
VSIDE User's Manual

Revision 1.01

Apr 15, 2003

Revision history:

Rev. Date Description

1.00 8. Apr. 2003 First edition

1.01 15. Apr. 2003 Typo corrections.

VSIDE User's Manual Page 1

Table of Contents
1. Introduction..4

1.1. Features...4
1.2. Requirements..5

2. Installation..6
2.1. VSIDE Windows..6
2.2. VSIDE UNIX..6
2.3. License manager server installation..7

3. Getting started with VSIDE..8
3.1. Introduction...8
3.2. Creating a project..8
3.3. Modifying the source..9
3.4. Compiling the code...10
3.5. Executing and debugging the code...11
3.6. Adding files to the project..12
3.7. Setting breakpoints...14
3.8. Variable evaluation...16
3.9. Modifying project options..18
3.10. Profiling..19

4. Development environment...20
4.1. Introduction..20

4.1.1. Projects and Solutions...20
4.1.2. Configurations...20
4.1.3. Dock windows...20

4.2. Solution browser...21
4.2.1. File operations...22
4.2.2. Folder operations...22
4.2.3. Project operations..22
4.2.4. Solution operations...23

4.3. Editor..23
4.4. Building..24

4.4.1. Build commands...24
4.4.2. Configuration manager...25

4.5. Menus...26
4.5.1. File menu...26
4.5.2. Edit menu..27
4.5.3. Project menu...27
4.5.4. Build menu..27
4.5.5. Debug menu..27
4.5.6. Windows menu...28
4.5.7. Help menu...28

4.6. New project creation...28
4.7. File options..29
4.8. Project options...30

4.8.1. General..30
4.8.2. C Compiler..31

VSIDE User's Manual Page 2

4.8.3. Assembler..31
4.8.4. Linker..32
4.8.5. Debugging...32
4.8.6. Tools..33

4.9. Solution options...33
4.9.1. Configurations...34
4.9.2. Cores...34
4.9.3. Debugging...35

4.10. Preferences..36
4.10.1. General..37
4.10.2. Editor ..37

5. Debugging..39
5.1. Debug commands..39
5.2. Debug windows...41

5.2.1. RTOS window..41
5.2.2. Watch window...41
5.2.3. Active variables window..42
5.2.4. Peripheral window...43
5.2.5. Log window...43
5.2.6. STDIN/STDOUT window...44
5.2.7. Breakpoint window..44
5.2.8. Command console window..45
5.2.9. Memory window..46
5.2.10. Register window..46
5.2.11. Disassembly window...47

5.3. Simulating executables directly..48
6. Miscellaneous...49

6.1. Command line options...49
6.2. Creating new project templates..50
6.3. mem_desc file format..51

6.3.1. MEMORY Section ...51
6.3.2. MIRROR Section ...53
6.3.3. CORE Section ..53
6.3.4. PERIPHERAL Section ..54
6.3.5. INTERRUPT Section ...54
6.3.6. Peripheral Instantiation ..55

6.4. hw_desc file format...55
6.5. Included peripherals..55

6.5.1. INTERRUPT...55
6.5.2. STDSERIAL ..56
6.5.3. STDWATCHDOG ...57
6.5.4. STDIO ..58
6.5.5. FILEIN..59
6.5.6. TIMER..59

VSIDE User's Manual Page 3

1. Introduction

1. Introduction

VSIDE is an integrated development environment for VLSI Solution VS_DSP cores.

1.1. Features

VSIDE v1.0 contains the following features:

� Integrateddevelopmentenvironment(IDE) for VSDSPcores,including integrated
project management, code editor, debugger, C compiler and assembler.

� C and assembly level debugging by using simulator or hardware emulator

� Multi-core debugging supported in simulator

� Two-point profiling

� Entire system simulation by using C modeled custom peripherals

� Multi-OS support: Windows XP/2000, Red Hat Linux 7.0-8.0, Sun Solaris 5.8

VSIDE User's Manual Page 4

1. Introduction

1.2. Requirements

Windows:

� Microsoft Windows 2000 or Windows XP Professional

� PC x86 architecture

Linux:

� Red Hat Linux 7.0 – 8.0

� PC x86 architecture

Sun:

� Sun Solaris 5.8

� 32-bit or 64-bit SPARC architecture

VSIDE User's Manual Page 5

2. Installation

2. Installation

2.1. VSIDE Windows

Run win32setup.exe to start setup.

To be able to set the requiredenvironmentvariables(PATH and VSDSP_DIR),you needto use
administrator account when running the setup.

2.2. VSIDE UNIX

1) Unpack this VSIDE tar.gz package to any directory. This directory is now referred as VSIDE.

E.g. Installing package at /tmp/ to /usr/local/:

cd /usr/local
tar xfvz /tmp/vside_linux.tar.gz

2) Set VSDSP_DIR environment variable to point to VSIDE/config.

For bash:
VSDSP_DIR=/usr/local/vside/config
export VSDSP_DIR

For csh or tcsh:
setenv VSDSP_DIR /usr/local/vside/config

3) Add VSIDE/bin path to $PATH. Without this, compiling won't work in IDE.

For bash:
PATH=/usr/local/vside/bin:$PATH
export PATH

For csh or tcsh:
setenv PATH /usr/local/vside/bin:PATH

4) CD to VSIDE path and run VSIDE:
cd vside
./vside

VSIDE User's Manual Page 6

2. Installation

2.3. License manager server installation

VSIDE needsa connectionto VSIDE licensemanagerserver.To set up the licensemanager,
downloadthe separateVSIDE licensemanagerpackageand install it accordingto its instructions
delivered with the package.

VSIDE User's Manual Page 7

3. Getting started with VSIDE

3. Getting started with VSIDE

3.1. Introduction

This chapterdescribesthe very basicsof VSIDE. In caseyou havebeenusingothersimilar IDEs
before, this will be mostly trivial information for you. Knowledge on VSIDE core is not required, as
this tutorial is kept in C language level.

In this exercise we will create a “Hello world” project, and use it in a various of ways.

First, start up VSIDE. The IDE should now look like this:

The windows are empty and most features are disabled, since no projects are open.

3.2. Creating a project

We'regoing to startby creatinga new“Hello world” project.Thesimplestway to do this is to use
“Hello World” project template, which contains “main.c” source file and proper project settings.

Now do the following:

VSIDE User's Manual Page 8

3. Getting started with VSIDE

� Under the File menu, click 'New' and then click 'Project'.

The following dialog will appear:

� Select“Hello World Executable” as the project template, and then
type “hw” as the Name. Select appropriate location in your hard
drive. See the picture above.

� Click OK to create a new project.

After a few seconds,the solutionbrowserwill populatewith a new project“hw”, which is located
undera solutioncalled“hw”. Solutionbrowserdisplaysthe solutionandprojecthierarchy,aswell
as all the related source files.

3.3. Modifying the source

� Double-click “main.c” inside the solution browser. This will openthe
“main.c” file in the integrated editor.

VSIDE User's Manual Page 9

3. Getting started with VSIDE

� Inside the editor, modify the text “Hello world!” to something
different, e.g. “This is fun!\n”.

You will noticethat theeditor's“main.c” tabwill changeto “main.c*”, wheretheasteriskinforms
that the file has been modified, but not saved.

3.4. Compiling the code

Thenext thing to do is to build theexecutable.Note thatall unsavedsourceswill beautomatically
savedwhenyou start the compileprocess.Thus,the asteriskin the “main.c” tab will disappearas
well.

� From the Build menu, select“Build solution”. You can also do this
by pressing F7.

