
VLSI
Solution y

Preliminary Document

APPLICATION NOTE

VS1053 audio i/o

Revision History

Rev. Date Author Description
1.0 2008-06-03 ToV Initial version
1.01 2008-09-23 ToV mem desc updated

Rev. 1.01 2008-09-23 Page 1(12)

VLSI
Solution y

ToV

VS1053 audio i/o Application note

VS1053 Introduction

VS1053 is an efficient audio codec chip with many audio decoders already in program
ROM. Stereo line-in and stereo DAC together with 16 KiB (4096 words) of program
RAM make this chip a highly versatile DSP platform for other audio solutions as well.

This document presents how to use audio input and audio output of the processor. There
is a c-code example included. It demonstrates how to implement an audio processing
algorithm on VS1053 evaluation board.

Getting started - Hardware

RS−232

CONTROLLER

���
���
���
���

���
���
���
���

SW1SW2 SW3

L1
M

IC

SD / MMC

SPK

MIC1

Proto A
rea

VS1053

Line IN

L2L1

CS D
I

D
O

CKOFF<−>ON

JP18
JP20

RIGHT

LEFT

GND

GND

2V8

RX

TX

AUDIO OUT

JUMPER

Figure 1: VS1053 proto board connections

For implementing own algorithms on VS1053 the prototyping board and programming
tools are required.

The prototyping board has a serial port interface for communication with PC. There are
also stereo line-in pins and a headspeaker connector on the board. To select a line-in
connector instead of microphone input as a left channel analog input, the jumper between
JP18/JP20 must be placed on the L1 position. The right channel line-in pin is always in
line-in mode. The line-in pins are marked Line IN on the board.

Rev. 1.01 2008-09-23 Page 2(12)

VLSI
Solution y

ToV

VS1053 audio i/o Application note

Getting started - Software

For compiling and linking the code, some software tools are needed. The package
vskit120.zip should contain all essential software. The software package can be down-
loaded from VLSI Solution’s www-site:

http://www.vlsi.fi/fileadmin/software/VS10XX/vskit120.zip

The contents of the vskit120 should be as follows:

vskit120 -
|
-CHANGES.txt

|
-README.txt

|
-UNPACK.txt

|
-bin--

| |
| make.exe
| mkabs.exe
| vcc.exe
| vs3emu.exe
| vsa.exe
| . . .
|
-config

| |
| hw desc
| mem desc
| mem desc.sim
|
-libc16 v4

| |
| assert.h
| ctype.h
| . . .
|
-libc16

|
-pdf--

| |
| vsdsp2 um.pdf
| vs tools.pdf
|
-src--

|
hw desc
Makefile
mem desc
. . .

Rev. 1.01 2008-09-23 Page 3(12)

VLSI
Solution y

ToV

VS1053 audio i/o Application note

There are two configuration files needed for compiling and linking code: memory descrip-
tion file mem desc and hardware configuration file hw desc.

The mem desc file defines the memory addresses which can be used for the code (in-
struction and data RAM). If there is an error in memory description file, the linker may
try to put code for example to the program or data ROM area. This results as a code
execution failure. The following mem desc file is recommended to be used:

MEMORY {
page 0:

#Program RAM
modu_int: origin = 0x23, length = 1
ram_prog: origin = 0x0050, length = 0x0fd0

page 1:
#Data X RAM
data_x: origin = 0x0800, length = 0x1000

page 2:
#Data Y RAM
data_y: origin = 0x1000, length = 0x0800
extra_y: origin = 0xeb00, length = 0x1500

}

The configuration file hw desc defines configuration parameters for the VS1053 i.e. data
and program word length in bits. The correct hw desc file should be in src directory in
vskit120 package.

All essential binaries (programs) are in bin directory of the vskit120. It would be good
idea to put the bin directory to the Windows PATH. The directory libc16 v4 is VSDSP
programming library for DSP core 4. This directory should be in the working directory.

