
PRELIMINARY DOCUMENT

VS1000 PROGRAMMER’S GUIDE

VSMPG “VLSI Solution Audio Decoder”

Project Code: Support.VS1000
Project Name: VSMPG

All information in this document is provided as-is without warranty. Features are
subject to change without notice. This document may contain mistakes and typ-
ing errors. Please contact VLSI if you suspect an error.

Revision History
Rev. Date Author Description

0.1 2007-03-23 PKP Preliminary version
0.11 2007-04-16 PKP Minor adjustments
0.12 2007-06-28 PKP Additions for version 1.33 of developer tools
0.14 2007-06-28 PKP VS1000B minor update
0.15 2008-06-30 POj vskit1.34: lib and include merged
0.16 2009-07-06 POj USB register map fixed.
0.20 2011-10-04 POj More NF peripheral information.

Rev. 0.20 2011-10-04 Page 1(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

Who needs to read this document

This document describes the programming interface, register map and and integrated
peripherals of the VS1000. It’s primarily meant for those that wish to add to the func-
tionality of the ROM code in VS1000 or design completely new software for the chip.

If you use the USB...

The example “Changing the USB descriptors” should be read by all vendors that have
USB functionality in their end-products. Although the ROM software is functional as is,
all such vendors should change the USB descriptors to identify the vendor and product
ID’s correctly.

Additionally, all vendors that ship devices conforming to the USB Mass Storage Class
specification should change the USB descriptors and create a unique serial number for
each device. Instructions on how to do this are given in the example.

VS1000B/C

VS1000B is an updated version of VS1000A. VS1000B has many small internal fixes
and some additions that remove some of the restrictions in VS1000A. It is mainly com-
patible with VS1000A, but code needs to be recompiled for VS1000B. This guide was
originally written for VS1000A, so it may not show all of the extra features in VS1000B.
VS1000C is another production test version of VS1000B with identical ROM.

VS1000D

VS1000D includes bug fixes, but is fully backwards-compatible with VS1000C. All soft-
ware works without recompilation, so VS1000D can be used as a direct replacement.
The patches required for VS1000C are no longer necessary, which can save a bit of
code space.

The most important VS1000D changes:

• Code can be loaded and executed when in USB RAM disk mode without
detaching the device.

• Default 3 V IO voltage setting reduced from 3.6 V to 3.3 V (control value 31 to 27).

• SCSI supports the full 32-bit block address (2048GB).

• BusyWait1() now waits 1 ms at 12 MHz clock.

• Time to enter low-power pause mode doubled.

• Ignores subdirectories in FAT12 disks.

• RAMDISK label changed to VS1000D_RAM to make it possible to detect VS1000D.

• USB descriptors, including device ID is the same as with VS1000B.

• Fixed-width Latin-1 font (7x8 pixels) and 8-bit bit-reverse table added to YROM.

All new code should be written for VS1000D.

Rev. 0.20 2011-10-04 Page 2(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

Contents

Introduction 2

Table of Contents 3

1 Introducing the VS1000 7

2 VS_DSP Basics 8

3 VS1000 RAM Memory Map 9

4 VS1000 Integrated Peripherals 10

5 VS1000 Register Map and Frequently Used Tables 11

6 Software Tools 16
6.1 vcc . 16
6.2 vslink . 16
6.3 vs3emu . 16
6.4 coff2spiboot . 16
6.5 coff2nandboot . 17
6.6 makenandimage (required for VS1000A only) 17

7 Examples 18
7.1 Hello, World! . 18

7.1.1 Compiling . 18
7.1.2 Linking . 19
7.1.3 Loading . 19
7.1.4 Note . 20
7.1.5 Input and Output . 20

7.2 Making the LEDs blink . 22
7.3 Adjusting the Player User Interface . 23
7.4 Hooking custom storage controller . 25

7.4.1 ReadDiskSector is for reading only 26
7.5 Setting your own USB descriptors . 29

7.5.1 Descriptor data format . 29

8 Booting from SPI EEPROM 32
8.0.2 Using a VS1000 Developer Board as an eeprommer 32

9 Booting from NAND FLASH 36
9.1 Nand Flash startup sequence and structure 36
9.2 Preparing a nand flash image . 37
9.3 Using the VS1000 Demostration/Developer Board as a nand flash writer . 38

10 Using an external display 40

11 Peripheral documentation 41

Rev. 0.20 2011-10-04 Page 3(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

12 VS1000 System Controller 41
12.1 General . 41
12.2 Registers . 41

12.2.1 SCI_SYSTEM: System Power and Clock Control 41
12.2.2 USB powering . 42
12.2.3 SCI_STATUS: System Flags . 42
12.2.4 USB detection . 42

12.3 Conserving Power . 43
12.4 I/O Pin Routing . 44
12.5 VS1000 ROM code usage . 44

13 PLL controller v1.0 2006-05-10 45
13.1 General . 45
13.2 DAC Interpolator control . 45
13.3 Registers . 45

13.3.1 Interpolator Rate (low part) . 45
13.3.2 Interpolator Rate (high part) and PLL control 46

13.4 Overview of VS1000 Clocking . 47
13.5 VS1000 ROM code usage . 48

14 Interruptable General Purpose IO (VS1000) v1.0 2002-04-23 49
14.1 General . 49
14.2 Registers . 49

14.2.1 Data Direction GPIOx_DDR . 49
14.2.2 Output Data GPIOx_ODATA . 49
14.2.3 Input Data GPIOx_IDATA . 50
14.2.4 Falling Edge Interrupt Enable GPIOx_INT_FALL 50
14.2.5 Rising Edge Interrupt Enable GPIOx_INT_RISE 50
14.2.6 Interrupt Pending Source GPIOx_INT_PEND 50
14.2.7 Data Set Mask GPIOx_SET_MASK 50
14.2.8 Data Clear Mask GPIOx_CLEAR_MASK 51
14.2.9 Bit Engine Config GPIOx_BIT_CONF 51
14.2.10Bit Engine 0 Read/Write GPIOx_BIT_ENG0 51
14.2.11Bit Engine 1 Read/Write GPIOx_BIT_ENG1 51

14.3 VS1000 GPIO Pin Mappings . 52
14.4 VS1000 ROM code usage . 52

15 Interrupt Controller v1.0 2002-04-23 54
15.1 Registers . 54

15.1.1 Enable INT_ENABLE[L/H][0/1] . 55
15.1.2 Origin INT_ORIGIN[0/1] . 55
15.1.3 Vector INT_VECTOR . 56
15.1.4 Enable Counter INT_ENCOUNT 56
15.1.5 Global Disable INT_GLOB_DIS . 56
15.1.6 Global Enable INT_GLOB_EN . 56

15.2 VS1000 Interrupt Sources . 57
15.3 VS1000 ROM code usage . 57

16 SPI v1.3 2005-06-09 58

Rev. 0.20 2011-10-04 Page 4(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

16.1 General . 58
16.2 The SPI Block . 59

16.2.1 Master Mode . 59
16.2.2 Slave Mode . 60

16.3 Registers . 61
16.3.1 Main Configuration SPIx_CONFIG 61
16.3.2 Clock Configuration SPIx_CLKCONFIG 62
16.3.3 Status SPIx_STATUS . 63
16.3.4 Data SPIx_DATA . 63
16.3.5 SSI Synchronization SPIx_FSYNC 64

16.4 Interrupts . 64
16.5 Changes from 1.2 . 64
16.6 VS1000 ROM code usage . 65
16.7 Effect of Clock Multiplier . 65

17 Byte-wide bus/Nand Flash controller v1.0 2006-05-10 66
17.1 General . 66
17.2 Block Diagram . 67
17.3 Registers . 68

17.3.1 Control register . 68
17.3.2 Line and Column parity registers 68
17.3.3 Data register . 69
17.3.4 Interface control towards physical pins 69
17.3.5 Interface control towards DSP . 70
17.3.6 ECC counter register . 70

17.4 Timing . 71
17.5 VS1000 ROM code usage . 75

17.5.1 Nand Flash access methodology 75

18 Timers v1.0 2002-04-23 76
18.1 General . 76
18.2 Registers . 76

18.2.1 Configuration TIMER_CONFIG . 76
18.2.2 Configuration TIMER_ENABLE . 77
18.2.3 Timer X Startvalue TIMER_Tx[L/H] 77
18.2.4 Timer X Counter TIMER_TxCNT[L/H] 77

18.3 Interrupts . 77
18.4 VS1000 ROM code usage . 77

19 UART v1.11 2007-03-16 78
19.1 General . 78
19.2 Registers . 78

19.2.1 Status UARTx_STATUS . 78
19.2.2 Data UARTx_DATA . 79
19.2.3 Data High UARTx_DATAH . 79
19.2.4 Divider UARTx_DIV . 79

