 0
GPIO0[1] NFDIO1 3 Nand-flash IO1 / General-purpose IO Port 0, bit 1
GPIO0[2] NFDIO2 4 Nand-flash IO2 / General-purpose IO Port 0, bit 2
GPIO0[3] NFDIO3 5 Nand-flash IO3 / General-purpose IO Port 0, bit 3
GPIO0[4] NFDIO4 9 Nand-flash IO4 / General-purpose IO Port 0, bit 4
GPIO0[5] NFDIO5 10 Nand-flash IO5 / General-purpose IO Port 0, bit 5
GPIO0[6] NFDIO6 11 Nand-flash IO6 / General-purpose IO Port 0, bit 6
GPIO0[7] NFDIO7 12 Nand-flash IO7 / General-purpose IO Port 0, bit 7
GPIO0[8] NFRDY 13 Nand-flash READY /General-purpose IO Port 0, bit 8
GPIO0[9] NFRD 14 Nand-flash RD / General-purpose IO Port 0, bit 9
GPIO0[10] NFCE 15 Nand-flash CE / General-purpose IO Port 0, bit 10
GPIO0[11] NFWR 20 Nand-flash WR / General-purpose IO Port 0, bit 11
GPIO0[12] NFCLE 16 Nand-flash CLE / General-purpose IO Port 0, bit 12
GPIO0[13] NFALE 17 Nand-flash ALE / General-purpose IO Port 0, bit 13
GPIO0[14] CS2 21 General-purpose IO Port 0, bit 14

VS1000 I/O Controller 1 pins and peripheral functions
GPIO Ident LQFP

Pin
Function

GPIO1[0] XCS 22 SPI XCS / General-Purpose I/O Port 1, bit 0
GPIO1[1] SCLK 23 SPI CLK / General-Purpose I/O Port 1, bit 1
GPIO1[2] SI 24 SPI MISO / General-Purpose I/O Port 1, bit 2
GPIO1[3] SO 25 SPI MOSI / General-Purpose I/O Port 1, bit 3
GPIO1[4] TX 26 UART TX / General-Purpose I/O Port 1, bit 4
GPIO1[5] RX 27 UART RX / General-Purpose I/O Port 1, bit 5

4.3.4 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for GPIO pins:

NFDIO[0:7] (GPIO0[0:7]) are used as the data bus for NAND-FLASH communication,
NFRDY, NFRD, NFCE, NFWR, NFCLE, and NFALE are used as NAND-FLASH con-
trol signals. NFCE, NFCLE, and NFALE are normal GPIO pins, the rest are controlled
by the NAND-FLASH interface peripheral.

Additionally GPIO0[0:4] are used for buttons in addition to the power button (see the
example schematic from the datasheet), and GPIO[6] is used to select between Mass
Storage / Audio Mode when USB is being attached, and GPIO[7] sets the desired IO
voltage at boot time.

GPIO0[14] is not used by the ROM code, so it can for example be used to add a serial

Rev. 0.15 Preliminary 2008-06-30 Page 54(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

display to SPI pins or a parallel display to NFDIO[0:7].

XCS, SCLK, SI, and SO (GPIO1[0:4]) are used for SPI EEPROM boot, if XCS is high
during power-on. During play mode GPIO1[2] and GPIO1[3] are used for play/pause
and random play indication.

TX and RX are normally used for the serial debugging connection.

Rev. 0.15 Preliminary 2008-06-30 Page 55(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.4 Interrupt Controller v1.0 2002-04-23

The interrupt controller is used to forward interrupt requests from peripherals to VSDSP.
The 32 interrupt sources are vectorized, i.e. the VS DSP core jumps to a different
address according to the 5-bit interrupt vector value. There are three levels of priority
for simulteneous requests and a global disable available for all of the sources.

For an interrupt handler written in C, an assembly language stub that re-enables inter-
rupts before RETI, should be written. The assembly language stub should call the C
language handler routine.

Enable
Reg 0

IRQ Source 0 Int
Origin 0

Global Enable Write

Global Disable Write

upint

Vector
Generation
and
Interrrupt
Request
Logic

5 Int_vector

ack

IRQ Source 31

Enable
Reg 31

Int
origin 31

Global
Intr
Enable

Figure 4.2: Interrupt Controller Block Diagram

4.4.1 Registers

Interrupt Controller registers, prefix INT
Reg Type Reset Abbrev Description

0 r/w 0 ENABLEL0 Interrupt Enable Low 0
1 r/w 0 ENABLEL1 Interrupt Enable Low 1
2 r/w 0 ENABLEH0 Interrupt Enable High 0
3 r/w 0 ENABLEH1 Interrupt Enable High 1
4 r/w 0 ORIGIN0 Interrupt Origin 0
5 r/w 0 ORIGIN1 Interrupt Origin 1
6 r 0 VECTOR[4:0] Interrupt Vector
7 r/w 0 ENCOUNT[2:0] Interrupt Enable Counter
8 w 0 GLOB DIS[-] Interrupt Global Disable
9 w 0 GLOB EN[-] Interrupt Global Enable

Rev. 0.15 Preliminary 2008-06-30 Page 56(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

• Enable registers, which contain enable/disable bits for each interrupt source. Bit
pairs configure the interrupt priority and disable.

• Origin registers, which contain the source flags for each interrupt. A request from
an interrupt source sets the corresponding bit. A bit is automatically reset when a
request for the source is generated.

• Enable counter register, which contains the value of the General Interrupt Enable
counter, and two registers for increasing and decreasing the value.

Enable INT ENABLE[L/H][0/1]

Interrupt enable registers selectively masks interrupt sources. Enable registers 0 contain
sources 0..15 and enable registers 1 contain sources 16..31. Each source has two enable
bits: one in the enable low and one in the enable high register. If both bits are zero,
the corresponding interrupt source is not enabled, otherwise the bits select the interrupt
priority.

High Low Priority
0 0 Source disabled
0 1 Priority 1
1 0 Priority 2
1 1 Priority 3

Priorities only matter when the interrupt controller decides which interrupt to generate
for the core next. This happens whenever two interrupt sources request interrupts at the
same time, or when interrupts become enabled after an interrupt handler routine or part
of code where the interrupts have been disabled.

Origin INT ORIGIN[0/1]

If an interrupt source requests an interrupt, the corresponding bit in the interrupt origin
register (ORIGIN0 or ORIGIN1) will be set to ’1’. If an interrupt source is enabled
(using ENABLE registers), the interrupt controller generates an interrupt request signal
for VSDSP with the corresponding vector value. The bit in the origin registers is reset
automatically after the interrupt is requested.

If the source is not enabled, the processor can read the origin register state and perform
any necessary actions without using interrupt generation, i.e. polling of the interrupt
sources is also possible. The bits in the interrupt origin registers can be cleared by
writing ’1’ to them.

A read from the interrupt origin register returns the register state.

A write to the interrupt origin register clears bits in the interrupt origin register. All
’1’-bits in the written value cause the corresponding bits in the interrupt origin register
to be cleared. All zero-bits cause the corresponding bits in the interrupt origin register

Rev. 0.15 Preliminary 2008-06-30 Page 57(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

to keep their state. For example writing a value 0x00ff will clear the lowest eight bits in
the interrupt origin register, while leaving the upper bits as-is.

Vector INT VECTOR

The last generated vector value can be read from the vector register.