VSIDE User's Manual Page 10

3. Getting started with VSIDE

The build output on the bottom of the screen should display output like this:

You can see a line with gray background, which informs of a compilation warning.

� Click left mousebutton on this grey area, and the IDE will display
the source code row that warning is referring to.

You can ignore this warning.

3.5. Executing and debugging the code

Now thattheprojectexecutableis successfullybuilt, we will testit usinga simulator.Thesimulator
simulates VSDSP processor with software, so no actual hardware is needed.

� To start debuggingfrom the beginning of the program, select“Step
Into” from the Debug menu, or press F11.

VSIDE will now switch to debugmode,and the window layout will changeaccordingly.New
windowswill alsopopup. Now, thefirst row of main() functionshouldbehighlightedwith yellow
background. This indicates the current code execution position.

� Make sure that you have“STDIN/STDOUT” consolewindow visible.
If not, show it by selecting it from the Windows menus (or press
CTRL-5).

We now want to step until the code execution is in the “while(1);” statement.

VSIDE User's Manual Page 11

3. Getting started with VSIDE

� select “Step into” from the Debug menu (or press F11) until you
reach the while(1) statement.

Now, look at STDIN/STDOUTwindow. You shouldseeyour modified hello world messagethere
now.

After this, we want to stop debugging and continue editing the code.

� Select“Stop debugging” from the Debugmenu (or pressSHIFT-F5).
The confirmation message box appears. Select “Yes” to proceed.

VSIDE now switchesbackto projecteditingstate,andchangesthewindow layoutsagain.Notethat
thepreviouswindow layoutswill besaved,soif youmovewindowsaroundor closethem,theywill
appear (more or less) in the same way next time.

3.6. Adding files to the project

Next, we will create a new source file that will be merged to the current project.

� Under the File menu, click 'New' and then click 'File'.

New empty documentwill appear.Using the integratededitor, type the following into the
document:

� void foo() {
 int z;
 for (z = 0; z < 100; z++) {
 printf("z = %d\n", z);
 }
}

� Now, under the File menu, click 'Save' (or pressCTRL-S) and then
select a save path and a filename for this document. Save the file
under the newly createdproject path (e.g.“\solutions\hw”), and name
it as “foo.c”.

VSIDE User's Manual Page 12

3. Getting started with VSIDE

Now we need to add this new source file into the project. This is done as follows:

� Inside the Solution Browser, right-mouse click the “Project 'hw'”
item. Select “Add existing item...”.See the picture below:

� A file selection dialog appears. Select “foo.c” and press “Open”.

“foo.c” shouldnow appearunderproject 'hw' in the SolutionBrowser.Now, we want our main()
function to call foo(), so we need to modify main.c.

� Double click “main.c” under Solution Browser (or just select
“main.c” tab in the editor, if it is still open). Modify “main.c” sothat
it looks as follows (changes are shown with gray background):

VSIDE User's Manual Page 13

3. Getting started with VSIDE

� #include <stdio.h>

void foo(); /* Introduce foo() function */

/* This is a hello world example! */
int main(void) {
 puts("This is fun!\n");
 foo(); /* Call foo() */
 while(1);
 return 0;
}

� Now compile the program, like mentioned before. Again, this will
automatically savethe source files changesto disk. If there are any
errors, fix them and recompile again.

Now, the new foo() function should be integrated into our project. We will test it in the next section.

3.7. Setting breakpoints

The next thing to try out is to usebreakpoints.Breakpointsstop the programexecutionwhenthe
executionreachesthe breakpointposition.Breakpointscanbe setwhile beingin the edit modeor
during debugging.

� In “main.c”, set a breakpoint to “foo(); /* Call foo() */” line. Setting
breakpoints can be done either by clicking left mousebutton in the
left gray area in the editor, or to move editor's cursor to the
appropriate line and then pressF9. A red marker dot should appear
in this gray area next to the source line. See the picture below.

Note that you can clear breakpoints by redoing the above-mentioned operation.

We will now also create another breakpoint.

VSIDE User's Manual Page 14

3. Getting started with VSIDE

� Under “foo.c”, set another breakpoint to line:
“printf("z = %d\n", z);“.

We want this secondbreakpointto be activeonly whenC languagecondition“z == 5” is true.To
make the second breakpoint conditional, we need to open the breakpoint window.

� From the Windows menu, select “View Breakpoints” (or press
CTRL-3). Now, a window like the following should appear (without
the condition 'z == 5' entry):

� To make the “foo.c” conditional, in the foo.c() breakpoint line click
the left mousebutton under the condition column. This is the position
where the “z == 5” is located in the picture above.A cursor should
appear, and now you can type the condition “z == 5”. Rememberto
use spaces around '=='.

Note that conditional breakpointsmay causethe simulation to run slower, dependingon the
breakpointposition.Eachtime the executionreachesposition wherethe breakpointis located,it
causes a slight delay regardless of whether the condition is true or not.

Now, we cantesthow the breakpointswork. No compilationis now needed,asno changesto the
source code have been made.

� Run the program; from the Debugmenu you can do this by selecting
“Run”, or by pressing F5.

VSIDE User's Manual Page 15

3. Getting started with VSIDE

The programshouldnow hit the first breakpointinside main(). We can now proceedto the next
breakpoint.

� Run the program again by pressing F5.

Now theprogramshouldpauseagain.InspectSTDIN/STDOUTwindow output.In caseeverything
went as expected, the output should contain:

“This is fun!

z = 0
z = 1
z = 2
z = 3
z = 4”

3.8. Variable evaluation

Next thing to practice is to evaluate variables. The first way to do it is to mark variables simply with
the mouse:

� While still in the debugging mode, mark any 'z' variable in the
“foo.c” source file with left mouse button, and hover the mouse
cursor over the marked area. After ca. onesecond,there should be a
pop-up tool tip showing the 'z' value. See the picture below.

Second way is to view 'Active Variables'.

� Now locate the “Active Variables” window in the screen.If it is not
visible, use the Windows menu and select “View Active Variables”.
'z' should be visible there.

VSIDE User's Manual Page 16

3. Getting started with VSIDE

Now let's try to change the 'z' value on the fly.

� Under “Active Variables” window, click the left mousebutton on 'z'
value. An editor cursor will appear. Now, type the '0' as the new
value for 'z'.

� Now, run the simulation again (using F5).

Programshouldbreakagainon the conditionalfoo() breakpoint.The STDOUT outputshouldbe
now:

“This is fun!

z = 0
z = 1
z = 2
z = 3
z = 4
z = 0
z = 1
z = 2
z = 3
z = 4”

The third way to dealwith variablesis to use'Watches'window. In watchwindow, you cantype
variable names, and VSIDE will evaluate them with every screen update.

� Locate the “Watches” window on the screen.If it's not visible, usethe
Windows menu and select “View Watches”.

� Left mouse click “<add new...>” item, and editor cursor should
becomevisible. Type 'z' and press enter. In case'z' is visible at the
current codelocation, the value will be displayed.In caseit is not, the
values will be '?'.

� Now stop debugging (by pressing SHIFT-F5), and clear the
breakpoints.

VSIDE User's Manual Page 17

3. Getting started with VSIDE

3.9. Modifying project options

Next, we will take a look at project options.

� Under Solution Browser, right-mouse click the project item. Select
'Properties'.

Project options dialog will now open.

� Select “C Compiler” tab, as shown in the picture below.

We now want the compilerto optimizethe code.We cando it by changingthe optimizationlevel
from -O0 to -O6.

� Set the optimization level to -O6. Press “OK”.

To put the new settings into effect, we must rebuild the executable.