19.3 Interrupts and Operation . 79
19.4 VS1000 ROM code usage . 80

Rev. 0.20 2011-10-04 Page 5(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

20 Universal Serial Bus Controller v1.0 2006-01-05 81
20.1 General . 81
20.2 Registers . 81

20.2.1 USB_CONFIG - USB Device Config 0xC080 82
20.2.2 USB_CONTROL - USB Device Control 0xC081 82
20.2.3 USB_STATUS - USB Device Status 0xC082 83
20.2.4 USB_RDPTR - Receive buffer read pointer 0xC083 83
20.2.5 USB_WRPTR - Receive buffer write pointer 0xC084 83
20.2.6 USB_EP_SENDn - EPnIN Transmittable Packet Info 0xC088..0xC08B 84
20.2.7 USB_EP_STn - Endpoint flags EPnIN and EP0nUT 0xC090..0xC093 84

20.3 Receiving Packets from PC (EP0OUT, EP1OUT, ... , EP3OUT) 85
20.3.1 Reception . 85
20.3.2 Sending Packet to PC (EP0IN, EP1IN, ... , EP3IN) 86
20.3.3 How to know that the PC is expecting data 86
20.3.4 Stalling . 86

20.4 VS1000 ROM code usage . 87
20.4.1 Augmenting the ROM functionality 88
20.4.2 Hooking: Example . 89
20.4.3 Used memory areas . 89

21 Watchdog v1.0 2002-08-26 90
21.1 General . 90
21.2 Registers . 90
21.3 VS1000 ROM code usage . 90

Rev. 0.20 2011-10-04 Page 6(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

1 Introducing the VS1000

VS1000 is a complete DSP system-on-chip (SoC) that can be used to implement a mul-
titude of applications such as a single-chip Ogg Vorbis player. VS1000 contains a high-
performance low-power DSP core VS_DSP4, NAND-FLASH interface, Full Speed USB
port, general purpose I/O pins, SPI, UART, as well as a high-quality variable-sample-rate
stereo DAC, and an earphone amplifier and a common voltage buffer.

Reference

Regulator

Regulator

Regulator

Common

Voltage

Driver

Voltage

Monitor

Stereo

Earphone

Driver

Stereo

DAC

AVDD1

AVDD2

AVDD3

Serial

Data/

Control

Interface

UART

Clock

NAND

Flash

Interface/

General IO

<1.6VUSB

X RAM

X ROM

Y RAM

Y ROM

I RAM

I ROM

VSDSP4

processor

USBP

USPN

XCS/GPIO1[0]

SCLK/GPIO1[1]

SI/GPIO1[2]

SO/GPIO1[3]

RX/GPIO1[5]

TX/GPIO1[4]

XTALO

XTALI

Data/

GPIO0[0...7]

Control/

GPIO0[8...14]

XRESETTEST

IOVDD

AVDD

CVDD

IOVDD1

IOVDD2

PWRBTNVHIGHRCAPCBUFRIGHTLEFT

reset

Figure 1: VS1000 Block Diagram

Rev. 0.20 2011-10-04 Page 7(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

2 VS_DSP Basics

At VS1000’s core is the VS_DSP4 signal processor. It has a 16-bit Harward architecture
with three separate 16-bit address spaces: X and Y space for data and I space for
instructions (running code). All of these spaces have both ROM and RAM. In addition,
X and or Y spaces can occupy special function registers for peripheral devices.

X memory Y memory

PROGRAM
CONTROL

PC

Program
memory

VS_DSP CORE

DATAPATH

arithmetic
registers

P register

ALU

X and Y
memory

 ADDRESS
CALCULATION

address
registers

Y
 a

d
d
re

s
s

 A

L
U

X
 a

d
d
re

s
s

 A

L
U

control
registers

decode
 logic

Peripheral
interface

PLL clock
generator

Peripheral
devices

Interrupt
arbitrator

Boot loader

B
u
s
 s

w
it
c
h

Figure 2: VS_DSP General Architecture

Most of the features of the VS_DSP processor can be accessed by using standard C
language, without any specific VS_DSP knowledge. But if you need to develop really
powerful DSP algorithms, use the 40-bit datapath, control the pipeline and take the max-
imum out of the parallel X, Y and I buses, you need to study the VS_DSP architecture
and use assembly language.

The VS_DSP4 architecture manual is included in the VS1000-specific command-line
tools package (vskit140.zip), and also in VSIDE releases. Both packages are down-
loadable from VLSI Solution’s website (www.vlsi.fi).

Rev. 0.20 2011-10-04 Page 8(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

3 VS1000 RAM Memory Map

0000

3800

0400

0800

0c00

1000

1400

1800

1c00

2000

2400

2800

2c00

3000

3400

3c00

4000

mallocAreaX

System variables

(Vorbis heap)

audio buffer

mallocAreaY

IMDCT workspace

Y RAM (16−bit)

System Y

variables

User Y statics

Static user variables

IMDCT workspace

Vorbis

workspace

1A00

1B32

1BFF

1F85

X RAM (16−bit)

USB Receive

USB Send

4096 words
(8192 bytes) (8192 bytes)

4096 words

2K words (4K bytes)

I RAM (32−bit)

Interrupt vector (80 words)

USER CODE
1968 words = 7872 bytes

Reserved user static memory: 7872 bytes I + 2240 bytes X + 412 bytes Y, total: 10524 bytes

9216 words
(18432 bytes)

ing vorbis and disk cache,
when USB is connected)

(Vorbis heap when play−

Total stack space: 1024 bytes X + 1024 bytes Y, total: 2048 bytes (for user and system)
Total RAM space: 26624 bytes X + 32768 bytes Y + 8192 bytes I, total: 67584 bytes

stack space and function local variables

Figure 3: VS1000B RAM layout

While playing Ogg Vorbis audio the memory areas available for user are 0x1fa0 to 0x23ff
(1120 words) in X data memory and 0x1b32 to 0x1bff (206 words) in Y data memory.
These areas are included in the default memory description file (mem_desc.vs1000), so
linker can allocate variables into those memory areas.

More memory can be used as temporary storage when audio is not being decoded.

Rev. 0.20 2011-10-04 Page 9(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

4 VS1000 Integrated Peripherals

VS1000 contains several integrated peripherals. They are controlled by memory-mapped
special function registers. From the programmer’s point of view this means reading and
writing special memory locations. The peripheral registers in VS1000 are located in the
X address space.

VS1000 chip has the following integrated peripherals:

• 21 GPIO pins multiplexed with peripherals, each capable of generating an interrupt

• SPI port with master/slave operation and programmable Frame Sync

• UART port with programmable bit rate and framing error detection

• USB port with 12 Mbit/s signaling rate and 4 KiB of buffer memory

• Digital-to-Analog converter and integrated earphone driver

• Byte-wide Bus / Nand Flash controller with fast 32-byte buffer and ECC calculation

• 2 32-bit timers with shared master clock divider

• Interrupt controller, 11 interrupt sources

• 3 programmable linear regulators for generating analog, I/O and core voltages

• Internal oscillator for external crystal, can also use external oscillator

• Integrated Clock Generator with PLL and clock multiplier and low-speed modes

• Watchdog timer

The VS1000 has 76 KiB of program ROM and 8 KiB of program RAM. While the latter
might seem like a small amount, note that the ROM code contains many useful rou-
tines, interfaces and tables the RAM code can access. Many internal functions can be
replaced or augmented by hooking a handler vector of a ROM routine.

The amount of data RAM available varies depending on the application. If Vorbis playing
is not used, it can be over 50 KiB. For programs that do play Vorbis files, at least 2652
bytes can be used when Vorbis files are playing.

The complete peripheral documentation is in its own chapter.