Audio input

VS1053 has stereo line-in. The right channel is always in line-in mode. The left channel
is default as a microphone input but can be turned to line-in mode.

To turn the left channel to the mic-in mode the SCI MODE register value is modified as
follows

USEX(SCI_MODE) &= ~(1<<SCIMB_LINE); /*left=mic-in, right=line-in*/

To turn the left channel to the line-in mode the SCI MODE register value is modified as
follows

USEX(SCI_MODE) |= (1<<SCIMB_LINE); /*left=mic-in, right=line-in*/

Rev. 1.01 2008-09-23 Page 4(12)

VLSI
Solution y

ToV

VS1053 audio i/o Application note

Default mode for the left channel input is line-in.

AD sample rate is adjusted by writing to the DECIM CONTROL register. Sample rates
192 kHz, 96 kHz, 48 kHz, 24 kHz can be selected. Use defines DECIM FACTOR192K,
DECIM FACTOR96K, DECIM FACTOR48K, DECIM FACTOR24K according to de-
sired sample rate.

USEX(DECIM_CONTROL) = DECIM_ENABLE | DECIM_FACTOR48K; /*AD 48 kHz*/

In addition, the AD clock speed can be halved resulting in previous sample rates to be
divided by two. This makes also 12 kHz AD sample rate possible.

USEX(SCI_STATUS) |= (1<<SCIST_AD_CLOCK); /*AD clock 6MHz -> 3MHz */

The AD interrupt controller uses stream wr pointer to write input data to stream buffer.
It is 1024 words long 16-bit buffer. The ROM function MyGetCPairs() can be used to
read input samples:

MyGetCPairs(lineInWrPtr, 2); //Read left and right input sample

The first parameter of the funtion is a pointer to the array where to write the samples.
The second parameter is a number of samples to be read.

The ROM function StreamDiff() returns the number of samples in stream buffer. As
many 16-bit samples can be read from stream buffer. If the samples are not read fast
enough, the buffer overflows and returns to empty state. Highest possible value is 1023
(buffer full).

Audio output

VS1053 has 18-bit stereo DAC. DAC samplerate can be adjusted by ROM function:

SetHardware(2, 48000U); // Stereo, 48 kHz

Parameters for the function are number of output channels (1 or 2) and output sample
rate in Hz. Fine tuning for the DAC sample rate can be done with a 32-bit number.
The lower 16 bits are written to the register FREQCTLL and higher 4 bits to the register
FREQCTLH.

The sample rate can be counted from FREQCTL with the following formula:

Rev. 1.01 2008-09-23 Page 5(12)

VLSI
Solution y

ToV

VS1053 audio i/o Application note

fs = (FREQCTLH ∗ 65536 + FREQCTLL) ∗ 227 ∗XTALI (1)

When input clock XTALI is 12.288 MHz, adding 1 to FREQCTLL increases the sample
rate by ≈0.0916 Hz.

u_int32 baseFctl = (USEX(FREQCTLH)<<16) | USEX(FREQCTLL);
baseFctl += 10000; //increase DAC sample rate by 915.54 Hz
USEX(FREQCTLH) = (u_int16)(baseFctl >> 16);
USEX(FREQCTLL) = (u_int16)baseFctl;

For writing audio samples to DAC buffer audio buffer, the ROM function
WmaStereoCopy() is used:

WmaStereoCopy(audioSamp, 1); //Write one stereo sample pair

The first parameter is a pointer to the samples to be written. The second parameter is
a number of stereo sample pairs to be written. To check, how many samples there are
in audio buffer ready for DAC, the ROM function AudioBufFill() can be used. The
function returns the number of samples in audio buffer.

Note: WmaStereoCopy() uses sample pairs, but AudioBufFill() samples!

Note: Audio buffer size of VS1053 is 4096 samples!