VSIDE User's Manual Page 18

3. Getting started with VSIDE

� From the Build menu, select'Rebuild solution'. Note that sincewe have only
one project under solution, it would have the same effect to select 'Rebuild
project'.

3.10. Profiling

To beableto optimizethecode,it is importantto know thecodeperformanceat eachposition.This
is calledprofiling. VSIDE supportstwo-point profiling, wherethe performancewill be measured
betweentwo codepositions.In the first positiontheprofiling is activated,andin thesecondoneit
will be stopped. The result is the profiling information between these two points.

Now, we want to profile the foo() function's for-loop.

� Create two breakpoints to main() function, oneat “foo(); /* Call foo()
*/” and one at the “while(1);” one line below.

� Now run the program until the execution hits the first breakpoint.
Then, under Debug menu, select 'Start/stop profiling'.

� Run the program again.The executionshould now stop at the second
breakpoint. Again select 'Start/stop profiling'.

A pop-up window with the profiling data should now appear.

� Close the profiling pop-up window, and stop debugging (SHIFT-F5).

This tutorial is now completed.Hopefully you now havea basicinsighthow VSIDE canbeutilized
to develop systems based on VSDSP.

VSIDE User's Manual Page 19

4. Development environment

4. Development environment

4.1. Introduction

VSIDE consists of source code editor, project management, compilers and debugger.

4.1.1. Projects and Solutions

The two key itemsin VSIDE'sProjectmanagementare“projects” and“solutions”. Theseareused
to provide hierarchies and to auto-generate makefile scripts for binary compilation.

“Project” resembleseithera singleexecutable,or a static library. It consistsof a groupof source
files that produce the target binary.

“Solution” definitions include the dependencyrelationshipsamong projects (e.g. “Executable”
project with a depending“Static library” project). They also include information about how to
deploy the projects that make up your solution.

Solutionhierarchysystemcomesto its full powerwhencreatinga solutionwith severalexecutable
projects (for simulating multi-processor environment).

There can be only a single solution open at the time.

4.1.2. Configurations

A configuration represents the settings of a particular project/solution.

E.g.a projectcouldhavea configurationfor debuggingandreleasepurposes;debugversionwould
contain debugsymbol information, whereasreleasewouldn't. Insteadof having to edit project
options constantly(switching on and off the debugsymbol option), creating two such project
solutions and then switching then between them would be more elegant choice.

Solution configurationworks in the sameway. Switching betweensolution configurationsalso
switchescurrentactiveprojectconfigurations;this is becausesolutioncontainsalsoinformationfor
each project which configuration is active.

Every project and solution must have 1...N configurations each.

4.1.3. Dock windows

VSIDE usesdock windows to visualize information. Dock windows can be moved and resized
within the main VSIDE window.

Dock windows can be draggedinto dock positions,by holding left mousebutton on the dock

VSIDE User's Manual Page 20

4. Development environment

window title bar andmoving mousecursorto a dock position.Dock positionsarein the middle of
main window borders;top, bottom,left andright. Whendraggingthe dock window, the rectangle
will change to thin line thickness when the window is ready to dock the dock area.

Note thatVSIDE savesseparatewindow positiondatafor debugging,projectedit andinitialization
modes.

4.2. Solution browser

Currently open solution and its context is shown in “Solution Browser Window”. During
debugging, Solution Browser will be hidden by default.

In thepicturebelow,thereis solutioncalled“prime”, andtwo projectsinsideit. Insideeachproject,
therearefoldersthatcontaintheindividual files. Thesefoldersareonly usedto groupsametypesof
files together, they do not reflect the disk directory hierarchy.

One of the projects is always set as “Active”. When invoking project operations(like “Build
project”),activeprojectis affectedby theoperation.To changetheactiveproject,right-mouseclick
on the top of the project icon (inside “Solution Browser Window”) and select “Set as active
project”.

To quickly open source file for viewing or editing, double-click on the file's icon.

VSIDE User's Manual Page 21

4. Development environment

Thereare severalfeaturesthat can be accessedthroughSolution Browser.They are invoked by
right-clicking either files, folders, projects or solutions. These are described below.

4.2.1. File operations

Item Description

Compile Compile the file.

Remove Removefile from project.This will not removethe file for
hard disk.

Properties Edit file properties.

See Section 4.7 for more information.

4.2.2. Folder operations

Item Description

Add existing item... Addsnewsourcefiles to project.A file selectiondialogwill
appear. The selected file will be included to the project.

Remove Removethe folder and its contentsfrom the project. This
will not remove any files from the hard disk.

This option is not availableto someof the foldersthat must
exist in the project.

Rename Rename the folder name.

This option is not availableto someof the foldersthat must
exist in the project.

4.2.3. Project operations

Item Description

Set as active project Selectprojectasan activeproject.Active projectis affected
by any project-specific commands in Project or Build menus.

Build Build project target.

Rebuild All Clean and then build project target.

Clean Clean project target and any temporary object files.

Save project Save project changes to disk.

VSIDE User's Manual Page 22

4. Development environment

Item Description

Remove project Remove a project from solution.

This will not remove any project files from hard disk.

Add folder Add a (virtual) folder to the project.Thesefoldersareonly
used to group similar files together.

Add existing item... Add an existing item to project.

The proper folder for the file is automatically selected.

Properties Edit project properties.

See Section 4.8 for more information.

4.2.4. Solution operations

Item Description

Build Solution Build all projects within a solution.

Rebuild Solution Rebuild all projects within a solution.

Clean Solution Clean all projects within a solution.

Add new project... Add new project to solution.

See Section 4.6 for more information.

Add existing project... Removes a project from solution.

This will not remove any project files from hard disk.

Properties Edit solution properties.

See Section 4.9 for more information.

4.3. Editor

Integratedsourcecodeeditor is a normal text file editor that supportsthe basicediting features
including C syntax highlighting and auto-indent.

Editor is also used to display code during the debugging phase.

Editor window is tabbed,i.e. eachopensourcefile hasits own tab in the top of theeditorwindow.
By clicking the tab, the particular sourcefile will be shown. By clicking the close button (or

VSIDE User's Manual Page 23

4. Development environment

pressing CTRL-W) on the right top corner of the editor, the current source file will be closed.

Basic editor commands are found in Edit menu:

Editor menu item Keyboard
shortcut

Description

Undo CTRL-Z Undo previous edit command

Redo CTRL-Y Redo previous edit command

Cut CTRL-X Cut selected text

Copy CTRL-C Copy selected text

Paste CTRL-V Paste previously cut/copied text into cursor position

Go to line CTRL-G Go to sourcecodeline. New dialog will appearwherethe line
number is entered.

Find... CTRL-F Find text within the currentsourcefile. New dialog will appear
with more options.

Find next F3 Repeat find operation.

Replace CTRL-H Like find, but find text will be replaced with another string.

Preferences Modify program preferences. See section 4.10.

To find out the full path nameto sourcefile, hover the mousecursorover a file tab (wherethe
filename is shown), and after one second a tool tip window will appear with the full pathname.

If any text files aremodified outsidethe VSIDE editor,VSIDE will notify the userandaskif the
modified files should be loaded into the editor.

4.4. Building

The VSIDE build commands are described below.

Note that project build commandsaffect to active project.To selectactiveproject, right click on
project icon in Solution window, and select “Set as active project”.

4.4.1. Build commands

VSIDE User's Manual Page 24

4. Development environment

Item Icon Keyboard
shortcut

Description

Build solution F7 Builds all projects within the current solution.

Rebuild solution CTRL-F7 Cleansandbuilds all projectswithin the current
solution.