Rev. 0.20 2011-10-04 Page 10(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

5 VS1000 Register Map and Frequently Used Tables

VS1000 Peripheral Register Map
Address Register Function
0xC000 SCI_SYSTEM System Controller control
0xC001 SCI_STATUS System Controller control and status flags
0xC010 GPIO0_MODE GPIO(0)/Peripheral(1) function for port 0 pins
0xC011 GPIO1_MODE GPIO(0)/Peripheral(1) function for port 1 pins
0xC012 DAC_VOL Digital-to-Analog Converter Volume
0xC013 FREQCTLL Interpolator Frequency low part
0xC014 FREQCTLH Interpolator Frequency high part
0xC015 DAC_LEFT DAC Left Channel
0xC016 DAC_RIGHT DAC Right Channel
0xC020 WDOG_CONFIG Watchdog Config
0xC021 WDOG_RESET Watchdog Reset
0xC022 WDOG_DUMMY Watchdog dummy register
0xC028 UART_STATUS Serial Port Status
0xC029 UART_DATA Serial Port Data byte
0xC02A UART_DATAH Serial Port Data byte shifted 8 bits left
0xC02B UART_DIV Serial Port baudrate generator divider
0xC030 TIMER_CONFIG Timer 0 and 1 Configuration
0xC031 TIMER_ENABLE Timer 0 and 1 Enable/Disable
0xC034 TIMER_T0L Low 16 bits of Timer 0 reload value
0xC035 TIMER_T0H High 16 bits of Timer 0 reload value
0xC036 TIMER_T0CNTL Low 16 bits of Timer 0 current value
0xC037 TIMER_T0CNTH High 16 bits of Timer 0 current value
0xC038 TIMER_T1L Low 16 bits of Timer 1 reload value
0xC039 TIMER_T1H High 16 bits of Timer 1 reload value
0xC03A TIMER_T1CNTL Low 16 bits of Timer 1 current value
0xC03B TIMER_T1CNTH High 16 bits of Timer 1 current value
0xC040 GPIO0_DDR Port 0 Data Direction (“1”=output)
0xC041 GPIO0_ODATA Port 0 Output Data
0xC042 GPIO0_IDATA Port 0 Input Data (pin state)
0xC043 GPIO0_INT_FALL Falling Edge Interrupt Enable
0xC044 GPIO0_INT_RISE Rising Edge Interrupt Enable
0xC045 GPIO0_INT_PEND Interrupt Pending
0xC046 GPIO0_SET_MASK Set output bits high
0xC047 GPIO0_CLEAR_MASK Set output bits low
0xC048 GPIO0_BIT_CONF Bit router engine 0 and 1 configuration
0xC049 GPIO0_BIT_ENG0 Bit router engine 0 data register
0xC04A GPIO0_BIT_ENG1 Bit router engine 1 data register

Rev. 0.20 2011-10-04 Page 11(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

VS1000 Peripheral Register Map (continued)
Address Register Function
0xC050 GPIO1_DDR Port 1 Data Direction (“1”=output)
0xC051 GPIO1_ODATA Port 1 Output Data
0xC052 GPIO1_IDATA Port 1 Input Data (pin state)
0xC053 GPIO1_INT_FALL Falling Edge Interrupt Enable
0xC054 GPIO1_INT_RISE Rising Edge Interrupt Enable
0xC055 GPIO1_INT_PEND Interrupt Pending
0xC056 GPIO1_SET_MASK Set output bits high
0xC057 GPIO1_CLEAR_MASK Set output bits low
0xC058 GPIO1_BIT_CONF Bit router engine 0 and 1 configuration
0xC059 GPIO1_BIT_ENG0 Bit router engine 0 data register
0xC05A GPIO1_BIT_ENG1 Bit router engine 1 data register
0xC060 NFLSH_CTRL Byte-wide Bus (Nand Flash) Controller Control
0xC061 NFLSH_LPL Calculated Line Parity for 512-byte block
0xC062 NFLSH_CP_LPH Calculated Column Parity for 512-byte block
0xC063 NFLSH_DATA Buffer Data read/write register
0xC064 NFLSH_NFIF Buffer-to-Physical Interface Control
0xC065 NFLSH_DSPIF Buffer-to-DSP Interface Control
0xC066 NFLSH_ECC_CNT Error Correction Code counter
0xC068 SPI0_CONFIG Serial Peripheral Interface Configuration
0xC069 SPI0_CLKCONFIG SPI Clock Configuration
0xC06A SPI0_STATUS SPI Status
0xC06B SPI0_DATA SPI Data read/write register
0xC06C SPI0_FSYNC Frame Sync output bit image
0xC070 INT_ENABLEL Low Priority Interrupt Enable
0xC072 INT_ENABLEH High Priority Interrupt Enable
0xC074 INT_ORIGIN Interrupt Request Status
0xC076 INT_VECTOR Last generated vector
0xC077 INT_ENCOUNT Interrupt disable level counter
0xC078 INT_GLOB_DIS Disable interrupts (increase ENCOUNT)
0xC079 INT_GLOB_EN Enable interrupts (decrease ENCOUNT)
0xC080 USB_CONFIG USB Device Config
0xC081 USB_CONTROL USB Device Control
0xC082 USB_STATUS USB Device Status
0xC083 USB_RDPTR Receive buffer pointer (PC→ Device)
0xC084 USB_WRPTR Transmit buffer pointer (Device→ PC)
0xC088 USB_EP_SEND0 EP0IN Transmittable Packet Info
0xC089 USB_EP_SEND1 EP1IN Transmittable Packet Info
0xC08A USB_EP_SEND2 EP2IN Transmittable Packet Info
0xC08B USB_EP_SEND3 EP3IN Transmittable Packet Info
0xC090 USB_EP_ST0 Flags for endpoints EP0IN and EP0OUT
0xC091 USB_EP_ST1 Flags for endpoints EP1IN and EP1OUT
0xC092 USB_EP_ST2 Flags for endpoints EP2IN and EP2OUT
0xC093 USB_EP_ST3 Flags for endpoints EP3IN and EP3OUT

Rev. 0.20 2011-10-04 Page 12(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

VS1000 Interrupt Sources
Name Vector Source
INTV_DAC 0 Digital to Analog Converter
INTV_SPI 1 Serial Peripheral Interface
INTV_USB 2 Universal Serial Bus
INTV_NFLSH 3 Byte-wide Bus (Nand Flash) Controller
INTV_TX 4 UART Transmit
INTV_RX 5 UART Receive
INTV_TIM0 6 Timer 0 underflow
INTV_TIM1 7 Timer 1 underflow
INTV_REGU 8 Input Voltage Monitor
INTV_GPIO0 9 I/O Pin Controller 0
INTV_GPIO1 10 I/O Pin Controller 1

VS1000 I/O Controller 0 pins and peripheral functions
GPIO Ident LQFP

Pin
Function

GPIO0[0] NFDIO0 2 Nand-flash IO0 / General-purpose IO Port 0, bit 0
GPIO0[1] NFDIO1 3 Nand-flash IO1 / General-purpose IO Port 0, bit 1
GPIO0[2] NFDIO2 4 Nand-flash IO2 / General-purpose IO Port 0, bit 2
GPIO0[3] NFDIO3 5 Nand-flash IO3 / General-purpose IO Port 0, bit 3
GPIO0[4] NFDIO4 9 Nand-flash IO4 / General-purpose IO Port 0, bit 4
GPIO0[5] NFDIO5 10 Nand-flash IO5 / General-purpose IO Port 0, bit 5
GPIO0[6] NFDIO6 11 Nand-flash IO6 / General-purpose IO Port 0, bit 6
GPIO0[7] NFDIO7 12 Nand-flash IO7 / General-purpose IO Port 0, bit 7
GPIO0[8] NFRDY 13 Nand-flash READY / General-purpose IO Port 0, bit 8
GPIO0[9] NFRD 14 Nand-flash RD / General-purpose IO Port 0, bit 9
GPIO0[10] NFCE 15 Nand-flash CE / General-purpose IO Port 0, bit 10
GPIO0[11] NFWR 20 Nand-flash WR / General-purpose IO Port 0, bit 11
GPIO0[12] NFCLE 16 Nand-flash CLE / General-purpose IO Port 0, bit 12
GPIO0[13] NFALE 17 Nand-flash ALE / General-purpose IO Port 0, bit 13
GPIO0[14] CS2 21 General-purpose IO Port 0, bit 14

VS1000 I/O Controller 1 pins and peripheral functions
GPIO Ident LQFP

Pin
Function

GPIO1[0] XCS 22 SPI XCS / General-Purpose I/O Port 1, bit 0
GPIO1[1] SCLK 23 SPI CLK / General-Purpose I/O Port 1, bit 1
GPIO1[2] SI 24 SPI MISO / General-Purpose I/O Port 1, bit 2
GPIO1[3] SO 25 SPI MOSI / General-Purpose I/O Port 1, bit 3
GPIO1[4] TX 26 UART TX / General-Purpose I/O Port 1, bit 4
GPIO1[5] RX 27 UART RX / General-Purpose I/O Port 1, bit 5

Rev. 0.20 2011-10-04 Page 13(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

VS1000 Handler Vectors (Services)
Address Vector Name Default Handler Remark
0x0000 IdleHook UserInterfaceIdleHook CPU idle
0x0002 InitFileSystem FatInitFileSystem Init storage
0x0004 OpenFile FatOpenFile Open file
0x0006 ReadFile FatReadFile Read file
0x0008 Seek FatSeek Set file position
0x000a Tell FatTell Get file position
0x000c ReadDiskSector MapperReadDiskSector Read 512 bytes
0x000e StereoCopy OldStereoCopy Output samples
0x0015 Sine Test SinTest Sine test
0x0016 Memory Test MemTest Memory test 1
0x0017 Memory Test MemTests Memory tests
0x0018 SetRate RealSetRate Set sample rate
0x001a PowerOff RealPowerOff Close and shutdown
0x001c PlayCurrentFile RealPlayCurrentFile Start playing file
0x001e USBHandler RealUSBHandler USB Task