Enable Counter INT ENCOUNT

The global interrupt enable/disable is used to control whether an interrupt request is sent
to the processor or not. Whenever this 3-bit counter value is non-zero, interrupt requests
are not forwarded to VSDSP. The counter is increased by one whenever the interrupt
controller generates an interrupt request for VSDSP, thus disabling further interrupts.

When read, the enable counter register returns the counter value.

Don’t write directly to INT ENCOUNT. Use INT GLOB DIS and INT GLOB EN to
manipulate the value of this register.

Global Disable INT GLOB DIS

A write (of any value) to global disable register increases the global interrupt enable/disable
counter by one. If the counter is zero, interrupt signal generation is enabled. When the
interrupt arbitrator generates an interrupt request for VS DSP core, it automatically
increases the counter. The user must write to the global enable register (once) to enable
interrupts.

If an interrupt is generated in the same cycle as a write to global disable register, the
interrupt enable counter is increased by two.

Global Enable INT GLOB EN

A write (of any value) to global enable register decreases the global interrupt enable/disable
counter by one. If the counter is zero, interrupt generation is enabled.

The user must write to this register once in the end of the interrupt handler to enable
further interrupts. This should be done in assembly language.

Rev. 0.15 Preliminary 2008-06-30 Page 58(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.4.2 VS1000 Interrupt Sources

VS1000 Interrupt Sources
Name Vector Source
INTV DAC 0 Digital to Analog Converter
INTV SPI 1 Serial Peripheral Interface
INTV USB 2 Universal Serial Bus
INTV NFLSH 3 Byte-wide Bus (Nand Flash) Controller
INTV TX 4 UART Transmit
INTV RX 5 UART Receive
INTV TIM0 6 Timer 0 underflow
INTV TIM1 7 Timer 1 underflow
INTV REGU 8 Input Voltage Monitor
INTV GPIO0 9 I/O Pin Controller 0
INTV GPIO1 10 I/O Pin Controller 1

4.4.3 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for interrupts:

DAC interrupt handles feeding of samples from audio FIFO to DAC registers.

UART RX interrupt is used for starting the ROM monitor.

Timer 0 interrupt is used for software real time counter. The divider is automatically
changed according to the PLL so that the timer always counts 6MHz cycles (except for
a short while when the PLL is changed).

Rev. 0.15 Preliminary 2008-06-30 Page 59(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.5 SPI v1.3 2005-06-09

4.5.1 General

MASTER

SLAVE 1 SLAVE 2 SLAVE 3

SCLK

MOSI

MISO

xCS3

xCS2

xCS1

MOSIMOSIMOSI

SCLKSCLKSCLK

MISOMISOMISO

xCS xCS xCS

Figure 4.3: SPI Bus

SPI is a serial bus interface that allows for simple serial communication between one
host and potentially several slaves. As depicted in Figure 4.3, four different signals are
required for implementing SPI:

• SCLK (Master Serial Clock): a static serial clock, offered by the master.

• MOSI (Master Out / Slave In): Master’s output data. This output is always driven
by the master.

• MISO (Master In / Slave Out): Slave’s output data. By default, all slaves on the
bus are in high impedance state. When the slave’s chip select is activated, it turns
MISO to an output, and when it starts receiving SCLKs, it behaves as defined in
the slave’s specification.

• xCS (Chip Select): Every slave requires its own chip select. Without the chip select
signal, a slave may not listen to what happens on the SPI bus.

Although widely used, SPI is not a real standard. Because of this, there are many
different implementations, more or less compatible with each other. Also, a very similar
de-facto standard, SSI, is in wide use with e.g. D/A converters. Again, there exists
another de-facto standard very close to this, Microwire. Thus, if one wants to make an
SPI/SSI/Microwire master device that works with all kinds of different slaves, it must
be well configurable.

SPI Block Compatibility
Format Master Slave
SPI Yes Yes
SSI Yes Yes
Microwire Yes No

Rev. 0.15 Preliminary 2008-06-30 Page 60(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.5.2 The SPI Block

The SPI block can implement both a master and slave SPI mode. Figure 4.4 shows
the two different physical connections for the modes. Chip Select extensions in master
mode allow for implementing several SSI variants. Also, Microwire master mode may be
implemented with this same arrangement.

SPI

slave
mode

xCS

SCLK SPI

master
mode

SCLK

MOSI

MISO

MOSI

MISO

FSYNC

Figure 4.4: SPI Pins

The SPI block is quite flexible, and allows for many different SPI configurations. Input
and output clock edges may be set independently, and the whole clock may be inverted.
In master mode, it is possible to delay reading a value for a given number of clock cycles
after a given clock edge, making it possible to make SPI implementations that are not
dependent of the output clock edge of a slave device, with the price of decreased maximum
SPI speed.

The most typical SPI configuration is such that 8-bit transfers are written MSB first to
the bus at falling clock edges, and read at a rising clock edges. When a transfer is not
active, the clock is low. This case is presented in Figure 4.5 (SPI CF CLKOPOL=1).

Master Mode

MOSI

SCLK

SCLK

MCLK

i6i7 i5 i4 i3 i2 i1 i0

o7 o6 o5 o4 o3 o2 o1 o0

FSYNC

SPI_CF_MASTER = 1
SPI_CF_DLEN = 8
SPI_CF_FSIDLE = 0
SPI_FSYNC = 0x93

(CLKPHSE=0)

(CLKPHSE=1)

SPI_CC_CLKDIV = 0
SPI_CC_CLKPOL = 0

MISO
SAMPLING
POINTS

Beginning of transfer cycle End of transfer cycle

Figure 4.5: Example SPI Timing, Master Mode

Rev. 0.15 Preliminary 2008-06-30 Page 61(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

In master mode, the SPI clock SCLK is created in the SPI block. MOSI, SCLK and
FSYNC are in output mode, and MISO in input mode. No pins are in high impedance
state.

The highest speed that can be expected to work is fs = 1
2×fm, where fs is the SPI speed

and fm is the SPI block’s input clock.

If more than one slave devices are to be used, each device requires a separate chip select
signal. Chips selects are intended to be implemented with general I/O pins.

FSYNC is mainly intended to be used for SSI device synchronization purposes. If it is
not needed for synchronization, it can also be used to implement one chip select. This
approach makes it possible to create a chip select that is automatically deasserted when
a transfer is finished.

Slave Mode

SCLK

MISO

(external)

xCS

o1/7 o1/6 o1/5 o1/4 o1/3 o1/2 o1/1 o1/0 o2/7 o2/7 o2/6

i1/7 i1/6 i1/5 i1/4 i1/3 i1/2 i1/1 i1/0 i2/7

SPI_CF_MASTER = 0
SPI_CF_DLEN = 8
SPI_CF_FSIDLE = 0

MOSI
SAMPLING
POINTS

(external)

SPI_CC_CLKPOL = 0
SPI_CC_CLKPHSE = 0

Figure 4.6: Example SPI Timing, Slave Mode

In slave mode, the SPI clock SCLK is created externally. MOSI, SCLK and xCS are
inputs, and MISO is only an output when xCS is active. Otherwise MISO is high
impedance, as can be seen in Figure 4.6. The high impedance state is handled outside
the SPI block (with gpio control).

In slave mode, the external clock, SCLK is used for latching input bits asynchronously
to the master clock MCLK.

The highest recommended input clock speed is slightly lower than fs = 1
2 × fm, where fs

is the input SPI speed and fm is the SPI block’s input clock. The highest operable input
clock speed depends on the SPI block’s input clock speed, on the core clock speed, and
on the software.