Clean solution Deletes all intermediate files used during
building for all the projectswithin the current
solution.

Build project SHIFT-F7 Builds the active project.

Rebuild project CTRL-SHIFT-F7 Cleans and builds the active project.

Clean project Deletes all active project's intermediate files
used during building .

Stop build Stops the current undergoing build process.

Configuration
manager

Opens configuration manager. See more below.

4.4.2. Configuration manager

Configuration manager is used for modifying solution and project configurations.

To create new configuration, select a previous configuration and press “Create copy”.

VSIDE User's Manual Page 25

4. Development environment

To rename configuration, select the configuration and press “Rename”.

To removeconfiguration,use“Remove”.Note that theremustbealwaysat leastoneconfiguration
per solution/project.

4.5. Menus

The VSIDE menus are described below.

4.5.1. File menu

File menu item Description

New->Project Createsa new project. “New Project” dialog will open,
which contains more options for project creation.

New->File Opens a new text file in editor.

New->Blank solution Createsa new blank solution. “New Solution” dialog will
open,which containsmoreoptionsfor projectcreation.Any
currently open solutions are closed.

Open->Solution Opensan existing solution from disk. Any currently open
solutions are closed.

Open->Source Opens an existing text file from disk

Open->Executable into simulator Simulateexecutableswithout projects/solution.SeeSection
5.3 for more.

VSIDE User's Manual Page 26

4. Development environment

File menu item Description

Close Closes the currently active text file.

Close solution Closes the currently open solution.

Save Savesthe currentlyactivetext file to disk. If the file hasno
name yet, this command operates as “Save As”.

Save As Savesthe currentlyactivetext file to disk. Beforeoperation,
file name and path query window will appear.

Save All Saves all unsaved text files to disk.

Recent Files List of recentlyusedfiles. Selectinga file from the list will
load the file into editor.

Recent Solutions List of recentusedsolutions.Selectinga solution from the
list will close any open current solution load the selected
solution.

Exit Closes VSIDE.

4.5.2. Edit menu

See Section 4.3 for more information.

4.5.3. Project menu

Project menu item Description

Add existing item... Add anexistingitem to project.Theproperfolder for thefile
is automatically selected.

New folder Add a (virtual) folder to the project.Thesefoldersareonly
used to group similar files together.

Generate makefile GeneratesmakefilenamedMakefile_<projectname>into the
project folder.

Properties Edit project properties. See Section 4.8 for more
information.

4.5.4. Build menu

See Section 4.4 for more information.

4.5.5. Debug menu

See Section 5.1 for more information.

VSIDE User's Manual Page 27

4. Development environment

4.5.6. Windows menu

Help menu item Description

Close all documents Closes all files in integrated editor.

View <dock window name> Shows/hides <dock window>.

4.5.7. Help menu

Help menu item Description

Show help Opens an VSIDE help viewer.

About Show VSIDE copyright and version information.

4.6. New project creation

New project creation is done through “New project” dialog.

Project name is specified in the “Name” field.

Projectharddisk locationis specifiedin the “Location” field. Pressthe “Browse” buttonto invoke
directory selection dialog.

If a solutionis alreadyopen,thereis anoption to addthenewprojectunderthecurrentsolutionor

VSIDE User's Manual Page 28

4. Development environment

to close the current solution and create a new solution.

Whencreatinga newsolution,select“Createdirectoryfor solution” to placeprojectdirectoryunder
a solution directory. The solution directory namedeterminedin “New solution name” edit box.
Using this option makes sense when having several projects under the solution.

4.7. File options

Individual sourcefile building can be customizedinsteadof using the automaticbuilder. The
customoptionsareeitherto manuallyoverridethe file build commandor just excludingfile from
build.

To configureindividual file build settings,click right mousebuttonon thesourcefile's icon (under
Solutionbrowser),andselectpropertiesfrom the pop-upmenu.A new “File Options” dialog will
open.

First, selectthe project configurationyou wish to makethis change.Changesonly apply to the
project configuration that is currently selected, others remain unchanged.

Select the desired build method from the combo box next to “Build with” label. The options are:

Item Description

Automatic Use the automatic builder

VSIDE User's Manual Page 29

4. Development environment

Item Description

Custom build Custombuild commandsmustbe enteredto the
“Custom build command(s)” edit box. The
commandsare executedin the current shell as
they'rewritten here.Use CarriageReturn(CR)
to separatesseveralcommandsfrom eachother.
E.g.:
 echo “Building test.c...”<CR>
 vcc -c test.c

None (exclude from build) The file will not be processed in any way.

4.8. Project options

On the top of the dialog, configuration under modification is being shown.

It is possible to override all these settings for individual files by using file custom configurations.

Any directory name can be either absolute or relative to project's path.

4.8.1. General

This section contains the general project settings.

VSIDE User's Manual Page 30

4. Development environment

Item Description

Project type Either “Executable”or “Static Library”. Executablecontainsa
linked application,while static library is a collectionof object
files.

Target filename Filenameof a targetthat will be createdwhen the solution is
compiled.

Target directory Directory name where the target will be created.

HW Description file Hardware description file that will be passedto both C
compiler and assembler when compiling “.c” or “.asm” files.

4.8.2. C Compiler

This section contains the settings for compiling C language (.c) files.

Item Description

Include directories Adds directories to the include searchpath. Separatewith
comma (',').

Preprocessor definitions Defines a preprocessor symbol. Separate with comma (',').

Compiler warnings Add any compiler warning control flags here.

Add debug symbols If checked,debugsymbolsareaddedto objectfiles (andto any
resulting executables).Without debug symbols you cannot
debug executables at C language level.

Optimization level Defines optimization level: 0 (off) .. 6 (max)

Additional options Any optionsaddedherewill be addedto everyC compilation
command. Separate options with spaces.

4.8.3. Assembler

This section contains the settings for compiling assembly (.asm, .S) files.

Item Description

Generate List file Definesa file whereto outputa verboselisting
of the program.Leave blank if list file is not
needed.

Additional options Any optionsaddedherewill be addedto every
assembler command. Separate options with
spaces.

VSIDE User's Manual Page 31

4. Development environment

4.8.4. Linker

This sectioncontainsthe settingsfor linking object files. Thesesettingsare valid only if project
type is “Executable”.

Item Description

Library directories Adds directories to the library search path.
Separate with comma (',').

Libraries Libraries to be linked with the executable.
Separate with comma (',').

Startup module Startupmoduleobjectfilenameto belinked with
executable.

Mem Description file Memory description file to be used during
linking.

Linker command file A linker commandfile canbe usedto mapand
force sections into specific memory areasas
found in mem_desc. Use this parameterto
override the default command file.

Incremental linking Enable incremental linking. See VSLINK
documentation for more information.

Keep relocations Preventsrelocationsto bedeleted.SeeVSLINK
documentation for more information.

Strip symbols Discards any symbol information from objects.

Additional options Any optionsaddedherewill be addedto every
linker command. Separate options with spaces.

4.8.5. Debugging

These settings are valid only if project type is “Executable”.

Item Description

Mem Description file Memory description file to be used when
debugginga system.This may differ from one
used during linking.

VSIDE User's Manual Page 32

4. Development environment

4.8.6. Tools

This sectionsdefineswhich executableswill beusedfor C compiler,assembler,linker andarchiver
when building a project.

Item Description

C Compiler EXE: Executable for C compiler. Default is “vcc”.

Assembler EXE: Executable for assembler. Default is “vsa”.

Linker EXE: Executable for linker. Default is “vslink”.

Archiver EXE: Executable for archiver. Default is “vsar”.