VS1000 Handler Vectors (Interrupt Controller)
Address Vector Name Default Handler Remark
0x0020 DAC Interrupt dac_int Update sample
0x0021 SPI Interrupt _int (Default Null Handler)
0x0022 USB Interrupt _int (Default Null Handler)
0x0023 Nand Flash Interrupt _int (Default Null Handler)
0x0024 TX Interrupt _int (Default Null Handler)
0x0025 RX Interrupt rx_int ROM Monitor
0x0026 Timer 0 Interrupt tim0_int System timer
0x0027 Timer 1 Interrupt _int (Default Null Handler)
0x0028 Power Interrupt _int (Default Null Handler)
0x0029 GPIO0 Interrupt _int (Default Null Handler)
0x002a GPIO1 Interrupt _int (Default Null Handler)

Rev. 0.20 2011-10-04 Page 14(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

VS1000A Handler Vectors (Services)
Address Vector Name Default Remark
0x002c MSCPacketFromPC RealMSCPacketFromPC MSC cmd or data
0x002e DecodeSetupPacket RealDecodeSetupPacket Control endpoint
0x0030 ScsiTaskHandler RealScsiTaskHandler Disk task
0x0032 LoadCheck RealLoadCheck Clock adjust
0x0034 UnsupportedFile DefUnsupportedFile Unknown format

Additional VS1000B Handler Vectors (Services)
0x0036 KeyEventHandler RealKeyEventHandler Perform actions for

key events
0x0038 MassStorage RealMassStorage USB Mass Storage

code
0x003a USBSuspend RealUSBSuspend Code for low-power

mode, used by
USB and low-power
pause

0x003c InitUSBDescriptors RealInitUSBDescriptors Hook to initialize
USB descriptors

0x003e SetVolume RealSetVolume Uses volumeReg
to set DAC_VOL
and bassReg to init
bass/treble controls

Rev. 0.20 2011-10-04 Page 15(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

6 Software Tools

Here is a list of the software tools that are necessary to compile and run the examples
of this programming guide. A more complete documentation of the software tools can
be found in the “Tools Manual”, available from VLSI. These command line tools are
available for UNIX and Windows. In addition to these files we recommend using GNU
Make to automatize the compilation process, but you can also compile by typing the
command lines separately in a shell or “MS-DOS Prompt”, or with the help of a suitable
batch file.

Free VSIDE integrated development tool is available and contains example projects for
VS1000.

The various tools can be downloaded from VLSI Solution’s Web Pages www.vlsi.fi .
See under Support / Software.

6.1 vcc

The VLSI C Compiler. Creates a COFF object file from “C” language source file.

Example:
vcc -P130 -O -fsmall-code -I lib -o program.o program.c

6.2 vslink

The linker. Creates a binary program file from multiple COFF object files.

Example:
vslink -k -m mem_user -L lib -lc -o program.bin lib/c-spi.o lib/rom1000.o program.o

6.3 vs3emu

The ROM monitor interface. Loads and runs binary program files using RS-232 ca-
ble between PC and VS10xx. Also provides standard input/output and file system for
debugging C code.

Example:
vs3emu -chip vs1000 -s 115200 -l program.bin e.cmd

6.4 coff2spiboot

Creates bootable EEPROM image from a binary program file.

Rev. 0.20 2011-10-04 Page 16(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

Example:
coff2spiboot -x 0x50 program.bin eeprom.img

6.5 coff2nandboot

Creates a nand flash compatible boot record file from a binary program file.

Example:
coff2nandboot -t 3 -b 8 -s 19 -w 50 -x 0x50 led.bin nand.rec

6.6 makenandimage (required for VS1000A only)

Creates a prommable binary nand flash image from a nand flash compatible boot record
file.

Example:
makenandimage nand.rec NANDFLSH.IMG

Rev. 0.20 2011-10-04 Page 17(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

7 Examples

For more information and examples, check the VLSI Solution’s website, click Support,
then select Software. You can then find links for full VS1000 applications and smaller
VS1000 examples.

VS1000 evaluation boards also have source code available, so check out Support /
Evaluation Boards as well.

There are also VS1000-specific example projects for VSIDE.

See VSDSP Forum for general talk about VS1000 and other chips from
http://www.vsdsp-forum.com/ .

7.1 Hello, World!

The first example of writing code for the VS1000 is the traditional “Hello, World!” exam-
ple, which is compiled and linked. Then the RS-232 ROM monitor interface (vs3emu) is
used to load and execute the code.

The contents of the file hello.c is:

/* hello.c : A Hello World example. */

#include <stdio.h>

// main() is the program entry point. It is entered via a vector,

// which is statically linked to address 0x0050 in module c.o

void main(void) {

puts("Hello, World!");

}

7.1.1 Compiling

The “hello.c” file is compiled using vcc with a command line such as:

vcc -P130 -O -fsmall-code -I lib -o hello.o hello.c

This creates a coff object file hello.o. The parameteres that were passed to vcc are:

-P130 Treats warning 130 (“can’t find prototype”) as an error.
-O Optimize
-fsmall-code Use 16-bit code model (uses libc16 libraries)
-o hello.o Output file is hello.o
-I lib subdirectory “lib” contains include files
hello.c input file

Rev. 0.20 2011-10-04 Page 18(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

7.1.2 Linking

Next the hello.o object is linked using the VS1000 memory map, VS1000 ROM content
addresses and the relevant VSDSP link-time libraries using a command such as:

vslink -k -m mem_user -o hello.bin -Llib -lc -ldev1000 lib/c-spi.o lib/rom1000.o hello.o

This produces a loadable object file hello.bin using the parameters:

-k keep relocation information (good for debugging)
-m mem_user use memory areas specified in file mem_user

-o hello.bin output file is hello.bin

-Llib libraries can be found in subdirectory “lib”
-lc -ldev1000 use library libc.a and libdev1000.a (in the -L directory)
lib/c-spi.o the vsemu and SPI boot compatible C startup module (in subdirectory

lib). It calls main() and returns to ROM code to a point after
initializations and SPI boot but before Nand Flash init+boot.

lib/rom1000.o address information of the ROM code (in subdirectory lib)
hello.o user compiled module

7.1.3 Loading

There are many ways to load runnable code to VS1000 chips. Code can be loaded
automatically during boot-up time from an SPI EEPROM or a NAND flash.

During program development it’s usually easiest to load the code using an RS-232
(“COM port”) emulator interface, which connects to the RX and TX pins of VS1000. 1

Note that a program booting from SPI and NAND FLASH may interfere with the loaded
program. You can disable SPI boot and erase the boot program part from NAND FLASH
to make certain. Leave the NAND FLASH ident, so the NAND FLASH can be used by
the ROM firmware and your program.

The PC side interface is invoked with:

vs3emu -chip vs1000 -s 115200 -l hello.bin

which instructs the vs3emu interface to use the “vs1000” communication method and
default (COM1) port with line speed 115200 bit/s.

The emulator contacts the VS1000 by sending a special character to the COM port. This
is handled by the UART receive interrupt on the VS1000. If the VS1000 is running with
a 12 MHz crystal, interrupts are enabled and the core is running, it responds with:

VSEMU 2.1 (c)1995-2006 VLSI Solution Oy

Clock 11999 kHz

Using serial port 1, Serial input speed seems to be 115200

1 This is easiest with a VS1000 Developer Board, but even the VS1000 Demonstration Board could
be used in this fashion by building a suitable RS-232 interface board. It would require connecting a
MAX3232 or equivalent buffer chip to the “RX” and “TX” pads on the Demonstration Board PCB. Power
for the MAX3232 could be taken from the JP1 expansion header.

Rev. 0.20 2011-10-04 Page 19(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

COM speed 115200

Waiting for a connection to the board...

Caused interrupt

Chip version "1000"

Stack pointer 0x19e0, bpTable 0x7c0f

User program entry address 0x7398

hello.bin: includes optional header, 4 sections, 441 symbols

Section 1: code page:0 start:80 size:1 relocs:1 fixed

Section 2: const_x page:1 start:8096 size:14 relocs:0

Section 3: main page:0 start:81 size:14 relocs:2

Section 4: VS_stdiolib page:0 start:95 size:50 relocs:13

>

Next the executing address is set to be 0x0050 (statically linked loading vector for main())
by command g 0x50 and executed by command e. On the screen it should look like:

> g 0x50

> e

Hello, World!