There are three receive modes:
1. Interrupted xCS mode

2. Falling edge xCS mode

Rev. 0.15 Preliminary 2008-06-30 Page 62(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

3. Rising edge xCS mode

In interrupted xCS mode the clock is only listened to if xCS is active. Reception starts
when xCS state changes from high to low. If xCS is deasserted in the middle of the
transfer, the reception is aborted.

In falling edge xCS mode reception starts when xCS state changes from high to low, but
transfer is not aborted if xCS changes from low to high mid-transfer. If another high to
low transition is encountered during the transfer of SPI CF DLEN+1 bits, the partially
received data is moved to the data register, SPI ST BREAK is set, interrupt 0 request
is sent, and a new transfer is initiated.

Rising edge xCS mode works like the falling edge xCS mode, except that the polarity of
the synchronization is reversed.

4.5.3 Registers

SPI registers, prefix SPIx
Reg Type Reset Abbrev Description

0 r/w 0 CONFIG[10:0] Configuration
1 r/w 0 CLKCONFIG Clock configuration
2 r/w 0 STATUS[7:0] Status
3 r/w 0 DATA Sent / received data
4 r/w 0 FSYNC SSI Sync data in master mode
5 r/w 0 DEFAULT Data to send (slave) if SPI ST TXFULL=’0’

Main Configuration SPIx CONFIG

SPIx CONFIG Bits
Name Bits Description
SPI CF SRESET 11 SPI software reset
SPI CF RXFIFOMODE 10 ’0’ = interrupt always when a word is received,

’1’ = Interrupt only when FIFO register full or
CS deasserted with receive register full

SPI CF RXFIFO 9 Receive FIFO enable
SPI CF TXFIFO 8 Transmit FIFO enable
SPI CF XCSMODE 7:6 xCS mode in slave mode
SPI CF MASTER 5 Master mode
SPI CF DLEN 4:1 Data length in bits
SPI CF FSIDLE 0 Frame sync idle state

SPI CF XCSMODE selects xCS mode for slave operation. ’00’ is interrupted xCS mode,
’10’ is falling edge xCS mode, and ’11’ is rising edge xCS mode.

SPI CF MASTER sets master mode. If not set, slave mode is used.

Rev. 0.15 Preliminary 2008-06-30 Page 63(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

SPI CF DLEN+1 is the length of SPI data in bits. Example: For 8-bit data transfers,
set SPI CF DLEN to 7.

SPI CF FSIDLE contains the state of FSYNC when SPI ST TXRUNNING is clear. This
bit is only valid in master mode.

Clock Configuration SPIx CLKCONFIG

SPIx CLKCONFIG Bits
Name Bits Description
SPI CC CLKDIV 9:2 Clock divider
SPI CC CLKPOL 1 Clock polarity selection
SPI CC CLKPHASE 0 Clock phase selection

In master mode, SPI CC CLKDIV is the clock divider for the SPI block. The gener-
ated SCLK frequency f = fm

2×(c+1) , where fm is the master clock frequency and c is
SPI CC CLKDIV. Example: With a 12 MHz master clock, SPI CC CLKDIV=3 divides
the master clock by 4, and the output/sampling clock would thus be f = 12MHz

2×(3+1) =
1.5MHz.

SPI CC CLKPOL reverses the clock polarity. In master mode, the inverter is imple-
mented as the last thing in the output clock data chain. In slave mode, it is imple-
mented as the first thing in the input clock data chain. See Figure 4.7 for details.
If SPI CC CLKPOL is clear the data is read at rise edge and written at fall edge if
SPI CC CLKPHASE is clear. When SPI CC CLKPHASE is set the data is written at
rise edge and read at fall edge.

SCLK
 SPI
block

SPI_CC_CLKPOL

 SPI
block

SPI_CC_CLKPOL

MASTER MODE SLAVE MODE

M
U

X

M
U

X

SCLK_int

SCLK_int

SCLK

Figure 4.7: Normal and Reverese SPI Clock Polarity

SPI CC CLKPHASE defines the data clock phase. If clear the first data is written when
xcs is asserted and data is sampled at first clock edge (rise edge when SPI CC CLKPOL
= 0 and fall edge if SPI CC CLKPOL = 1). If SPI CC CLKPHASE is set the first data
is written a the first data clock edge and sampled at second.

Rev. 0.15 Preliminary 2008-06-30 Page 64(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

Status SPIx STATUS

SPIx STATUS Bits
Name Bits Description
SPI ST RXFIFOFULL 7 Receiver FIFO register full
SPI ST TXFIFOFULL 6 Transmitter FIFO register full
SPI ST BREAK 5 Chip select deasserted mid-transfer
SPI ST RXORUN 4 Receiver overrun
SPI ST RXFULL 3 Receiver data register full
SPI ST TXFULL 2 Transmitter data register full
SPI ST TXRUNNING 1 Transmitter running
SPI ST TXURUN 0 Transmitter underrun

SPI ST BREAK is set in slave mode if chip select was deasserted in interrupted xCS
mode or a starting edge is encountered in xCS edge modes while a data transfer was in
progress. This bit has to be cleared manually.

SPI ST RXORUN is set if a received byte overwrites unread data when it is transferred
from the receiver shift register to the data register. This bit has to be cleared manually.

SPI ST RXFULL is set if there is unread data in the data register.

SPI ST TXFULL is set if the transmit data register is full.

SPI ST TXRUNNING is set if the transmitter shift register is in operation.

SPI ST TXURUN is set if an external data transfer has been initiated in slave mode and
the transmit data register has not been loaded with new data to shift out. This bit has
to be cleared manually.

Note: Because TX and RX status bits are implemented as separate entities, it is relatively
easy to make asynchronous software implementations, which do not have to wait for an
SPI cycle to finish.

Data SPIx DATA

SPIx DATA[SPI CF DLEN:0] may be written to whenever SPI ST TXFULL is clear. In
master mode, writing will initiate an SPI transaction cycle of SPI CF DLEN+1 bits.
In slave mode, data is output as soon as suitable external clocks are offered. Writing
to SPIx DATA sets SPI ST TXFULL, which will again be cleared when the data word
was put to the shift register. If SPI ST TXRUNNING was clear when SPIx DATA was
written to, data can immediately be transferred to the shift register and SPI ST TXFULL
won’t be set at all.

When SPI ST RXFULL is set, SPIx DATA may be read. Bits SPI CF DLEN:0 contain
the received data. The rest of the 16 register bits are set to 0.

Rev. 0.15 Preliminary 2008-06-30 Page 65(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

SSI Synchronization SPIx FSYNC

SPIx FSYNC is meant for generation of potentially complex synchronization signals,
including several SSI variants as well as a simple enough automatic chip select signal.
SPIx FSYNC is only valid in master mode.

If a write to SPIx DATA is preceded by a write to SPIx FSYNC, the data written
to SPIx FSYNC is sent to FSYNC with the same synchronization as the data writ-
ten to SPIx DATA is written to MOSI. When SPI ST TXRUNNING is clear, the value
of SPI CF FSIDLE is set to FSYNC.

If SPIx DATA is written to without priorly writing to SPIx FSYNC, the last value written
to SPIx FSYNC is sent.

SPIx FSYNC is double-buffered like SPIx DATA.

4.5.4 Interrupts

The SPI block has one interrupt.