4.9. Solution options

Solution options are divided into three tabs;

� “Configurations” - for associating active project configurations with solution

� “Cores” - for configuring debugged cores

� “Debugging”- for configuring debugging mode

On the top of the dialog, configuration under modification is being shown.

Solution options are automatically saved when they are modified.

Any directory name can be either absolute or relative.

VSIDE User's Manual Page 33

4. Development environment

4.9.1. Configurations

Eachsolutionconfigurationwill containinformation that which project configurationsareactive.
Thus the solution configurationacts like a group selectorfor active project configurations.So
switching active solution configuration from one to anotherwill switch all the active project
configurations.

The “active project configuration” list containsa list of all the projectsand the selectedproject
active configuration.

By clicking the projectname,the activeprojectcanbe changedfrom the “Project settings”group
below.

4.9.2. Cores

“Cores” tab configures the cores to be debugged.

When using HW emulation, only a single core can be defined. Simulator allows multiple cores to be

VSIDE User's Manual Page 34

4. Development environment

simulated,e.g. single core running Executable#1 and five othersrunning Executable#2. When
clocking the system all the cores receive the clock cycle.

Creatinga multicoresimulationis simple;just addnewcoresto the“Coresto bedebugged”list by
using“Add new...” or “CreateCopy”. To removecorefrom simulation,selectthecorefrom thelist
and click “Remove”.

To modify core properties,just click it's nameonce,and edit the propertiesin “Core settings”
group.

Item Description

Enabled Enablesor disablescore.Disabledcoresdo not
affect debugging process.

Core name Name of the core. Used only for GUI purposes.

Use settings from project If not “<custom>”, core target executableand
mem_desc information will be read from
selected project's settings.

If setto “<custom>”, the next two itemswill be
available.

Executable file Core executable file.

Mem description file Core mem description file.

4.9.3. Debugging

In the“Debugging”tab,thesolutiondebuggingtargetis defined.Therearetwo options;simulation
(default) and hardware-based emulation.

In casesimulationis beingselectedas the “Debug mode”, no further optionsareneeded.For the
hardware emulation, the following details must be given:

Item Description

Serial port Nameof the serialport which will be usedfor
communicating with the hardware.

Initial speed Initial speedis the serial port speedthat the
target communicates right after reset.

Target speed Serial port speed that will be used to
communicatewith the target (except for the
initialization phasewhich uses“Initial speed”
setting).

VSIDE User's Manual Page 35

4. Development environment

Item Description

Speed multiplier If high-speedserialport is available,it possible
to use this value to get serial speedsover
115200bps.

Chip type VSDSP chip type which is used in the target
board.

Clock speed VSDSPclock speedwhich is usedin the target
board.

Monitor file HW emulator'smonitorfile to beloadedinto the
target. Not applicable for VSDSP4.

4.10. Preferences

Preferences dialog contains VSIDE's user-configurable settings. The settings are described below.

VSIDE User's Manual Page 36

4. Development environment

4.10.1. General

Item Description

Beep when debugging pauses Option whethera beepsoundshould be heard
each time when debuggingpauses,e.g. after
each single step-into operation.

Windows only.

Show labels in dock windows Optionwhethera namelabelshouldbeshownin
dock window.

4.10.2. Editor

The settings under “Editor” tab affect on integrated editor's layout and functionality.

Item Description

Font Settings / Family Font family to be used.

Font Settings / Size Font height in pixels.

VSIDE User's Manual Page 37

4. Development environment

Item Description

Element C language element to be modified. On the right,
availablesettingsfor the elementare font color
and underlining.

Options / Word Wrap Option whether the editor wraps long lines to the
next line.

Options / Completion Not yet supported

Options / Parenthesis Matching Option whether the editor highlights the data
between matching parenthesis.

Indentation / Tab Size Number of empty charactersthe tab character
consists of.

Indentation / Indent Size Number of empty characters each indent
consists of.

Indentation / Keep tabs Option whether the editor should replace tab
characters with spaces.

Indentation / Auto Indent Option whether auto-indent is enabled.

VSIDE User's Manual Page 38

5. Debugging

5. Debugging

This chapterdescribeshow debuggingworks in VSIDE. This informationappliesto both software
simulation and hardware emulation.

5.1. Debug commands

Controllingthedebugprocesscanbedoneeitherby usingDebugmenu,Debugtoolbaror keyboard
shortcuts.

Debug toolbar is shown below.

The following debug operations are available:

Item Icon Keyboard
shortcut

Description

Run F5 Runs executable(s).The execution will continue
until breakpointis being hit, or Break commandis
activated.

Note: In HW emulation,it may not be possibleto
break target execution without previously set
breakpoint(s).

Break F6 Breaks execution(s). Debugging mode is not
terminated. The debugging mode.

Not currently supported with HW emulation.

Stop
debugging

SHIFT-F5 Breaks execution(s) and exits the debug mode.

With HW emulation,the executableshouldnot be
running when this command is activated.

Restart F4 Unloadscurrentexecutable(s),reloadsexecutable(s)
again, resetsthe VSDSP, and runs executable(s)
until main() is reached.

Step single
core clock

F8 Send a single clock cycle to all cores.

VSIDE User's Manual Page 39

Illustration 1: Debug toolbar

5. Debugging

Item Icon Keyboard
shortcut

Description

C-level step
into

F11 Continuesexecutionuntil the executionreachesthe
next C line, or execution moves into another
function.

C-level step
over

F10 Continuesexecutionuntil the executionreachesthe
next C line.

Currently not supported in SW simulation.

C-level step
out

SHIFT-F11 Continues execution until the current function exits.

Currently not supported in SW simulation.

Profiling
toggling

- Start / stop profiling.

For information on profiling output file, seemore
information from VS DSP SoftwareTools User’s
Manual, section 9.6.

Not supported in HW emulation.

Code display
mode

- Located in Debug toolbar.

Togglesdisplay betweenC and disassemblyview
modes:

“Show Disassembly”will alwaysshow the current
execution position by activating the disassembly
window.

“Show C source” will always show the current
executionposition by openingany active C source
files. In caseno C sourcefile is found to display
current position, disassembly view is used instead.

Core view
selector

- Located in Debug toolbar.

Selectswhich core is being displayed.This affects
to all debug windows.

Available in multi-core simulations only.

Refresh F2 Refresh all windows. Use this to refresh in
simulation mode to get up-to-date simulation status.

VSIDE User's Manual Page 40

5. Debugging

5.2. Debug windows

This section describesthe debuggingwindows. These dock windows can be shown and hid
individually by using Windows menu.

5.2.1. RTOS window

RTOS window lists all the current RTOS tasks.

Displayed task information can be seen in the picture below:

To seethe codeposition of the currenttask in editor/disassemblywindow, double-clickthe task
name.

5.2.2. Watch window

Watch window contains an user-defined list of variables to be viewed.

To enternew value to be viewed, click on “<add new...>” and type variablename,e.g. “a” or
“hexTable[10]”. The variable is then added to the list, with it's current value shown on the right.

If variablecannotbeevaluatedat thecurrentexecutionaddress,all thevariableparameterswill be
set to '?'.

VSIDE User's Manual Page 41

5. Debugging

To delete variable from the watch list, select the variable by clicking it and click “Remove”.

5.2.3. Active variables window

Active variableswindow shows C languagevariablesthat are visible at the current execution
address.

To modify variablevalue,click on the variable'sValue columnandtype a new value.New value
can be either decimal, hex value (prefixed with '0x') or other variable name/symbol.