This final stage can be automated by writing the commands g 0x50 and e to file e.cmd

and calling the emulator with the command line

vs3emu -chip vs1000 -s 115200 -l hello.bin e.cmd

The emulator can be exited by pressing Ctrl-C.

7.1.4 Note

If your board has boot code in the Nand Flash, the Nand Flash boot code runs after
main() exits.

7.1.5 Input and Output

This example uses the vs3emu interface to handle C standard I/O (stdin, stdout).
With it it’s possible to write messages to the user and read input from the PC keyboard.
Also it’s possible to open, read and write files in the PC. The library contains the ele-
mentary functions necessary for input and output. In this example, the library function
puts(), which outputs a line of text and a linefeed to stdout, was used.

Since the memory capacity of the chip is limited, the more advanced and memory con-
suming input/output functions such as printf should not be used. When you need to print
out values of variables, it’s recomended to use a smaller special function for it. As an
example, here is a small function that outputs the value of a 16-bit unsigned integer as
a hexadecimal value:

Rev. 0.20 2011-10-04 Page 20(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

#include <stdio.h>

#include <vstypes.h>

__y const char hex[] = "0123456789abcdef";

void puthex(u_int16 a) {

char tmp[8];

tmp[0] = hex[(a�12) & 15]; tmp[1] = hex[(a�8) & 15];

tmp[2] = hex[(a�4) & 15]; tmp[3] = hex[(a�0) & 15];

tmp[4] = ' '; tmp[5] = '\0';
fputs(tmp, stdout);

}

Also note that if you use puts (or any file input/output) in your code, a connection with
vs3emu is required. You should carefully remove any such code before porting the code
to be loaded via another method than vs3emu such as a boot flash or eeprom. This
could be done by surrounding the I/O code with #ifdef DEBUG and #endif pre-proces-
sor directives.

Rev. 0.20 2011-10-04 Page 21(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

7.2 Making the LEDs blink

The example code below will blink the two LEDs that are connected to VS1000’s SI and
SO pins on the Developer Board and the Demonstration Board. Controlling the pins
directly requires switching the pin modes from Peripheral control to General Purpose IO
control and setting their Output Enable bits to “1”.

#include <vs1000.h>

/// Busy wait i hundreths of second at 12 MHz clock

auto void BusyWaitHundreths(u_int16 i) {

while(i�){

BusyWait10(); // Rom function, busy loop 10ms at 12MHz

}

}

void main(void) {

PERIP(GPIO1_MODE) = 0x30; /* UART=peripheral(1) , SPI=GPIO(0) */

PERIP(GPIO1_DDR) = 0x0c; /* SI and SO pins (GPIO1[3:2]) are output(1) */

while(1){

PERIP(GPIO1_ODATA) = 0x04; /* GPIO1[2] (LQFP pin 24) = 1 */

BusyWaitHundreths(50);

PERIP(GPIO1_ODATA) = 0x08; /* GPIO1[3] (LQFP pin 25) = 1 */

BusyWaitHundreths(50);

}

}

The SPI port pins and UART port pins are controlled by the same I/O controller, I/O
controller 1. When disabling peripheral control of the SPI pins, the UART pins (RX, TX)
must remain under peripheral control. Otherwise, the connection with vs3emu is lost.

For reference, here are the GPIO1 pin mappings of VS1000:

VS1000 I/O Controller 1 pins and peripheral functions
GPIO Ident LQFP

Pin
Function

GPIO1[0] XCS 22 SPI XCS / General-Purpose I/O Port 1, bit 0
GPIO1[1] SCLK 23 SPI CLK / General-Purpose I/O Port 1, bit 1
GPIO1[2] SI 24 SPI MISO / General-Purpose I/O Port 1, bit 2
GPIO1[3] SO 25 SPI MOSI / General-Purpose I/O Port 1, bit 3
GPIO1[4] TX 26 UART TX / General-Purpose I/O Port 1, bit 4
GPIO1[5] RX 27 UART RX / General-Purpose I/O Port 1, bit 5

Rev. 0.20 2011-10-04 Page 22(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

7.3 Adjusting the Player User Interface

The ROM code implements a Vorbis player with a user interface that has 6 buttons:
• Power/Play/Pause
• Previous/Rewind
• Next/Fast Forward
• Volume -
• Volume +
• EarSpeaker (spatial processing) setting change

In addition to the 6-button interface the ROM contains alternative default key mappings
for a 5-button and 4-button user interfaces.

If these are not sufficient, there are two alternatives:
• Create a custom key→ event mapping
• Take full control of the player

The VS1000 ROM function void KeyEventHandler(enum keyEvent event) can handle
17 pre-defined player control events, the 12 first are common with VS1000A.

VS1000B Pre-defined Player Control Events
Value Event Function
0 ke_null Do nothing
1 ke_previous Play Previous song
2 ke_next Play Next song
3 ke_rewind Rewind
4 ke_forward Fast Forward
5 ke_volumeUp Volume Up
6 ke_volumeDown Volume Down
7 ke_earSpeaker Switch EarSpeaker processing (4 settings)
8 ke_earSpeakerToggle Toggle EarSpeaker processing (2 settings)
9 ke_randomToggle Random Play on/off
10 ke_randomToggleNewSong Play random song
11 ke_pauseToggle Pause on/off
12 ke_powerOff Close and power down
13 ke_ff_faster increase play speed (needs ke_ff_off as release event)
14 ke_ff_slower decrease play speed (needs ke_ff_off as release event)
15 ke_ff_off back to normal play speed
16 ke_volumeUp2 increase volume by 1.0 dB
17 ke_volumeDown2 decrease volume by 1.0 dB

A KeyMapping structure controls the relationship between key-presses, long key-presses
and events. The structure is an array of pairs

struct KeyMapping {

u_int16 key; // Key Mask

enum keyEvent event; // Event

}

Rev. 0.20 2011-10-04 Page 23(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

The following program demonstrates changing the key mapping:

// Example on how to change the key mapping of the user interface

#include <vs1000.h>

#include <player.h>

// Define key masks for the buttons on the PCB. This order is

// of the Demonstration Board, leftmost button is "KEY_A"

#define KEY_A 0x0004

#define KEY_B 0x0008

#define KEY_C 0x0001

#define KEY_D 0x0002

#define KEY_E 0x0010

// Define custom key mapping

const struct KeyMapping myKeyMap[] = {

{KEY_A, ke_volumeUp }, // Key A: Volume step up

{KEY_A | KEY_LONG_PRESS, ke_volumeUp }, // Key A: Volume up continuous

{KEY_B, ke_volumeDown}, // Key B: Volume step dn

{KEY_B | KEY_LONG_PRESS, ke_volumeDown}, // Key B: Volume dn continuous

{KEY_C, ke_previous }, // Key C: Previous song

{KEY_D, ke_next }, // Key D: Next song

{KEY_E | KEY_A | KEY_LONG_PRESS, ke_rewind }, // Key E with Key A: rewind

{KEY_E | KEY_B | KEY_LONG_PRESS, ke_forward }, // Key E with Key B: fast forward

{KEY_C | KEY_D | KEY_LONG_ONESHOT, ke_powerOff }, // Only one event after long

press

{0, ke_null} // End of key mappings

};

// Load own key mapping

void main(){

currentKeyMap = myKeyMap; // Use own key mapping

// Note that if there is boot record in NAND, it's run after

// this point, if this code is run from the emulator

}

The KeyEventHandler can also be called directly. For instance if you wish to advance to
the next song, you can call

KeyEventHandler(ke_next);

from your source code. In most cases it takes less code space than changing the struct

player directly.

The tools package contains further examples on how to adjust the user interface, use
the embedded LCD font etc.

Rev. 0.20 2011-10-04 Page 24(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

7.4 Hooking custom storage controller

Hooks are software jump vectors, that are linked into fixed positions in the VS1000 RAM.
Their function is essentially the same as for instance the interrupt vector of a 80x86 pro-
cessor. For instance, when the player is playing music, it reads a disk sector (512 bytes)
of data by calling a function ReadDiskSector(u_int16 *buffer, u_int32 sector). For this
call, the linker generates a call to a fixed address 0x000c. In that address (which is in
RAM) is a jump instruction to the start address of the ROM function MapperReadDisk-
Sector(), which retrieves the data from a logical NAND Flash mapper interface using
map->Read().

By replacing the jump location of the ReadDiskSector() hook vector, it is easy to re-
place the storage device, which contains the files the player plays. Only the service
that delivers a sectorful of data from a storage device is changed while rest of the ROM
functionality remains the same.