Interrupt 0 request is sent when SPI ST BREAK is asserted, or when SPI ST TXFULL
or SPI ST TXRUNNING is cleared. This allows for sending data in an interrupt-based
routine, and turning chip select off when the device becomes idle.

4.5.5 Changes from 1.2

A default data register is added. If in slave mode there is no data to send when it is
needed (SPI ST TXFULL is ’0’), the default data is sent (and SPI ST TXURUN is set
like before).

In addition to receive and transmit data registers another set of FIFO registers are added.
In normal mode these are not used. If SPI CF TXFIFO is set, two words can be waiting
while a third one is in transmit. An interrupt is generated when SPI ST TXFULL
becomes ’0’ (like before).

If SPI CF RXFIFO is set, RX FIFO register holds another received word while a third
one is in receive. When SPI DATA is read and SPI ST RXFIFO is ’1’, the FIFO register
value is returned, otherwise the receive register value is returned.

Status register should be writable by user, i.e. it must be possible to clear the state of
FIFO and transmit/receive register indicators.

The clock configuratio register operations has changed. This device uses the common
SPI clocking configuration modes where data clock’s polarity and phase can be inverted.

Rev. 0.15 Preliminary 2008-06-30 Page 66(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.5.6 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for SPI:

At boot-up the SPI chip select is checked: if it’s pulled high, SPI boot is attempted.

When SPI is not active, the default player application uses the SPI data lines (SI and
SO) in GPIO mode as LED controls.

4.5.7 Effect of Clock Multiplier

Note that the clock multiplier affects SPI speed. In VS1000 ROM you can read the
current clock multiplier setting in global variable clockX. Here’s a line of code that sets
the SPI clock speed taking the clock multiplier into account:

PERIP(SPI0 CLKCONFIG) = SPI CC CLKDIV * (clockX - 1);

Rev. 0.15 Preliminary 2008-06-30 Page 67(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.6 Byte-wide bus/Nand Flash controller v1.0 2006-05-10

4.6.1 General

The byte-wide bus peripheral implements a nand flash controller with vsdsp peripheral
bus interface. The peripheral can be configured for different speed/size memory devices.
The device has internal ECC calculation which provides the error detection data for the
dsp.

Operation as a Nand Flash controller requires that dsp controls the command latch
enable (CLE), address latch enable (ALE) and memory chip enable (CEx) pins directly
(as GPIO).

The peripheral provides clocked byte transfers of 1..32 bytes from an integrated buffer
memory freeing the DSP from having to generate clocking for each transferred byte. The
peripheral also provides standard Error Correcting Code (ECC) calculation for 1..512
byte blocks.

Configurable features include:

• Programmable address cycles from 1 to 32

• Programmable wait states from 0 to 63 (i.e. Read/write pulse time)

• ECC calculation disable/enable

• Interrupt request disable/enable

• Chip select write mode continuous/byte-at-a-time (for LCDs)

• 1 - 512 byte blocks ECC calculation (in 16-bit words)

• Programmable burst transactions from 1 to 32 bytes

4.6.2 Block Diagram

Nand flash controller consists of the memory interface signal generation unit and ECC
calculation and logging unit. These units can operate separately from each other.

The peripheral implements a memory mapped interface that generates the control signals
for flash memory read/write operation. It also calculates and logs the parity bit infor-
mation from one read/write block. The block size is not limited but the byte counter is
only 9 bits. Reads/writes can be done one at a time or from a 32-byte data buffer in
bursts from 1 to 32 bytes at a time. Block diagram with the main registers is shown in
the next figure.

The architecture has timing control logic which controls the flash operation delay of each
write/read. This logic controls the wex, rex and cex signal toggling. Wex and rex pulses
are always symmetric. Without wait states each write/read cycle takes two master clock
cycles. When waitstates are set to 1 each cycle takes 2+2 master clock cycles. I.e. Each

Rev. 0.15 Preliminary 2008-06-30 Page 68(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

Figure 4.8: Byte-wide Bus Controller Block Diagram.

operation takes (waitstates+1) * 2 master clock cycles. Waitstates can be set from 0 to
63 (6-bit register). For LCDs the chip select in write mode can be set to toggle between
bytes.

Buffer memory operation

The 32-byte buffer memory consists of 16 addresses, 16 bits each. In the byte-wide bus
operations, the high 8 bits (MSB) are transferred first.

4.6.3 Registers

Nand flash controller user registers can be divided to three groups: the nand flash in-
terface control registers, the dsp interface control registers and the ECC control/logging
registers. Register map is shown in the next table.

Rev. 0.15 Preliminary 2008-06-30 Page 69(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

Byte-wide bus peripheral registers
Offset Type Register Function
0 rw CTRL[8:0] Byte-wide Bus (Nand Flash) Controller Control
1 r LPL[15:0] Calculated Line Parity for 512-byte block
2 r CP LPH[7:0] Calculated Column Parity for 512-byte block
3 rw DATA[15:0] Buffer Data read/write register
4 rw NFIF[12:0] Buffer-to-Physical Interface Control
5 rw DSPIF[7:0] Buffer-to-DSP Interface Control
6 r ECC CNT[7:0] Error Correction Code counter

Control register

NFLSH CTRL bits
Name Bits Description
lcd-ce-mode 8 Chip select operation mode in read/write cycles
int-enable 7 Interrupt enable
nf-sreset 6 Resets the controller
waitstates 5:0 Number of wait states in read/write cycles

Waitstates delays the read/write operation by (1+n)+(1+n) master clock cycles where
n is the number of wait states. I.e. The flash read/write enable low and high times are
both delayed.

Line and Column parity registers

NFLSH LPL bits
Name Bits Description
lpl 15:0 Low part (bits 15:0) of Line Parity

NFLSH CP LPH bits
Name Bits Description
cp 7:2 Calculated Column Parity bits (6 bits)
lph 1:0 High part (bits 17:16) of Line Parity

Lp and cp calculate the parity bits as descibed in Samsung’s Application Note for NAND
Flash Memory (Revision 2.0). The parity calculation can be used with or without actually
accessing any physical Nand Flash device. A nand operation can be active during ECC
calculation but it must be from/to the data buffer.

When ECC is enabled (ecc-ena=1), each read and write to the dreg register updates the
ECC. ECC is calculated from the 16-bit values of dreg register.

The ECC generation uses the Hamming ECC principle. In case of 528 byte page nand
flash (small page) a 24 bit ECC is generated. This gives a performance of 2 bit detection
and 1 bit correction. For 2112 byte page nand flash memories (large page) the calculation
can be done in 512 byte sections.

Rev. 0.15 Preliminary 2008-06-30 Page 70(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

Data register

NFLSH DATA bits
Name Bits Description
dreg 15:0 Data read/write register. Can be used with or

without ECC.

All data transfers to/from the are done through this register. The operation of NFLSH DATA
depends from dsp-ena-dbuf, dsp-rd-wrx and nf-rd-wrx. When dsp-rd-wrx is set the regis-
ter samples the data buffer (from pointer address dsp-dbuf-pntr) or the nand flash input
register (when dsp-ena-dbuf is low).

Data buffer reads/writes can be done in 16 consecutive clock cycles. It must be noted
that when the read mode (dsp-rd-wrd set) is selected it takes one clock cycle for the
control to transfer the first word from data buffer to dreg. Therefore it is recommended
that the read mode is set (+ ecc reset/enable/disable) as the nand flash operation is
started.