When using HW emulation,arraysare not downloaded.Instead,the array value fields display
“<hidden>”. This is doneto speedup debuggingover serial port. Use Watch window to inspect
array contents in HW emulation mode.

VSIDE User's Manual Page 42

5. Debugging

5.2.4. Peripheral window

Peripheralsareonly supportedtogetherwith SW simulator.Peripheralsareusedto providesystem-
level simulations.

Peripheralwindow displaysperipheralstatus.EachperipheralinstancethatsupportsPeripheralGUI
API is shown here. If a peripheral doesn't use Peripheral GUI API, no tab page is shown.

Eachperipheraldefinesits own customGUI. Someof the itemsmaybeeditable,dependingon the
peripheral.

To useperipheralswith simulation,addthe requiredperipheralsto project'smem_descfiles under
PERIPHERAL section. Configured peripheral plugins must be located in VSIDE/plugins directory.

In multi-core simulations, each core will have its own peripheral instance.

See more information on peripherals from Peripheral GUI API.

5.2.5. Log window

Log window shows build and debug messages.

VSIDE User's Manual Page 43

5. Debugging

5.2.6. STDIN/STDOUT window

STDIN/STDOUTwindow displaysVSDSPcoreSTDOUT output,aswell assendskey-pressesto
STDIN stream.

If the STDOUT data grows too large, the window will cut the oldest data from the beginning.

5.2.7. Breakpoint window

Breakpoint window displays the currently set breakpoints.

Breakpointsare usedto stopprogramexecutionat requested(programmemory)positions.When
the program execution reaches the breakpoint address, the execution will be break.

Breakpointscan be addedunderdisassemblywindow (during debuggingonly), or directly at C
source lines (regardlesswhether debugging is active or not). C source line breakpointsare
automaticallyinspectedby the IDE anda breakpointwill be addedto the correspondingprogram
memory address.

VSIDE User's Manual Page 44

5. Debugging

To removebreakpoint,selectthebreakpointby clicking on its name,andthenpress“Remove” (or
press DEL key).

Breakpointscan be either active or inactive. Inactive breakpointshave no effect on program
execution.To makea breakpointinactive,click the red dot in the breakpointwindow. The red dot
will turn gray. To reactivate it, click the gray dot, and it will change red again.

VSIDE also supportsconditionalbreakpoints.You can enterC level conditionalsby clicking the
breakpoint's“Condition” field and enteringthe condition,e.g. “z!=0”. In casethe condition was
incorrect, VSIDE will show an error when the code reaches the breakpoint for the first time.

5.2.8. Command console window

Commandconsoleis the interfaceto use the traditional commandconsole.Simulator and HW
emulator both have a bit different console commands.

VSIDE User's Manual Page 45

5. Debugging

To usecommandconsole,enterthe commandsinto the edit box on the bottom of the command
consolewindow. You canusecommandhistory by usingkeyboardCURSOR-UPandCURSOR-
DOWN keys.

For a list of commandconsolecommands,consult the VSSIM chapterfrom VS_DSPSoftware
Tools User’s Manual.

5.2.9. Memory window

Memory window will display memory contents in hex and ASCII format.

Displayedmemorytype (X/Y/I) can be changedby using combobox on the top of the memory
window.

Thereareseveralwaysto changethedisplayedmemoryaddress.Addressor variablenamecanbe
enteredinto “Goto addr:” edit box. It is possibleto usehex or decimalformat, or symbolnames
(e.g. “main”).

To freely browsememory,usekeyboardcursorkeysandPAGE UP andPAGE DOWN or mouse
wheel.

To modify memorycontents,just movethe “memorycursor” (underlinedandboldedvalue)to the
required address and type new hex values using the keyboard.

5.2.10. Register window

Register window displays the current VSDSP core register values.

The registerwindow candisplay registervaluesin hex, decimalandbinary formats.Usebuttons
“H”, “D” and “B” to toggle between these.

VSIDE User's Manual Page 46

5. Debugging

To modify register values, click left mouse button on value once, and enter the new value.

5.2.11. Disassembly window

Whendebuggingmodeis activated,a disassemblytab will appearin the integratededitor. It will
also close automatically when debugging is stopped.

The codepositioncanbe changedby scrolling the window, PAGE UP andPAGE DOWN, cursor
keysor usingthemousewheel.To jump directly into certainaddress,entereitherprogrammemory
(I-page) address or function name to “View addr/function” edit box.

VSIDE User's Manual Page 47

5. Debugging

To debug code in disassembly view, select “Show disassembly” from debug toolbar. If the “Show C
source” is selected, disassembly view is only shown when C source code is not available.

You cantogglebreakpointsby clicking left mousebuttonin the areanext to the disassemblycode
(see picture above).

5.3. Simulating executables directly

It is possible to simulate executables directly without using any solution or project.

Hardware emulation is not supported with this method.

To simulateexecutables,openFile menuandselect“Open..” andthen“Executableinto simulator”.
Then selectthe appropriateexecutablefile (typically .coff file) and requiredmem_descfile. The
simulator will now open.

VSIDE User's Manual Page 48

6. Miscellaneous

6. Miscellaneous

6.1. Command line options

VSIDE supports some command line options.

For all operatingsystems,it is possibleto auto-opensolutionfile by giving thesolutionfilenameas
an command line argument.

Other files given as parameters will be opened in the editor.

All VSIDE versions also support style parameter:

� -style style, changes the GUI style. Style is one of:
* “WindowsXP” - availablein Windows XP only. Also, “Windows and buttons” setting
must be set to “Windows XP style”, locatedin Windows XP display settings(under tab
“Appearance”).
* “Windows” - Windows Classic style.
* “Motif”
* “MotifPlus”
* “CDE”
* “Platinum”
* “SGI”

The X11 version of VSIDE also supports some traditional X11 command line options:

� -geometry geometry, sets the client geometry

� -fn or -font font, definesthe applicationfont. The font should be specifiedusing an X
logical font description.

� -bg or -background color, sets the default backgroundcolor and an applicationpalette
(light and dark shades are calculated).

� -fg or -foreground color, sets the default foreground color.

� -btn or -button color, sets the default button color.

� -name name, sets the application name.

� -title title, sets the application title (caption).

� -visual TrueColor, forces the application to use a TrueColor visual on an 8-bit display.

VSIDE User's Manual Page 49

6. Miscellaneous

� -cmap, causes the application to install a private color map on an 8-bit display.

6.2. Creating new project templates

Projecttemplatesareprojectframeworksthat areusedasstartingpoint whennew projectis being
created. Available project templates are shown in “New Project” dialog.

Project template contains:

� project configuration information

� any files related to project, e.g. C source files, mem_descfiles, libraries,
documentation, etc.

Creating new project templates is simple:

� UseNew projectandselecta project templatethat resemblesthe templateproject
you want to create.

� Modify it normally with VSIDE it until it containsthe project settingsand files
you'd like to have as a template.Any project contentsshould be locatedunder
project's own directory.

� Go to operatingsystemsfile manager,and makea copy of the project folder to
(VSIDE root path)/templates/project/.Renamethe new folder to somethingthat
describes the template project.

� Under this new folder, rename the project file (with prefix “.project”) to
“template.project”.

� Open “template.project” with a text editor, and find string “[Project]” in the
beginningof the file. Underthis group,thereis a variablenamed“ Name”.Setthe
name variable to:

Name = “ $$$PROJECTNAME”

You may also want to change the target filename to :

TargetFilename = ""$$$PROJECTNAME.coff"

The new template should be now available in “New project” dialog when you next time open it!

Note: creating new solution templates is not currently supported.