Compiler, assembler, linker and emulator

Note: Files c.s and rom1053.txt can be downloaded from www.vlsi.fi

There are two additional object files required for linking c.o and rom1053.o. The file
c.o contains a jump to the funtion main(). The jump code is in fixed address 0x50
where the VS1053 starts the execution of the code. The file c.s contains also function
mymodu int.

The file c.s is compiled to the object file c.o with the following command:

vsa.exe -o c.o c.s

The file rom1053.o contains ROM symbols of VS1053 chip. The ROM symbols are
generated to the object file as follows:

Rev. 1.01 2008-09-23 Page 6(12)

VLSI
Solution y

ToV

VS1053 audio i/o Application note

mkabs.exe -o rom1053.o -f rom1053.txt

The c-code itself is compiled with VLSI c-compiler vcc.exe

vcc.exe -P130 -g -O -fsmall-code -Ilibc16_v4
-I. audio.o audio.c

The warning 130 is promoted into an error (-P130). The option -g adds symbol and line
number information, -O means optimization of the code, -fsmall-code means 16-bit code
space (65536 address limit), -I means included directories where the compiler searches
included header files (VLSI 16-bit library and working directory included). After this
compiling there should be object file audio.o in the current working directory. For further
information about VLSI c-compiler options refer to the manual vs tools.pdf chapters
2 and 10. The document is in the vskit120 package.

Object files are linked into the executable binary code for the VS1053 by VLSI linker
vslink.exe

vslink.exe -m mem_desc -k c.o audio.o rom1053.o
-o audio.bin -L ./ -Llibc16_v4/ -lc

The object files are linked with emulation link library libc.a (-lc). The current working
directory and directory libc16 v4 are included to the library search path. The memory
description file (-m mem desc) is used for linking. For further information of vslink.exe
refer to the chapters 5 and 10 in vs tools.pdf.

After linking there should be a binary file audio.bin in working directory.
To emulate the binary code on VS1053 prototyping board, connect the serial cable to
the board, turn on the power and type the following command:

vs3emu.exe -p 1 -chip vs1002b -s 9600 -e 0x50 -x 12288
-ts 115200 -l audio.bin -m mem_desc

The first parameter is a serial port number of the PC (-p 1). The VLSI chip type for
VS1053 is vs1002b (-chip vs1002b). Serial port start speed is set to 9600 bits per second
(-s) and target speed is set to 115200 bps (-ts). The emulation start address (where
the processor starts to execute code) is 0x50 (-e). The chrystal speed is 12.288 MHz (-x
12288). The binary file audio.bin is loaded (-l) and memory map mem desc is used (-m).

Emulation is started with emulator command “e”. Debug prints can be put inside the
c-code to debug the code. The VS1053 prototyping board should be reseted before the
emulator loads the code into the VS1053. Otherwise the emulator cannot connect to the
chip.

Now the audio fed into line-in should be heard from speaker connector.

Rev. 1.01 2008-09-23 Page 7(12)

VLSI
Solution y

ToV

VS1053 audio i/o Application note

Easier way - Makefile

To ease the programming of VS1053 prototyping board, the Makefile can be used. The
Makefile is a text file that is input for make.exe program. In Makefile there are rules
how to build a binary file for VS1053. When the Makefile is configured right, the only
command the user must give is simply “make”. There are dependencies on the Makefile
so, that every time the programmer changes i.e. source code and saves the c-file, the
make.exe notices this change and recompiles the source code and links the binary. The
Makefile for doing all the commands teached in previous chapter would be something like
this:

Example Makefile

VCC = vcc.exe
VCCFLAGS = -P130 -g -O -fsmall-code
INCDIR = -Ilibc16_v4 -I.
LIBDIR = -Llibc16_v4/ -L./
OBJS = c.o audio.o rom1053b.o

all: audio.bin

rom1053b.o: rom1053b.txt
mkabs -o $@ -f $<

.c.o:
$(VCC) $(VCCFLAGS) $(INCDIR) -o $@ $<

.s.o:
vsa -D ASM $(INCDIR) -o $@ $<

c.o: c.s

audio.o: audio.c

audio.bin: $(OBJS)
vslink -m mem_desc -k $(OBJS) -o $@ $(LIBDIR) -lc

clean:
del -f *.o *.coff *~ \#* audio.a

In the beginning of the Makefile there are variable initializations. When the variable is
used it is preceded by dollar sign and the variable name is bracketed.