Interface control towards physical pins

NFLSH NFIF bits
Name Bits Description
nf-byte-cnt 12:8 Rx / tx byte counter, hardware sends nf-byte-

cnt + 1 bytes
nf-use-dbuf 7 write from buffer(1) or dreg register(0)
nf-dbuf-pntr 6:2 pointer address of the data buffer for next

read/write
nf-do-op 1 nand flash interface start operation bit (resets

when done)
nf-rd-wrx 0 read(1)/write(0) selection

NFIF control register can only be written in idle state. Current nand flash operation
can be terminated by setting the nf-sreset bit of the control register. When all bytes are
read/written an interrupt is given (if enabled)

Interface control towards DSP

NFLSH DSPIF bits
Name Bits Description
dsp-dbuf-pntr 7:4 Data buffer pointer for next operation
dsp-ena-dbuf 3 Use data buffer for operations (’1’ = enabled)
dsp-rd-wrx 2 Dsp read/write selection (’1’ = read)
ecc-ena 1 Ecc calculation enable
ecc-sreset 0 Ecc register reset bit (zeroed after one cycle)

When dsp-ena-dbuf is 0, the 32-byte buffer memory is not changed.

Rev. 0.15 Preliminary 2008-06-30 Page 71(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

ECC counter register

NFLSH ECC CNT bits
Name Bits Description
ecc-cnt 7:0 Calculated ecc words (data is processed in 16-bit

format)

Ecc-cnt register counts the 16-bit words that are read or written to dreg. This information
is required when lpl, lph and cp are calculated. The register is updated only when the
ecc is enabled (ecc-ena = ’1’). In write operation the register is updated one clock cycle
after the write took place (as the data is being moved to the data buffer) and in the read
operation it is updated in the same clock cycle.

4.6.4 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for the Nand Flash controller:

At boot-up the Nand Flash chip select is checked: if it’s pulled high, Nand flash scan is
attempted. For proper recognition of the Nand Flash, a number of access methods are
used to attempt to read the first 512 bytes of the Nand Flash chip and look for an 8-byte
NandType record from the beginning of the block. The NandType record should confirm
the proper access method number for the Flash in question and specify the device size
and erasable block size of the Flash chip (see datasheet).

The remaining 504 bytes of the first block can contain a VSDSP boot record, which can
be used to load data to X RAM or I RAM and optionally execute code to extend or
replace firmware functionality on chip.

If the ROM does not have a proper access method for the Nand Flash, but reading at
least the first block is successful with one of the ROM methods, the boot record can be
used to load an access method to RAM so the bootup can be continued.

For VS1000B the first block also indicates how many extra sectors belong to the boot
record, so that upto 16-block executables can be loaded. However, this can only be used
with one of the supported FLASH access methods.

Nand Flash access methodology

VS1000 writes to the nand flash in blocks of 512 (data) + 16 (spare) bytes. single-level
cell (SLC) large page flashes (block size 2112) are mostly ok with this, but multi-level cell
(MLC) have problems with this so those are not supported by the ROM code. VS1000
ROM contains own wear levelling algorithm and logical-to-physical block mapper that
greatly extends the life of the nand flash chips.

Rev. 0.15 Preliminary 2008-06-30 Page 72(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.7 Timers v1.0 2002-04-23

4.7.1 General

There are two 32-bit timers that can be initialized and enabled independently of each
other. If enabled, a timer initializes to its start value, written by a processor, and starts
decrementing every clock cycle. When the value goes past zero, an interrupt is sent, and
the timer initializes to the value in its start value register, and continues downcounting.
A timer stays in that loop as long as it is enabled.

A timer has a 32-bit timer register for down counting and a 32-bit TIMER1 LH register
for holding the timer start value written by the processor. Timers have also a 2-bit
TIMER ENA register. Each timer is enabled (1) or disabled (0) by a corresponding bit
of the enable register.

4.7.2 Registers

Timer registers, prefix TIMER
Reg Type Reset Abbrev Description

0xC030 r/w 0 CONFIG[7:0] Timer configuration
0xC031 r/w 0 ENABLE[1:0] Timer enable
0xC034 r/w 0 T0L Timer0 startvalue - LSBs
0xC035 r/w 0 T0H Timer0 startvalue - MSBs
0xC036 r/w 0 T0CNTL Timer0 counter - LSBs
0xC037 r/w 0 T0CNTH Timer0 counter - MSBs
0xC038 r/w 0 T1L Timer1 startvalue - LSBs
0xC039 r/w 0 T1H Timer1 startvalue - MSBs
0xC03A r/w 0 T1CNTL Timer1 counter - LSBs
0xC03B r/w 0 T1CNTH Timer1 counter - MSBs

Configuration TIMER CONFIG

TIMER CONFIG Bits
Name Bits Description
TIMER CF CLKDIV 7:0 Master clock divider

TIMER CF CLKDIV is the master clock divider for all timer clocks. The generated
internal clock frequency fi = fm

c+1 , where fm is the master clock frequency and c is
TIMER CF CLKDIV. Example: With a 12 MHz master clock, TIMER CF DIV=3 di-
vides the master clock by 4, and the output/sampling clock would thus be fi = 12MHz

3+1 =
3MHz.

Rev. 0.15 Preliminary 2008-06-30 Page 73(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

Configuration TIMER ENABLE

TIMER ENABLE Bits
Name Bits Description
TIMER EN T1 1 Enable timer 1
TIMER EN T0 0 Enable timer 0

Timer X Startvalue TIMER Tx[L/H]

The 32-bit start value TIMER Tx[L/H] sets the initial counter value when the timer is
reset. The timer interrupt frequency ft = fi

c+1 where fi is the master clock obtained with
the clock divider (see Chapter 4.7.2 and c is TIMER Tx[L/H].

Example: With a 12 MHz master clock and with TIMER CF CLKDIV=3, the master
clock fi = 3MHz. If TIMER TH=0, TIMER TL=99, then the timer interrupt frequency
ft = 3MHz

99+1 = 30kHz.

Timer X Counter TIMER TxCNT[L/H]

TIMER TxCNT[L/H] contains the current counter values. By reading this register pair,
the user may get knowledge of how long it will take before the next timer interrupt.
Also, by writing to this register, a one-shot different length timer interrupt delay may be
realized.

4.7.3 Interrupts

Each timer has its own interrupt, which is asserted when the timer counter underflows.

4.7.4 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for timers:

Timer 0 is used as the System Timer, updating a software real time counter that is used
for all timing of the ROM routines. Timer 1 is free for user applications.

The ROM software keeps the master clock divider at a value that results in a 6 MHz
counting frequency (12 MHz crystal). The frequency is stable except in 2 cases: 1) When
VS1000 changes its internal clock speed (PLL multiplier), the frequency can be more
or less than 6MHz for a short time. 2) During USB suspend or low power pause the
frequency is less than 6MHz.

During USB activity the internal clock speed must be stable at 48 MHz so the timer
frequency is also stable at 6 MHz.

Rev. 0.15 Preliminary 2008-06-30 Page 74(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.8 UART v1.11 2007-03-16

4.8.1 General

RS232 UART implements a serial interface using rs232 standard.

Start
bit D0 D1 D2 D3 D4 D5 D6 D7

Stop
bit

Figure 4.9: RS232 Serial Interface Protocol

When the line is idling, it stays in logic high state. When a byte is transmitted, the
transmission begins with a start bit (logic zero) and continues with data bits (LSB first)
and ends up with a stop bit (logic high). 10 bits are sent for each 8-bit byte frame.