VSIDE User's Manual Page 50

6. Miscellaneous

6.3. mem_desc file format

The default name for the memory descriptionfile is mem_desc, but any namecan be used,
providedthatthenameis givenwith the-m optionon thecommandline. If thememorydescription
file is not found in the currentworking directory,it is searchedfor in the directorypointedby the
VSDSP_DIR environmental variable.

The memorydescriptionfile consistsof severalpartsthat define different things: the MEMORY
section defines the general memory layout and memory types, the MIRROR section defines
possibleincompletelydecodedmemory areasor deliberatememory areamappings,the CORE
sectiondefinesclock frequencyand boot address,the PERIPHERAL sectiondefinesperipheral
register mapping, and individual peripheral instantiations configure the peripherals themselves.

6.3.1. MEMORY Section

MEMORY {
 page 0:
 int_iram: origin = 0000h, length = 1000h
 int_irom: origin = 4000h, length = 800h, option = "ROM"
 ext_imem: origin = 8000h, length = 8000h, ws = 2
 ext2_imem: origin = 10000h, length = 10000h, ws = 2
 page 1:
 int_xmem: origin = 0000h, length = 800h
 ext_xmem1: origin = 4000h, length = 4000h, ws = 2
 ext_xmem2: origin = 8000h, length = 8000h, ws = 2
 far_xmem: origin = 10000h, length = 10000h, option = "MIRROR"

 adc_mem: origin = 80000000h, length = 32, option = "MIRROR", ws = 7
 page 2:
 int_ymem: origin = 0000h, length = 800h
 int_perip: origin = 4000h, length = 400h, option = "OLDPERIPHERAL"
 host_mem: origin = 4400h, length = 400h
 ext_ymem: origin = 8000h, length = 8000h, option = "MIRROR"
 stdio: origin = 0x7000, length = 2, option = "vsstdio"
 page 3:
}

Eachmemoryentry in the memoryconfigurationfile consistsof four fields. The first one,page,
definesthe memorypagefor that entry. Thepage definition canbe omittedwhenthe pagedoes
not change.Thesecondfield definesa logical namefor theentry,e.g.int_xmem. The third field,
origin, setsthestartingaddress,andthefourth field, length, definesthe lengthof thememory
block. Start addressesand lengthsdo not currently have restrictionsexcept that they may not
overlap.

An optional field, option, may be usedto definespecialfunctionsfor memoryentries,andws
defineswaitstatesandinternal/externalaccessstatus.If thereis no ws setting,the memoryareais
considered internal.

VSIDE User's Manual Page 51

6. Miscellaneous

 Currently the following special options are available.

ROM

ROM flags a memory area as read-only.

quit

quit defines an end-address for program execution. If instructions are fetched from memory
address that has this option, the simulation is stopped with success return value. This option is
only available in page 0 (the instruction memory space).

> and <

An option starting with < defines an input file, and option starting with > defines an output
file. These options are only available in pages 1, 2, and 3. Pages 1 and 2 are data memories X
and Y, respectively. Page 3 refers to both of them, meaning that page 3 can be accessed from
both X- and Y-bus.

vsstdio

vsstdio is a special module that provides C stdio support. It must be defined into the right
location for the libc16 and libc32 libraries. The normal location is Y memory (page 1) at
0x7000.

MIRROR

MIRROR defines an area as a window to somewhere else. What is seen in the memory area is
defined in the MIRROR section.

PERIPHERAL

PERIPHERAL defines an area as a peripheral bus bridge access point. Writes are pipelined,
reads cause one waitstate. The actual peripheral register mapping is defined in the
PERIPHERAL section.

OLDPERIPHERAL

OLDPERIPHERAL defines an area as a peripheral bus bridge access point. Writes are
pipelined, reads do not cause waitstates. The actual peripheral register mapping is defined in
the PERIPHERAL section.

VSIDE User's Manual Page 52

6. Miscellaneous

6.3.2. MIRROR Section

MIRROR {
 int_yimem = LH:int_imem
}

Themirror sectiondefinesmemorymirroring. In this examplethe internalinstructionmemorycan
be accessedthrough the Y memory, in the LOW-HIGH order (the lower half of the 32-bit
instructionword in lower address,the higherhalf in higheraddress).The different mappingtypes
are:

� I map instruction memory to instruction memory
� D map data memory to data memory
� L map lower half of instruction word to data memory
� H map upper half of instruction word to data memory
� LH map lower and upper halves alternately
� SLH split memory area in two, low first, high then

If R is added, the mapping of addresses is reversed.

MIRROR {
 int_yimem = LH:int_imem, D:int_ymem
}

It is alsopossibleto specifymultiple mappingsfor onemirror area.In that casea registernamed
MEM_CTRL.mirrorname is createdandcanbemappedinto peripheraladdressspace.This register
is then usedto selectone of the mappings.The size of the registerdependson the numberof
alternative mappings.

MIRROR {
 far_xmem = LH:ext_imem
 ext_ymem = D:ext_xmem2
 adc_mem = NCO.data
}

This last exampleshowshow memory blocks that are inside peripheralscan be mappedto the
memory space using the mirror section.

6.3.3. CORE Section

CORE {
 frequency = 48.0MHz
 bootaddr = 0x4000
}

Thecoresectionsetssomeparametersfor thecore.By settinga clock frequency(or cycletime)the
simulation can show and understand 'mealtime'.

VSIDE User's Manual Page 53

6. Miscellaneous

6.3.4. PERIPHERAL Section

PERIPHERAL {
 Y:0x4000 = 15-0:INTERRUPT.enablel0
 Y:0x4002 = 15-0:INTERRUPT.enableh0
 Y:0x4004 = 15-0:INTERRUPT.origin0
 Y:0x4006 = 15-5:0,4-0:INTERRUPT.vector
 Y:0x4007 = 15-3:0,2-0:INTERRUPT.encount
 Y:0x4008 = 15-0:INTERRUPT.glob_dis
 Y:0x4009 = 15-0:INTERRUPT.glob_en

 Y:0x4020 = 15-0:IO.ddr
 Y:0x4021 = 15-0:IO.odata
 Y:0x4022 = 15-0:IO.idata
 Y:0x4023 = 15-0:IO.int_fall
 Y:0x4024 = 15-0:IO.int_rise
 Y:0x4025 = 15-0:IO.int_pend
 Y:0x4026 = 15-0:IO.set_mask
 Y:0x4027 = 15-0:IO.clear_mask
 Y:0x4028 = 15-0:IO.bit_conf
 Y:0x4029 = 15-0:IO.bit_eng0
 Y:0x402a = 15-0:IO.bit_eng1

 y:0x4040 = 3-0:UART0.ssr
 y:0x4041 = 7-0:UART0.data
 y:0x4042 = 15-8:UART0.data
 y:0x4043 = 15-8:UART0.div0,7-0:UART0.div1
 y:0x4060 = 3-0:UART1.ssr
 y:0x4061 = 7-0:UART1.data
 y:0x4062 = 15-8:UART1.data
 y:0x4063 = 15-8:UART1.div0,7-0:UART1.div1

 y:0x40a0 = 15-0:WDOG.config
 y:0x40a1 = 15-0:WDOG.reset
 y:0x40a2 = 15-0:WDOG.dummy
}

The peripheralsectiondefinesthe mappingof peripheralregistersinto memory.The memoryarea
musthavebeenalreadybeensetasidein the memorysectionby using the option PERIPHERAL
(asynchronousperipheral bus, 1 waitstate in read, pipelined write) or OLDPERIPHERAL
(synchronous peripheral bus, no waitstates).