The image below demonstrates the disk data flow of VS1000:

MassStorage

USB block

interface

Flash Mapper

Logical Disk +

wear levelling

Flash Physical

Physical disk

interface

minifat

Read only FAT

filesystem

(register __i0 u_int16 *buffer,

 register __a u_int32 sector) {

 /* Own Code */

}

auto u_int16 MyReadSector

storage
Own

when USB connected:

when playing:

Nand Flash

ReadDiskSector

Figure 4: Disk Data Flow

Below is an example of hookable disk read function that uses a previously declared
EEReadBlock() function to read 512 bytes to *buffer and returns 0 signifying no error:

auto u_int16 MyReadDiskSector(register __i0 u_int16 *buffer,

register __a u_int32 sector) {

EEReadBlock(sector+FAT_START_SECTOR, buffer);

return 0;

}

This can then be hooked to the ReadDiskSector hook by calling
SetHookFunction((u_int16)ReadDiskSector, MyReadDiskSector);

in main() or some other convenient function.

Rev. 0.20 2011-10-04 Page 25(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

The above method is most convenient for preprogrammed storage devices. If you need
write access to your own storage device, you need to write control code for it yourself,
e.g. for downloading a disk image over a serial port.

7.4.1 ReadDiskSector is for reading only

As the name suggests, the ReadDiskSector() hook is meant only for reading data. This
limits its usage to the “player” mode only (when the VS1000 is in player mode, it does
not write to the logical disk).

If you want to attach your own device to the USB bus as a mass storage device, you
need to write a mapper interface that has functions for reading and writing+erasing 512-
byte sectors. Then you need to write a function that publishes the interface with name
map, initializes the USB handler (probably by calling InitUSB(USB_MASS_STORAGE)) and
then calls UsbHandler() in a busy loop until the USB is detached.

The complete example code is below. It uses 253 words of program RAM out of the
1968 words available for plugins.

Rev. 0.20 2011-10-04 Page 26(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

// storage.c : Plug-in for playing from intel "S33" serial flash eeprom.

// For this example, a QH25F640S33B8 chip is connected to SI, SO, SCLK, XCS.

#include <stdlib.h>

#include <vs1000.h>

#define SPI_EEPROM_COMMAND_READ_STATUS_REGISTER 0x05

#define SPI_EEPROM_COMMAND_READ 0x03

//macro to set SPI to MASTER; 8BIT; FSYNC Idle => xCS high

#define SPI_MASTER_8BIT_CSHI PERIP(SPI0_CONFIG) = \
SPI_CF_MASTER | SPI_CF_DLEN8 | SPI_CF_FSIDLE1

//macro to set SPI to MASTER; 8BIT; FSYNC not Idle => xCS low

#define SPI_MASTER_8BIT_CSLO PERIP(SPI0_CONFIG) = \
SPI_CF_MASTER | SPI_CF_DLEN8 | SPI_CF_FSIDLE0

//macro to set SPI to MASTER; 16BIT; FSYNC not Idle => xCS low

#define SPI_MASTER_16BIT_CSLO PERIP(SPI0_CONFIG) = \
SPI_CF_MASTER | SPI_CF_DLEN16 | SPI_CF_FSIDLE0

void InitSpi() {

SPI_MASTER_8BIT_CSHI;

PERIP(SPI0_FSYNC) = 0; // Frame Sync is used as an active low xCS

PERIP(SPI0_CLKCONFIG) = SPI_CC_CLKDIV * (1-1); // Spi clock divider = 1

PERIP(GPIO1_MODE) |= 0x1f; // Set SPI pins to be peripheral controlled

}

void EESingleCycleCommand(u_int16 cmd){

SPI_MASTER_8BIT_CSHI;

SPI_MASTER_8BIT_CSLO;

SpiSendReceive(cmd);

SPI_MASTER_8BIT_CSHI;

}

/// Wait for not_busy (status[0] = 0) and return status

u_int16 EEWaitGetStatus(void) {

u_int16 status;

SPI_MASTER_8BIT_CSHI;

SPI_MASTER_8BIT_CSLO;

SpiSendReceive(SPI_EEPROM_COMMAND_READ_STATUS_REGISTER);

while ((status = SpiSendReceive(0)) & 0x01)

; //Wait until ready

SPI_MASTER_8BIT_CSHI;

return status;

}

Rev. 0.20 2011-10-04 Page 27(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

/// Read a block from EEPROM

/// \param blockn number of 512-byte sector 0..32767

/// \param dptr pointer to data block

u_int16 EEReadBlock(u_int16 blockn, u_int16 *dptr) {

EEWaitGetStatus(); // Wait until EEPROM is not busy

SPI_MASTER_8BIT_CSLO; // Bring xCS low

SpiSendReceive(SPI_EEPROM_COMMAND_READ);

SpiSendReceive(blockn�7); // Address[23:16] = blockn[14:7]

SpiSendReceive((blockn�1)&0xff); // Address[15:8] = blockn[6:0]0

SpiSendReceive(0); // Address[7:0] = 00000000

SPI_MASTER_16BIT_CSLO; // Switch to 16-bit mode

{ int n;

for (n=0; n<256; n++){

*dptr++ = SpiSendReceive(0); // Receive Data

}

}

SPI_MASTER_8BIT_CSHI; // Bring xCS back to high

return 0;

}

// Disk image is prommed to EEPROM at sector 0x80 onwards, leaving

// the first 64 kilobytes (1 erasable block) free for boot code

#define FAT_START_SECTOR 0x80

// This function will replace ReadDiskSector() functionality

auto u_int16 MyReadDiskSector(register __i0 u_int16 *buffer,

register __a u_int32 sector) {

PERIP(GPIO1_MODE) |= 0x1f; // Set SPI pins to be peripheral controlled

EEReadBlock(sector+FAT_START_SECTOR, buffer);

return 0;

}

// Initialize SPI and hook in own disk read function.

// This example plays ogg files from a FAT image that has been

// previously written to a serial EEPROM.

void main(void) {

InitSpi();

// Hook in own disk sector read function

SetHookFunction((u_int16)ReadDiskSector, MyReadDiskSector);

} // Return to ROM code. Player will now play from EEPROM

Rev. 0.20 2011-10-04 Page 28(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

7.5 Setting your own USB descriptors

Each USB device has a Vendor ID and a Product ID, which are 16-bit numbers that
the operating system uses for determining which device driver to load for the device.
Additionally most USB devices have a vendor name and model name strings that the
operating system can display to the user. All USB string descriptors are 16-bit Unicode
strings (UTF-16).

VS1000’s ROM code holds VLSI’s Vendor ID and Product ID. For prototyping you can
use an unused Vendor ID and Product ID, but when you ship products to customers, you
must use your own Vendor ID and Product ID. A Vendor ID can be obtained from the
USB Implementers Forum, Inc.’s web site, http://www.usb.org .

To comply with USB Mass Storage Specification, each device that is shipped out to
customers should have a unique serial number in the USB descriptors. Windows uses
this serial number e.g. for storing device parameters in the system registry.

VS1000’s ROM is written so that it’s easy to change these descriptors without having to
touch the rest of the USB code. This example shows how you can change the Device
Descriptor, which holds the Vendor ID and Product ID, and the Vendor/Model/SerialNumber
string descriptors.

USB.descriptorTable[6] holds pointers to the descriptors. A system hook vector called
InitUSBDescriptors can be used to set your own descriptors.

7.5.1 Descriptor data format

Mostly because the USB has its roots in the 8-bit oriented PC (80x86) architecture, all
USB traffic is transmitted byte by byte. When values that have more than 8 bits, such as
16-bit integers or 32-bit integers, are transmitted, they are transmitted in the little-endian
(“Little End First”) format, where the least significant (last) byte of a multi-byte value is
sent first.

VS_DSP, however, is a natively 16-bit architecture that only handles 16-bit values. Thus
all data in VS_DSP must be stored as signed or unsigned 16 (or 32) bit values. To
maintain USB compatibility, care must be taken to transmit descriptors in the correct
byte order. In practice this means that descriptors should be stored in tables of byte-
swapped 16-bit unsigned integers as in the example below.

The serial number is a string of (at least) 12 characters from set {“0123456789ABCDEF”}.
All strings are stored in 16-bit Unicode format. The example code creates a new serial
number string descriptor mySerialNumberStr. The last 8 characters are generated in
the main() function from u_int32 mySerialNumber, which should be unique for each
device. You could generate it from e.g. the serial number of the storage memory your
product has. The first 4 characters (“1234” in the descriptor) could be fixed for a specific
program version etc.

Rev. 0.20 2011-10-04 Page 29(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

// usbdesc.c : Example for changing USB descriptors

// We will hook InitUSBDescriptors so that it overrides the default string

// descriptors with our own.