4.8.2 Registers

UART registers, prefix UARTx
Reg Type Reset Abbrev Description

0xC028 r 0 STATUS[3:0] Status
0xC029 r/w 0 DATA[7:0] Data
0xC02A r/w 0 DATAH[15:8] Data High
0xC02B r/w 0 DIV Divider

Status UARTx STATUS

A read from the status register returns the transmitter and receiver states.

UARTx STATUS Bits
Name Bits Description
UART ST FRAMERR 4 Framing Error (stop bit was 0)
UART ST RXORUN 3 Receiver overrun
UART ST RXFULL 2 Receiver data register full
UART ST TXFULL 1 Transmitter data register full
UART ST TXRUNNING 0 Transmitter running

UART ST FRAMERR is set at the time of stop bit reception. When reception is func-
tioning normally, stop bit is always “1”. If, however, “0” is detected at the line input
at the stop bit time, UART ST FRAMERR is set to “1”. This can be used to detect
“break” condition in some protocols.

UART ST RXORUN is set if a received byte overwrites unread data when it is transferred
from the receiver shift register to the data register, otherwise it is cleared.

UART ST RXFULL is set if there is unread data in the data register.

Rev. 0.15 Preliminary 2008-06-30 Page 75(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

UART ST TXFULL is set if a write to the data register is not allowed (data register
full).

UART ST TXRUNNING is set if the transmitter shift register is in operation.

Data UARTx DATA

A read from UARTx DATA returns the received byte in bits 7:0, bits 15:8 are returned
as ’0’. If there is no more data to be read, the receiver data register full indicator will be
cleared.

A receive interrupt will be generated when a byte is moved from the receiver shift register
to the receiver data register.

A write to UARTx DATA sets a byte for transmission. The data is taken from bits 7:0,
other bits in the written value are ignored. If the transmitter is idle, the byte is immedi-
ately moved to the transmitter shift register, a transmit interrupt request is generated,
and transmission is started. If the transmitter is busy, the UART ST TXFULL will be
set and the byte remains in the transmitter data register until the previous byte has been
sent and transmission can proceed.

Data High UARTx DATAH

The same as UARTx DATA, except that bits 15:8 are used.

Divider UARTx DIV

UARTx DIV Bits
Name Bits Description
UART DIV D1 15:8 Divider 1 (0..255)
UART DIV D2 7:0 Divider 2 (6..255)

The divider is set to 0x0000 in reset. The ROM boot code must initialize it correctly
depending on the master clock frequency to get the correct bit speed. The second divider
(D2) must be from 6 to 255.

The communication speed f = fm

(D1+1)×(D2) , where fm is the master clock frequency, and
f is the TX/RX speed in bps.

4.8.3 Interrupts and Operation

Transmitter operates as follows: After an 8-bit word is written to the transmit data
register it will be transmitted instantly if the transmitter is not busy transmitting the
previous byte. When the transmission begins a TX INTR interrupt will be sent. Status
bit [1] informs the transmitter data register empty (or full state) and bit [0] informs the

Rev. 0.15 Preliminary 2008-06-30 Page 76(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

transmitter (shift register) empty state. A new word must not be written to transmitter
data register if it is not empty (bit [1] = ’0’). The transmitter data register will be empty
as soon as it is shifted to transmitter and the transmission is begun. It is safe to write a
new word to transmitter data register every time a transmit interrupt is generated.

Receiver operates as follows: It samples the RX signal line and if it detects a high to low
transition, a start bit is found. After this it samples each 8 bit at the middle of the bit
time (using a constant timer), and fills the receiver (shift register) LSB first. Finally if
a stop bit (logic high) is detected the data in the receiver is moved to the reveive data
register and the RX INTR interrupt is sent and a status bit[2] (receive data register full)
is set, and status bit[2] old state is copied to bit[3] (receive data overrun). After that the
receiver returns to idle state to wait for a new start bit. Status bit[2] is zeroed when the
receiver data register is read.

RS232 communication speed is set using two clock dividers. The base clock is the proces-
sor master clock. Bits 15-8 in these registers are for first divider and bits 7-0 for second
divider. RX sample frequency is the clock frequency that is input for the second divider.

4.8.4 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for the UART:

UART receive is by default tied to the ROM monitor. If byte 0xef is received, the
firmware jumps to the monitor. This enables debugging via a serial cable using vsemu
command line tool and IDE environment available from VLSI.

The default communication speed of the UART is 115200 bit/s with a 12 MHz crystal.

VS1000 ROM automatically changes the UART divider according to the uartByteSpeed
variable whenever the PLL setting is changed.

Rev. 0.15 Preliminary 2008-06-30 Page 77(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.9 Universal Serial Bus Controller v1.0 2006-01-05

4.9.1 General

The Universal Serial Bus Controller handles USB 1.1 data traffic at a 12 Mbit/s signalling
speed.

The USB device can handle traffic for the control endpoint (0) plus three input and
output endpoints. Bulk, Isochronous and Interrupt transfer modes are supported at Full
Speed (12 Mbit/s). The maximum packet size is 1023 bytes.

4 kilobytes of X data memory are used as the USB packet buffer: 2 KiB for incoming
packets (X:0x2C00-0x2FFF) and 2 KiB for outgoing packets (X:0x3000-0x33FF). The
input buffer is a ring buffer with incoming packets consisting of a status word and n data
words. The output buffer has 16 possible start locations for outgoing packets at 128-byte
(64-address) intervals (note that all data addressing in VS1000 is based on 16-bit words).

4.9.2 Registers

Universal Serial Bus Controller Registers
Address Register Function
0xC080 USB CONFIG USB Device Config
0xC081 USB CONTROL USB Device Control
0xC081 USB STATUS USB Device Status
0xC082 USB RDPTR Receive buffer read pointer
0xC083 USB WRPTR Receive buffer write pointer
0xC088 USB EP SEND0 EP0IN Transmittable Packet Info
0xC089 USB EP SEND1 EP1IN Transmittable Packet Info
0xC08A USB EP SEND2 EP2IN Transmittable Packet Info
0xC08B USB EP SEND3 EP3IN Transmittable Packet Info
0xC090 USB EP ST0 Flags for endpoints EP0IN and EP0OUT
0xC091 USB EP ST1 Flags for endpoints EP1IN and EP1OUT
0xC092 USB EP ST2 Flags for endpoints EP2IN and EP2OUT
0xC093 USB EP ST3 Flags for endpoints EP3IN and EP3OUT

Rev. 0.15 Preliminary 2008-06-30 Page 78(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

USB CONFIG - USB Device Config 0xC080

USB CONFIG bits
Name Bits Description
reset 15 Reset Active
dtogg-host 14 Reset value of host data toggle (set to 0)
dtogg-device 13 Reset value of device data toggle (set to 0)
debug12-11 12:11 Debug bits (set to 0)
dtogg-errctl 10 Data Toggle error control (set to 0)
reserved9 9 Reserved (set to 0)
rstusb 8 Reset receiver (set to 0)
usb-enable 7 Enable USB
usb-address 6:0 Current USB address

USB CONTROL - USB Device Control 0xC081

USB CONTROL bits
Name Bits Description
USB STF BUS RESET 15 Interrupt mask for bus reset
USB STF SOF 14 Interrupt mask for start-of-frame
USB STF RX 13 Interrupt mask for receive data
USB STF TX READY 12 Interrupt mask for transmitter holding register

empty
USB STF TX EMPTY 11 Interrupt mask for transmitter empty (idle)
USB STF NAK 10 Interrupt mask for NAK packet sent to host
usb-configured 0 Configured. 0→1 transition loads dtogg-host

and dtogg-device

Software should write “1” to usb-configured bit when completing the USB Chapter 9
Set Configuration request. Setting this bit loads all device and host side data toggle reg-
isters with the defaults set at the dtogg-host and dtogg-device bits at the USB CONFIG
register. The dtogg-host and dtogg-device bits should normally always be “0”.