The peripheralsmust be instantiatedwith the samenamesthat are used in the PERIPHERAL
section.The peripheralmodeldocumentation(seechapter6) tells which registersareavailablefor
each peripheral type.

6.3.5. INTERRUPT Section

INTERRUPT {
 type = vsdsp4
 interrupts = 16
}

The interrupt section configuresthe interrupt block. Dependingon the interrupt handler type,
different registers are available.

VSIDE User's Manual Page 54

6. Miscellaneous

6.3.6. Peripheral Instantiation

All otherperipheralsareconfiguredandinstantiatedsimilarly thanthe interrupthandler.A unique
name is defined as a block name, and the type setting defines the actual peripheral which is created.

IO {
 type = "stdio"
 infile = "gpioin.dat"
outfile = "gpioout.dat"
 bits = 16
 intnum = 0
 verbose = 1
}

This example instantiation createsa peripheral named IO, which is the standardVSDSP4
interruptableGPIO block and gives it someparameters.Lines that start with a hash-markare
comments.

6.4. hw_desc file format

The hardwaredescriptionfile definesthe targetVS_DSParchitecture.This file is readby both the
assembler and simulator. Architecture restrictions must be obeyed.

Below is an example of hw_desc with variable explanations:

dataword 16 // Datapath size
dataaddress 16 // Address size (<= dataword)
programword 32 // Instruction size (only 32 now)
programaddress 16 // Program address size (<= dataword)
multiplierwidth 16 // Multiplier input width (not used)
guardbits 8 // guard bits for accumulators
indexregs 8 // Number of address/modifier registers
aluregs 8 // Number of ALU registers
modifieronly 0 // 0=interchang. - I0(M1)<>I1(M0) etc.
 // 1=odd mod-only I0->I1(M0) I2->I3(M2)
 // 2=separate modif. regs I0->M0 I1->M1
loopregs 1 // loop hardware available
addressmode 3 // modulo and bitreverse available
modemask 0x077f

version 4 // 0 for version 1, 2 for v2

6.5. Included peripherals

6.5.1. INTERRUPT

This peripheral is integrated into VSIDE executable; it has no .periph file in the plugins directory.

The type of the interrupt handleris selectedin the INTERRUPT sectionwith the parametertype
from one of "vsdsp2", "mp3", or "vsdsp4".The numberof interrupt sourcesis selectablewith
interrupts.

VSIDE User's Manual Page 55

6. Miscellaneous

Name Size Description

Common Registers

glob_dis 16 global disable register

glob_en 16 global enable register

strobe0 0..16 cause interrupt bits

strobe1 1..16 cause interrupt bits, if interrupts > 16

Registers for "vsdsp2"

enable0 16 interrupt enable bits

enable1 16 interrupt enable bits, if interrupts > 8

enable2 16 interrupt enable bits, if interrupts > 16

enable3 16 interrupt enable bits, if interrupts > 24

origin0 16 interrupt origin bits

origin1 16 interrupt origin bits, if interrupts > 16

vector 5 interrupt vector

encount 16 global disable counter register

Registers for "mp3"

enable 16 interrupt enable bits

encount 16 global disable counter register

Registers for "vsdsp4"

enablel0 0..16 interrupt low enable bits

enableh00..16 interrupt high enable bits

enablel1 1..16 interrupt low enable bits, if interrupts > 16

enableh11..16 interrupt high enable bits, if interrupts > 16

origin0 0..16 interrupt origin bits

origin1 1..16 interrupt origin bits, if interrupts > 16

vector 5 interrupt vector

encount 3 global disable counter register

Interrupt requestscan be generatedfrom the simulator commandline by writing to the strobe
registers.

6.5.2. STDSERIAL

Peripheraltype "stdserial"selectsthe VSDSP4standardUART block. The modeldoesnot model
thereceptionin bit-level,althoughyou getwarningsif bytesarereceivedfasterthantheselectedbit
speed allows.

VSIDE User's Manual Page 56

6. Miscellaneous

UART0 {
 type = "stdserial"
 infile = "uart0in.dat"
outfile = "uart0out.dat"
 txint = 2
 rxint = 1
 div0 = 0
 div1 = 0
 verbose = 1
}

Parameters for "stdserial"

Name Description

infile input file, lines of time-value pairs

outfile output file, lines of time-value pairs

div0 clock divider 0 value after reset

div1 clock divider 1 value after reset

txint transmit interrupt vector number

rxint receive interrupt vector number

verboseset to nonzero for verbose output

In verbose mode changes in the UART state are also displayed on-screen.

An example of the input file:

#time value
199 0x10
#time 'char'
1800us '_'
2000us 'D'
2200us ' '
2400us 'Y'
2600us '4'
2800us '0'

Registers for "stdserial"

Name Size Description

ssr 4 status register RXORUN:RXFULL:TXFULL:TXRUN

data 8 data register

div0 8 clock divider 0

div1 8 clock divider 1

6.5.3. STDWATCHDOG

Peripheral type "stdwatchdog" selects the VSDSP4 standard watchdog block.

VSIDE User's Manual Page 57

6. Miscellaneous

WDOG {
 type = "stdwatchdog"
 clearval = 0x4ea9
}

Parameters for "stdwatchdog"

Name Description

clearval the pattern to use to reset the counter

Registers for "stdwatchdog"

Name Size Description

config 16 clock divider / protection register

reset 16 counter reset register

dumm
y

16 protection register

6.5.4. STDIO

Peripheral type "stdio" selects the VSDSP4 standard interruptable I/O block.

IO {
 type = "stdio"
 infile = "gpioin.dat"
outfile = "gpioout.dat"
 bits = 16
 intnum = 0
 verbose = 1
}

Parameters for "stdio"

Name Description

infile input file, lines time-bit.state pairs

outfile output file

bits the number of I/O bits 1..16

intnum interrupt vector number

verboseselects verbose output

In verbose mode changes in the IO state are also displayed on-screen.

An example of the input file:

#time bit=state
100 7=1
1s 7=0

VSIDE User's Manual Page 58

6. Miscellaneous

Registers for "stdio"

Name Size Description

ddr bits data direction register, 0 = input

odata bits output data register

idata bits pin state register

int_fall bits falling edge interrupt enable

int_rise bits rising edge interrupt enable

int_pend bits pending interrupts

set_mask bits 1-bits get set in odata

clear_maskbits 1-bits get cleared in odata

bit_conf 16 bit-engine 0 and 1 configuration register

bit_eng0 16 bit-engine 0

bit_eng1 16 bit-engine 1

6.5.5. FILEIN

Peripheral type "filein" selects raw input from file.

FILEIN {
 type = "filein"
 name = "file.bin"
 bit = 8
 feof = 0
}

Parameters for "filein"

Name Description

name Filename for input file

bits Byte or word reads from file: values 8 and 16 supported

feof If nonzero, end of file is checked and 0 returned on EOF

Registers for "filein"

Name Size Description

data 16 data register

6.5.6. TIMER

Peripheraltype “timer” selectsthe timer block. Note: this is not the VSDSP4standardtimer block
(stdtimer).

VSIDE User's Manual Page 59

6. Miscellaneous

TIMER0 {
 type = "timer"
 intnum = 6
 length = 32
 prediv = 0
}

Parameters for "timer"

Name Description

intnum interrupt vector number

length number of bits in the timer 1..32

prediv Selects a predivider: 0=coreclock, 1=coreclock/2, etc.

Registers for "timer"

Name Size Description

low 16 low 16 bits of the counter register

high 16 high 16 bits of the counter register

enable 1 enable bit for the counter

VSIDE User's Manual Page 60