#include <vs1000.h>

#include <usblowlib.h>

#define VENDOR_NAME_LENGTH 6

const u_int16 myVendorNameStr[] = {

((VENDOR_NAME_LENGTH * 2 + 2) � 8) | 0x03,

'M' � 8,

'y' � 8,

'C' � 8,

'o' � 8,

'r' � 8,

'p' � 8

};

#define MODEL_NAME_LENGTH 6

const u_int16 myModelNameStr[] = {

((MODEL_NAME_LENGTH * 2 + 2) � 8) | 0x03,

'G' � 8,

'a' � 8,

'd' � 8,

'g' � 8,

'e' � 8,

't' � 8

};

#define SERIAL_NUMBER_LENGTH 12

u_int16 mySerialNumberStr[] = {

((SERIAL_NUMBER_LENGTH * 2 + 2) � 8) | 0x03,

'1' � 8, // You can

'2' � 8, // put any

'3' � 8, // numbers you

'4' � 8, // like here (over the '1' '2' '3' and '4')

0x3000, 0x3000, 0x3000, 0x3000, // Last 8 digits of serial

0x3000, 0x3000, 0x3000, 0x3000 // number will be calculated here

};

// This is the new Device Descriptor. See the USB specification!

// Note that since VS_DSP is 16-bit Big-Endian processor,

// tables MUST be given as byte-swapped 16-bit tables for USB compatibility!

// This device descriptor template is ok for mass storage devices.

const u_int16 myDeviceDescriptor [] = {

0x1201, 0x1001, 0x0000, 0x0040,

0x3412, // byte-swapped Vendor ID (0x1234) Get own from usb.org!

0x4523, // byte-swapped Product ID (0x2345)

0x5634, // byte-swapped Device ID (0x3456)

0x0102, 0x0301

};

Rev. 0.20 2011-10-04 Page 30(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

// When USB descriptors initialized, set defaults with

// RealInitUSBDescriptors(), then install our descriptors.

void MyInitUSBDescriptors(u_int16 initDescriptors){

RealInitUSBUSBDescriptors(initDescriptors);

USB.descriptorTable[DT_VENDOR] = myVendorNameStr;

USB.descriptorTable[DT_MODEL] = myModelNameStr;

USB.descriptorTable[DT_SERIAL] = mySerialNumberStr;

USB.descriptorTable[DT_DEVICE] = myDeviceDescriptor;

}

const u_int16 bHexChar16[] = { // swapped Unicode hex characters

0x3000, 0x3100, 0x3200, 0x3300, 0x3400, 0x3500, 0x3600, 0x3700,

0x3800, 0x3900, 0x4100, 0x4200, 0x4300, 0x4400, 0x4400, 0x4500

};

void main(void) {

u_int16 i;

u_int32 mySerialNumber = 0x1234abcd; // Unique serial number

// Put unique serial number to serial number descriptor

for (i=5; i<13; i++){

mySerialNumberStr[i]=bHexChar16[mySerialNumber�28];

mySerialNumber �= 4;

}

// Hook in function that will load new descriptors to USB struct

SetHookFunction((u_int16)InitUSBDescriptors, MyInitUSBDescriptors);

} // Return to ROM code.

Rev. 0.20 2011-10-04 Page 31(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

8 Booting from SPI EEPROM

VS1000 supports loading boot-up code from an SPI EEPROM such as the 25LC640.
The ROM code checks the state of XCS pin during boot-up. If XCS is high, the code
attempts to read a boot record from the EEPROM using the SI, SO, SCLK and XCS pins.
In addition to the 16-bit addressing of SPI eeproms such as the 25LC640, the ROM also
supports 24-bit addressing of some larger EEPROMS (possibly up to 16 megabytes).

A program that is to be loaded using the SPI EEPROM must be linked with c-spi.o ob-
ject module. The c-spi.o module can also be used with running the code from vs3emu,
but not from the nand flash.

The coff2spiboot tool can be used to create a bootable EEPROM image from the linker
output file with a command such as:

coff2spiboot -x 0x50 led.bin eeprom.img

This reads the previously compiled program led.bin and creates a binary eeprom im-
age eeprom.img, which can be programmed to an SPI EEPROM with an EEPROM
programmer.

A valid boot record starts with identifier 0x564C5349 (’V’,’L’,’S’,’I’) and contains blocks of
binary data that are to be stored at specified addresses. A boot record that is loaded
via the SPI bus must have an execution command as the last block. Description of the
block format is in the datasheet, if it should be needed for some special purpose.

8.0.2 Using a VS1000 Developer Board as an eeprommer

Also a VS1000 Developer Board can be used to program the SPI EEPROM, using
the vs3emu file interface. The next pages contain an example program that reads the
eeprom.img file and writes it to a 25LC640 EEPROM. The promming routine is compiled
normally to a binary program prommer.bin. It can be run with vs3emu with a command
such as:

vs3emu -chip vs1000 -s 115200 -l prommer.bin e.cmd

If the file eeprom.img is found on the local directory, the contents is programmed to the
EEPROM and you should see output such as

25LC640 EEPROM promming routine for VS1000A

Trying to open eeprom.img

Programming...

Sector 0000 ...

Reading first 2 words of EEPROM: 564c 5349 ("VLSI"), which is a valid VLSI boot id.

Done.

Rev. 0.20 2011-10-04 Page 32(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

// VS1000A EEPROM Writer Program

// Reads eeprom.img file from PC via vs3emu cable and programs it to EEPROM.

#define MY_IDENT "25LC640 EEPROM promming routine for VS1000A"

#include <stdio.h>

#include <stdlib.h>

#include <vs1000.h>

#include <minifat.h>

__y const char hex[] = "0123456789abcdef";

void puthex(u_int16 a) {

char tmp[8];

tmp[0] = hex[(a�12)&15]; tmp[1] = hex[(a�8)&15];

tmp[2] = hex[(a�4)&15]; tmp[3] = hex[(a�0)&15];

tmp[4] = ' '; tmp[5] = '\0';
fputs(tmp, stdout);

}

#define SPI_EEPROM_COMMAND_WRITE_ENABLE 0x06

#define SPI_EEPROM_COMMAND_WRITE_DISABLE 0x04

#define SPI_EEPROM_COMMAND_READ_STATUS_REGISTER 0x05

#define SPI_EEPROM_COMMAND_WRITE_STATUS_REGISTER 0x01

#define SPI_EEPROM_COMMAND_READ 0x03

#define SPI_EEPROM_COMMAND_WRITE 0x02

//macro to set SPI to MASTER; 8BIT; FSYNC Idle => xCS high

#define SPI_MASTER_8BIT_CSHI PERIP(SPI0_CONFIG) = \
SPI_CF_MASTER | SPI_CF_DLEN8 | SPI_CF_FSIDLE1

//macro to set SPI to MASTER; 8BIT; FSYNC not Idle => xCS low

#define SPI_MASTER_8BIT_CSLO PERIP(SPI0_CONFIG) = \
SPI_CF_MASTER | SPI_CF_DLEN8 | SPI_CF_FSIDLE0

//macro to set SPI to MASTER; 16BIT; FSYNC not Idle => xCS low

#define SPI_MASTER_16BIT_CSLO PERIP(SPI0_CONFIG) = \
SPI_CF_MASTER | SPI_CF_DLEN16 | SPI_CF_FSIDLE0

void SingleCycleCommand(u_int16 cmd){

SPI_MASTER_8BIT_CSHI;

SpiDelay(0);

SPI_MASTER_8BIT_CSLO;

SpiSendReceive(cmd);

SPI_MASTER_8BIT_CSHI;

SpiDelay(0);

}

/// Wait for not_busy (status[0] = 0) and return status

u_int16 SpiWaitStatus(void) {

u_int16 status;

SPI_MASTER_8BIT_CSHI;

SpiDelay(0);

SPI_MASTER_8BIT_CSLO;

Rev. 0.20 2011-10-04 Page 33(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

SpiSendReceive(SPI_EEPROM_COMMAND_READ_STATUS_REGISTER);

while ((status = SpiSendReceive(0xff)) & 0x01){

SpiDelay(0);

}

SPI_MASTER_8BIT_CSHI;

return status;

}

void SpiWriteBlock(u_int16 blockn, u_int16 *dptr) {

u_int16 i;

u_int16 addr = blockn*512;

for (i=0; i<32; i++){

SingleCycleCommand(SPI_EEPROM_COMMAND_WRITE_ENABLE);

SPI_MASTER_8BIT_CSLO;

SpiSendReceive(SPI_EEPROM_COMMAND_WRITE);

SPI_MASTER_16BIT_CSLO;

SpiSendReceive(addr);

{

u_int16 j;

for (j=0; j<16; j++){ //Write 16 words (32 bytes)

SpiSendReceive(*dptr++);

}

}

SPI_MASTER_8BIT_CSHI;

SpiWaitStatus();

addr+=32;

}

}

u_int16 SpiReadBlock(u_int16 blockn, u_int16 *dptr) {

SpiWaitStatus();

SPI_MASTER_8BIT_CSLO;

SpiSendReceive(SPI_EEPROM_COMMAND_READ);

SpiSendReceive((blockn�1)&0xff); // Address[15:8] = blockn[6:0]0

SpiSendReceive(0); // Address[7:0] = 00000000

SPI_MASTER_16BIT_CSLO;

{

u_int16 i;

for (i=0; i<256; i++){

*dptr++ = SpiSendReceive(0);

}

}

SPI_MASTER_8BIT_CSHI;

return 0;

}

// This routine programs the EEPROM.