VS1000A ROM does not use the USB interrupt.

VS1000B ROM uses the USB interrupt for SOF detection to detect USB suspend condi-
tion.

Rev. 0.15 Preliminary 2008-06-30 Page 79(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

USB STATUS - USB Device Status 0xC082

USB STATUS bits
Name Bits Description
USB STF BUS RESET 15 Bus reset occurred
USB STF SOF 14 Start-of-frame
USB STF RX 13 Receive data
USB STF TX READY 12 Transmitter holding register empty
USB STF TX EMPTY 11 Transmitter empty (idle)
USB STF NAK 10 NAK packet sent to host
USB STF SETUP 7 Setup packet received
USB STM LAST EP 3:0 Endpoint number of last rx/tx transaction

The USB STM LAST EP can be used mainly for debugging purposes, final software
should be able to work without it.

USB RDPTR - Receive buffer read pointer 0xC083

USB RDPTR bits
Name Bits Description
USB RDPTR 15:0 Packet Read Pointer

This buffer marks the index position of the last word that the DSP has successfully read
from the receive packet buffer. DSP should control this register and update the position
after each packet it has read from the receive buffer. After reset this register is zero.

USB WRPTR - Receive buffer write pointer 0xC084

USB WRPTR bits
Name Bits Description
USB WRPTR 15:0 Packet Write Pointer

After a packet has been received from the PC, the USB hardware updates this pointer to
the receive buffer memory. USB WRPTR is index location of the next free word location
in the USB receive buffer. When USB RDPTR equals to USB WRPTR, the packet input
buffer is empty. After reset this register is zero.

USB EP SENDn - EPnIN Transmittable Packet Info 0xC088..0xC08B

USB EP SENDn bits
Name Bits Description
txpkt-ready 15 Packet ready for transmission
start-addr 13:10 Starting location of packet
length 9:0 Length of packet in bytes (0..1023)

Rev. 0.15 Preliminary 2008-06-30 Page 80(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

When the DSP has written a packet into the transmit buffer, that is ready to be trans-
mitted to the PC by an endpoint, the DSP signals the USB firmware by setting the
value of the USB EP SENDn register of the endpoint that should transmit the packet
(USB EP SEND0 for endpoint 0, USB EP SEND1 for endpoint 1 etc).

The txpkt-ready bit should be set to “1” by the DSP. When the packet information (not
contents) is loaded to the internal Transmit Holding Register of the endpoint, txpkt-
ready bit is set to “0” by the hardware. Note that this does not indicate that the packet
is sent to the PC, merely that it is ready for sending when the PC next requests “IN”
data for that endpoint. Scanning the txpkt-ready bit merely allows software to prepare
the next packet to be sent even before the previous packet has been sent to the PC.

The start-addr field is index to a 64-word boundary in the transmit buffer memory area.
The actual memory location that start-addr corresponds to is calculated by:

packet start address = USB SEND MEM + (start-addr × 64)

which in VS1000 corresponds to address X:0x3000 for start-addr=0, X:0x3040 for start-
addr=1 etc.

USB EP STn - Flags for endpoints EPnIN and EP0nUT 0xC090..0xC093

USB EP STn bits
Name Bits Description

EPnOUT (PC → Device) endpoint (0 .. 3) flags
out-type 15:14 00=bulk 01=interrupt 11=isochronous
out-enable 14:13 1=enabled 0=disabled
out-forcestall 12 Force STALL
out-stall-sent 11 At least 1 STALL sent
reserved 10:8 Set to 0

EPnIN (Device → PC) endpoint (0 .. 3) flags
in-type 7:6 00=bulk 01=interrupt 11=isochronous
in-enable 5 1=enabled 0=disabled
in-forcestall 4 Force STALL
in-stall-sent 3 At least 1 STALL sent to PC
in-nak-sent 2 At least 1 NAK sent to PC
in-xmit-empty 1 Transmitter empty
reserved 0 Set to 0

4.9.3 Receiving Packets from PC (EP0OUT, EP1OUT, ... , EP3OUT)

The USB hardware handles all necessary token (ACK, NAK, IN, OUT, SETUP, STALL)
sending and receiving. The software sees only the data packet contents plus some state
information about the sent tokens.

Rev. 0.15 Preliminary 2008-06-30 Page 81(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

Reception

All received packets for all endpoints arrive to the same 2 KiB (1 KiW) ring buffer
memory in X address space. This maximizes memory usage efficiency, but leads to one
important side-effect: The USB specification dictates that an incoming SETUP transfer
to the control endpoint must be the first packet to be processed at all times.

For instance the PC might issue a SETUP control request to the control endpoint before
the software has had time to process a data packet that has previously arrived to a data
endpoint. In such a case, the software should ignore the pending data and handle the
SETUP packet instead.

For achieving this functionality, the hardware can test the USB STF SETUP bit at the
USB CONTROL register. If it is “1”, all packets until the last received SETUP packet
need to be truncated and the last SETUP packet processed. A reasonably fast USB
implementation should be able to achieve this without problems, but delays of several
milliseconds (such as for sending debug messages etc) can cause problems with this clause,
which result in “random hang-ups” of the USB communication with the PC. If care is
taken to process the packets in the correct order, most (if not all) USB transactions can
perfectly well cope with delays of several seconds. In practice the PC waits patiently for
several seconds if the data you send is “correct,” e.g. what the PC expects, but very
quickly responds to any unexpected data by issuing a bus reset.

Software can detect a received packet by scanning the USB RDPTR and USB WRPTR
registers. When their values differ, there is a packet ready for processing in the input
buffer.

USB RDPTR points now to a header word. The actual packet data words are in the
buffer memory after the header word. The packet header word has the following structure:

Packet header word bits
Name Bits Description
crc-err 15 1=CRC error detected
setup 14 1=SETUP packet, 0=DATA packet
endpoint 13:10 Endpoint to which the packet is addressed to
pktlength 9:0 Length of packet in bytes

This is immediately followed by (pktlength+1)/2 data words, MSB first.

A quick routine can access the contents directly in the buffer memory, or choose to copy
the packet contents to another location in memory. In either case, the software should
update the value of USB RDPTR, indicating that the packet is no longer needed.

The USB hardware automatically NAK’s incoming data packets if there is less than
40 words space left in the buffer memory. In this situation the hardware still accepts
SETUP packets. If receiving a packet would cause the USB WRPTR to be overrun by
USB RDPTR, e.g. there is no more room for even the SETUP packet, even the SETUP
packets are NAK’ed.

Rev. 0.15 Preliminary 2008-06-30 Page 82(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

Sending Packet to PC (EP0IN, EP1IN, ... , EP3IN)

To send a USB packet, software must prepare the packet to the transmit buffer area,
starting at a 64-word boundary. The data is to be stored in Big Endian format, e.g.
the first byte to be sent should be in the most significant 8 bits of the first word. Next,
software should load the USB EP SEND register of the chosen endpoint with the start
location selector and size of the transmittable packet (in bytes). The most significant bit
of the register (txpkt-ready) should be set to “1”.