Bare make command does whatever is after “all:”. In this case the target is audio.bin
file. There can be more than one target. The target to be build can be given as a

Rev. 1.01 2008-09-23 Page 8(12)

VLSI
Solution y

ToV

VS1053 audio i/o Application note

parameter for make.exe. For example “make rom1053b.o” builds only the object file
rom1053b.o. The rule for building .o files from .c files is

$(VCC) $(VCCFLAGS) $(INCDIR) -o $@ $<

which means

vcc.exe -P130 -g -O -fsmall-code -Ilibc16_v4 -I. -o *.o *.c

With “make clean” all temporary files can be deleted in the current working directory.

Example c-code

Our c-code example uses 48 kHz input (decimator) sample rate and 48 kHz DAC sample
rate. Audio stream is read to the lineInBuf ring buffer. In while loop the processing
mode can be selected. There is either direct loopback from AD to DA or batch conversion
of zeroing lower byte of 16-bit samples.

/*==*/

/*==================== audio.c ==========================*/

/*===*/

//#include <stdio.h>

#include <string.h>
//#include <stdlib.h>

#include <vstypes.h>

#define BLOCKSIZE 64 //Number of stereo samples processed in one loop round

#define SCI MODE 0xC000
#define SCI STATUS 0xC001
#define SCI CLOCKF 0xC003
#define SCI AICTRL0 0xC00C
#define SCI AICTRL1 0xC00D
#define SCI AICTRL2 0xC00E
#define SCI AICTRL3 0xC00F
#define DECIM FACTOR24K 6 // 24 kHz f256

#define DECIM FACTOR48K 4 // 48 kHz f128

#define DECIM FACTOR96K 2 // 96 kHz f64

#define DECIM FACTOR192K 0 //192 kHz f32

#define DECIM ENABLE 1
#define DECIM CONTROL 0xc042
#define SCIST APDOWN1 2 /* Analog internal */

#define SCIST APDOWN2 3 /* Driver */

#define SCIMB LINE 14
#define INT ENABLE 0xC01A /* RW */

#define INT EN DAC 0
#define INT EN MODU 3
#define AUDIO BUFFER SZ 4096

Rev. 1.01 2008-09-23 Page 9(12)

VLSI
Solution y

ToV

VS1053 audio i/o Application note

#define STREAM BUFFER SZ 1024

auto void SetClockFromSpi(void);
auto void SetHardware(register s int16 channels, register u int16 rate);
auto s int16 WmaStereoCopy(s int16 *buf, s int16 cnt);
auto void MyGetCPairs(register i0 y u int16 *p, register a0 s int16 n);
extern s int16 (*applAddr)(s int16 register i0 **d,

s int16 register a1 mode,
s int16 register a0 n);

void Disable(void); /* NOT auto */

void Enable(void); /* NOT auto */

extern u int16 y uartByteSpeed;
auto s int16 StreamDiff(void);
auto s int16 AudioBufFill(void);
extern s int16 y audio buffer[];
volatile extern s int16 y * audio wr pointer;
volatile extern s int16 y * audio rd pointer;
extern u int16 stream buffer[];
volatile extern u int16 x * y stream wr pointer;
volatile extern u int16 x * y stream rd pointer;

/*

Called before HALT, i.e. when there is nothing else to do.
Either there is not enough data in stream buffer, or
the audio buffer is full.