When the internal Transmit Holding Register for the endpoint is ready, the value of the
USB EP SEND register is loaded to the internal Transmit Holding Register and txpkt-
ready bit of the USB EP SEND register is set to “0”. This indicates that the packet is
queued for transmission and the USB EP SEND register can be loaded with information
about the next sendable packet (if any).

To get information about when the packet has actually been transmitted to the PC, the
Transmitter Idle (in-xmit-empty) bit of the endpoint’s USB EP ST register can be polled
(or the corresponding interrupt used).

How to know that the PC is expecting data

During software development, when protocol matters can be still somewhat unclear, it
is sometimes difficult to know when the PC actually is expecting you to send a packet
to some endpoint. In the USB hardware there is a feature to assist in finding out this
information: the endpoint’s in-nak-sent bit of the endpoint’s USB EP ST register. Using
this bit can avoid a common pitfall: loading a transmitter register with packet that is
never actually requested by a PC. That would cause the packet information to remain in
the transmitter register (until next USB reset), which again would cause the packet to
be sent as an answer to the next request of the PC, causing unexpected results.

Stalling

STALL is a special condition on the USB bus, which more or less states, that “I can’t
handle this data packet now nor in the future”. For example when the software needs
to STALL reception of data from PC, software should set out-forcestall to “1” and out-
stall-sent to “0”. The hardware will then wait for the next OUT token from the PC and
respond with STALL token. Bit out-stall-sent indicates that a STALL token has been
successfully transmitted to the PC.

A more common case of stalling regards the handling of control requests (SETUP mes-
sages sent to the control endpoint). In case of receiving an unsupported request, the
device should respond wit a stall. Since the control endpoint must remain open for the
next request for the PC and stalling a control request should be a rare event, a possible
way to handle this is:

Rev. 0.15 Preliminary 2008-06-30 Page 83(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

• In the USB EP ST0 register, set out-forcestall to “1” and out-stall-sent to “0”

• Busy loop until out-stall-sent is “1” OR a USB reset occurs OR a time-out occurs

• Set out-forcestall to “0”

In a normal case this would send a single STALL to the control endpoint and leave the
endpoint open for the next request.

If an endpoint’s (other than 0) Halt feature is set (USB Chapter 9 standard request), the
endpoint should be stalled (forcestall set to “1”).

Mass storage class device can use STALL to end a bulk transfer [Axelson, J.: USB Mass
Storage].

4.9.4 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for the USB:

• Endpoint 0: USB Standard Requests (USB Chapter 9 functionality)

• Endpoint 1 OUT: USB Speakers

• Endpoint 2 OUT: Mass Storage Class (PC → VS1000)

• Endpoint 3 IN: Mass Storage Class (VS1000 → PC)

Depending on the state of GPIO0:6 during boot-up, the descriptors sent to the PC select
either Audio or Mass Storage functionality.

Rev. 0.15 Preliminary 2008-06-30 Page 84(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

Augmenting the ROM functionality

Changing only the descriptors is easy since the descriptors are accessed via a descriptor
pointer table in RAM that consists of 6 pointers to X memory:

USB.descriptorTable entries
Index Function
[0] String Descriptor 0 (Language Index)
[1] String Descriptor 1 (Manufacturer: “VLSI”)
[2] String Descriptor 2 (Model: “VS1000”)
[3] String Descriptor 3 (Serial Number: “100010001003”)
[4] Device Descriptor
[5] Configuration Descriptors

Because the configuration descriptor is actually a set of descriptors, its size is stored
in USB.configurationDescriptorSize. For other descriptors, the size is taken from the
descriptor itself.

Note: A good storage driver should overwrite the serial number string descriptor with a
unique one. For a NAND flash, this could be done easily in the first sector’s optional boot
code. Since the USB.descriptorTable default values are loaded at each USB init (attacj),
the most straightforward way to do this would be to hook the DecodeSetupPacket()
function to load USB.descriptorTable[3] and call the RealDecodeSetupPacket() in ROM.

USB-related software hooks are:

• void USBHandler() - USB task handler

• void DecodeSetupPacket() - handles SETUP packets to EP0OUT

• void MSCPacketFromPC() - handles mass storage class command packets

• void ScsiTaskHandler() - handles (pending) disk operations

Hooking means replacing a ROM function with a RAM function by setting the hook
vector address. This is normally used to augment or replace functionality of the ROM
code. In most cases, the original ROM function can be called after handling some special
case in the RAM function. The ROM functions are called by using a function name with
prefix “Real”.

Rev. 0.15 Preliminary 2008-06-30 Page 85(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

Hooking: Example

This example augments the USBHandler to blink LED 2 if there is an uncomplete disk
write operation.

void USBHandler(void);
void RealUSBHandler(void);

void MyUSBHandler(void) {
if (SCSI.mapperNextFlushed == -1) {

USEX(GPIO1_ODATA) &= ~LED2;
} else {

USEX(GPIO1_ODATA) ^= LED2;
}
RealUSBHandler(); /* Call original ROM function */

}

The hook can be loaded by calling

SetHookFunction((u int16)USBHandler, MyUSBHandler);

or by setting the hook vector directly in the boot record (via a Set X Memory directive).

Note that since VS1000B the blinking LED is implemented in the ROM firmware.

Used memory areas

The USB transmitting routines in VS1000 ROM are limited to transmitting packets of
max. 64 bytes. Only the first 512 bytes (addresses X:0x3000-0x30FF) of transmit packet
memory is used, leaving 1536 bytes (768 words) of X memory (addresses X:3100-0x33ff)
free for other uses. However, in future revisions of the chip (VS1000B etc..) this memory
may not be available.

Rev. 0.15 Preliminary 2008-06-30 Page 86(87)

VLSI
Solution y

PKP

VS1000 Programmer’s Guide VSMPG

4. PERIPHERAL DOCUMENTATION

4.10 Watchdog v1.0 2002-08-26

4.10.1 General

The watchdog consist of a watchdog counter and some logic. After reset, the watchdog is
inactive. The counter reload value can be set by writing to WDOG CONFIG. The watch-
dog is activated by writing 0x4ea9 to register WDOG RESET. Every time this is done,
the watchdog counter is reset. Every 65536’th clock cycle the counter is decremented by
one. If the counter underflows, it will activate vsdsp’s internal reset sequence.

Thus, after the first 0x4ea9 write to WDOG RESET, subsequent writes to the same
register with the same value must be made no less than every 65536×WDOG CONFIG
clock cycles.

Once started, the watchdog cannot be turned off. Also, a write to WDOG CONFIG
doesn’t change the counter reload value.

After watchdog has been activated, any read/write operation from/to WDOG CONFIG
or WDOG DUMMY will invalidate the next write operation to WDOG RESET. This
will prevent runaway loops from resetting the counter, even if they do happen to write
the correct number. Writing a wrong value to WDOG RESET will also invalidate the
next write to WDOG RESET.

Reads from watchdog registers return undefined values.

4.10.2 Registers

Watchdog, prefix WDOG
Reg Type Reset Abbrev Description

0xC020 w 0 CONFIG Configuration
0xC021 w 0 RESET Clock configuration
0xC022 w 0 DUMMY[-] Dummy register

4.10.3 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for the watchdog:

Watchdog is not currently used by the firmware.

Rev. 0.15 Preliminary 2008-06-30 Page 87(87)