*/
void UserHook(void) {
}

void main(void) {
s int16 audioSamp[2*BLOCKSIZE];
s int16 y lineInBuf[2*BLOCKSIZE];

s int16 i = 0;
Disable(); //Don’t allow interrupts yet

/* zero applAddr so we are not called again */

applAddr = 0;

/* must disable analog powerdown if it isn’t already! */

USEX(SCI STATUS) &= ∼((1<<SCIST APDOWN1) | (1<<SCIST APDOWN2));

/*==*/

/*= Turn left analog input to line-in mode =*/

/*==*/

#if 1
USEX(SCI MODE) |= (1<<SCIMB LINE); /*left=line-in, right=line-in*/

#endif

/*==*/

/*= Set uart speed for serial port communication =*/

/*==*/

uartByteSpeed = 11520U;

Rev. 1.01 2008-09-23 Page 10(12)

VLSI
Solution y

ToV

VS1053 audio i/o Application note

/*======================*/

/*= Set DSP core clock =*/

/*======================*/

USEX(SCI CLOCKF) = 0x6000; /* 3.0x 12.288MHz */

//USEX(SCI CLOCKF) = 0x8000; /* 3.5x 12.288MHz */

//USEX(SCI CLOCKF) = 0xa000; /* 4.0x 12.288MHz */

//USEX(SCI CLOCKF) = 0xc000; /* 4.5x 12.288MHz */

//USEX(SCI CLOCKF) = 0xe000; /* 5.0x 12.288MHz */

SetClockFromSpi();

USEX(SCI AICTRL1) = 1024; /*autogain==0, 1x==1024, 0.5x==512 etc.*/

USEX(SCI AICTRL3) = 0x0004; /*Joint stereo (common gain). Linear pcm*/

//adjust AD sample rate

USEX(DECIM CONTROL) = DECIM ENABLE | DECIM FACTOR48K; /*AD sample rate is 48 kHz*/

#define HALVE AD CLOCK 0 //Makes 12 kHz AD sample rate possible (24 kHz/2)

#if HALVE AD CLOCK
USEX(SCI STATUS) |= (1<<SCIST AD CLOCK); /*Halves AD clock 6MHz -> 3MHz */

#endif

SetHardware(2, 48000U); /*DA sample rate in Hz*/

/* ’Empty’ stream buffer*/

stream rd pointer = stream wr pointer = (u int16 x *)&stream buffer[0];
USEX(INT ENABLE) |= (1<<INT EN MODU)/*AD*/ | (1<<INT EN DAC);

/* Set audio buffer read and write pointers */

audio rd pointer = audio buffer;
audio wr pointer = audio buffer + 2*BLOCKSIZE;

//Write zero to audio buffer. Prevent unwanted samples to be played.

memsetY(audio buffer, 0, AUDIO BUFFER SZ);

Enable(); //allow interrupts (DAC, AD,...)

while (1) { //Main loop

#if 1
USEX(SCI MODE) |= (1<<SCIMB LINE); /*left=line-in, right=line-in*/

#endif
if(StreamDiff() > BLOCKSIZE*2) {

/*Read input samples*/

MyGetCPairs((y u int16 *)lineInBuf, 2*BLOCKSIZE);
#if 0 //do some sample processing

{
int i;
y s int16 *lp = lineInBuf;

s int16 *sp = audioSamp;
for(i=0;i<BLOCKSIZE*2;i++) {

*sp++ = *lp++ & 0xff00U; //turn LSB to zero

}
}

#else //just copy samples (loopback)

/*Copy samples from y buffer to x buffer*/

memcpyYX(audioSamp, lineInBuf, sizeof(audioSamp));

Rev. 1.01 2008-09-23 Page 11(12)

VLSI
Solution y

ToV

VS1053 audio i/o Application note

#endif

/*Write ouput sample pairs*/

WmaStereoCopy(audioSamp, BLOCKSIZE);
}

}
}

Rev. 1.01 2008-09-23 Page 12(12)