// The minifat module has a memory buffer of 512 bytes (minifatBuffer)

// that is used here as temporary memory.

// The routine does not verify the data that is written, but after

// programming, the eeprom start is checked for a VLSI boot id.

Rev. 0.20 2011-10-04 Page 34(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

void main(void) {

FILE *fp;

SPI_MASTER_8BIT_CSHI;

PERIP(SPI0_FSYNC) = 0;

PERIP(SPI0_CLKCONFIG) = SPI_CC_CLKDIV * (12-1);

PERIP(GPIO1_MODE) |= 0x1f; /* enable SPI pins */

PERIP(INT_ENABLEL) &= ∼INTF_RX; //Disable UART RX interrupt

puts("");

puts(MY_IDENT);

puts("Trying to open eeprom.img");

if (fp = fopen ("eeprom.img", "rb")){ // Open a file in the PC

u_int16 len;

u_int16 sectorNumber=0;

puts("Programming...");

while ((len=fread(minifatBuffer,1,256,fp))){

fputs("Sector ",stdout); puthex(sectorNumber); puts("...");

SpiWriteBlock(sectorNumber, minifatBuffer);

sectorNumber++;

}

fclose(fp); // Programming complete.

minifatBuffer[0]=0;

fputs("Reading first 2 words of EEPROM: ",stdout);

SpiReadBlock(0,minifatBuffer);

puthex(minifatBuffer[0]);

puthex(minifatBuffer[1]);

fputs(" (\"",stdout);
putchar(minifatBuffer[0]�8); putchar(minifatBuffer[0]&0xff);

putchar(minifatBuffer[1]�8); putchar(minifatBuffer[1]&0xff);

if ((minifatBuffer[0]==0x564c) && (minifatBuffer[1]==0x5349)){

puts("\"), which is a valid VLSI boot id.");

} else {

puts("\"), which is NOT a valid VLSI boot id!");

}

puts("Done.");

}else{

puts("File not found\n");
}

PERIP(INT_ENABLEL) |= INTF_RX; //Re-enable UART RX interrupt

while(1)

; //Stop here

}

Rev. 0.20 2011-10-04 Page 35(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

9 Booting from NAND FLASH

If a nand flash chip is connected to the byte-wide bus interface of VS1000, it can
also be used for booting the VS1000. VS1000 supports natively most single-level cell,
single-chip-select NAND flashes such as the NAND128W3A2 from ST (small page) or
K9F2G08U0M from Samsung (large page).

With custom code (see MLCPlayer example from VS1000 software page) VS1000 can
also support various multi-level cell (MLC) memories with 2 kB block size. Larger page
sizes can be supported in special applications.

9.1 Nand Flash startup sequence and structure

The nand flash boot is attempted after EEPROM boot. First the I/O voltages are set
according to the input state of GPIO0[7] pin. If SPI memory is not available, VS1000
attempts to read the first block of 512 bytes of the nand flash with 8 different access
methods, using the nand flash interface with only CS1 chip select. The access methods
cover small and large page flashes with 4, 5 or 6 address bytes.

Because different types of nand flash chips differ in the access methodology, using a
nand flash is somewhat more complicated than using an eeprom. To ensure proper
operation, a nand flash chip must be programmed with a valid VLSI ID record in the
beginning of block 0. VS1000 looks for the ID record and adjusts the nand access
parameters according to the ID record information.

If the VLSI boot id ’V”L”S”I’ (0x564C5349) is successfully read in the beginning of block
0, the ID record is considered valid. The next words of the ID record specify the overall
size, erasable block size, number of address bytes, block size and speed grade of the
nand flash chip in question in the format specified in the VS1000 datasheet.

The rest of the 512-byte block contain the start of the user boot code and the number of
extra sectors to load.

The first erasable block of a nand flash chip is reserved for boot data. The filesystem
that contains the songs to be played and is visible to the PC as a USB disk starts at a
further offset after the boot area and for security reasons is separate from the boot area.

ID User application code (max 8176 bytes)

Application can take 15 extra sectors

First 512 bytes contain ID, start of the application and
the number of extra sectors to load

Figure 5: Structure of the beginning of a Nand Flash in VS1000B

Rev. 0.20 2011-10-04 Page 36(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

9.2 Preparing a nand flash image

A program that is to be loaded using the nand flash must be linked with c-nand.o with a
command line such as:

vslink -k -m mem_user -o led.bin -L lib -lc lib/c-nand.o lib/rom1000.o led.o

The binary program led.bin must then be converted into a nand boot record using the
coff2nandboot program with a command line such as:

coff2nandboot -t 3 -b 8 -s 19 -w 70 -x 0x50 led.bin nand.rec

The program coff2nandboot creates a nand boot record starting with a VLSI ID record.
The parameters -t 3 -b 8 -s 19 -w 50 specify that the target nand flash chip used

• is of Type 3 (Large Page, 5-byte address)
• has an erasable block size of 28 × 512 bytes (128 KiB)
• has an overall size of 219 × 512 bytes (256 MiB)
• needs 70 ns wait states

The parameters -x 0x50 led.bin nand.rec instruct that

• executable code starts at address 0x0050
• linked program image is in led.bin

• boot record should be written to nand.rec

Output such as the following can be expected from coff2nandboot:
NandType: 3 Large-Page 5-byte addr, 128kB blocks, 256MB flash

I: 0x0050-0x0086 In: 222, out: 222

In: 222, out: 228

The above parameters are ok for the K9F2G08, which is installed in some of the Demon-
stration Boards shipped by VLSI. Others have NAND128W and for those a suitable
command line is coff2nandboot -t 0 -b 5 -s 15 -x 0x50 led.bin NANDFLSH.IMG

The resulting binary file NANDFLSH.IMG can be prommed to the beginning of a nand flash
with a nand flash programmer.

Rev. 0.20 2011-10-04 Page 37(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

9.3 Using the VS1000 Demostration/Developer Board as a nand flash writer

Because it would be troublesome to remove a nand flash chip that is soldered to a PCB
for programming, the VS1000 contains a number of ways to update the flash contents.
The nand flash contents can be updated by

• programming the nand flash off-pcb using a prommer
• running a flasher program via the vs3emu emulator interface (requires RS-232)
• running a flasher program via an SPI EEPROM
• running a flasher program via the VS1000 USB mass storage backdoor

The last option is most convenient for players that don’t have RS-232 port, such as the
VS1000 Demonstration Board. When the VS1000 is switched to USB Mass Storage
mode by attaching the USB cable when GPIO0[6] is low, it creates a logical drive that is
presented to the USB host as a removable disk.

A special thing happens when the ROM software can’t detect a nand flash chip (by
reading the VLSI boot ID as explained earlier). In that case, the software creates a RAM
disk of a few kilobytes. This can be detected by the disk being empty and having a size of
only about 16 kilobytes. (The RAM disk also has the identifier signature “VLSIFATDISK”
but that is normally not shown by Windows.)

This feature can be used for initial programming of the nand flash since at the first boot-
up of a new VS1000 device with an empty nand flash, the VLSI ID is not yet programmed
into the nand flash and thus the RAM disk appears. Later on, when the nand flash is
programmed and its contents need to be updated, the nand flash detection can be
prevented by pulling CS1 low when powering up the VS1000. In the Demonstration
Board this can be done by shorting TP2 and CS1 pads on the Developer Board PCB.
When connected to the PC, the RAM disk appears and the short should be removed.
The user can now copy files to the RAM disk using Windows/Unix etc.

A special file named VS1000_B.RUN can now be copied to the RAM disk. When the
USB cable is removed, without turning off power, the VS1000B loads and runs a boot
record from that file.

For updating the flash contents, VS1000_B.RUN should contain a flasher program, that
reads another file named NANDFLSH.IMG from the RAM disk and writes its contents to
the beginning of the nand flash. When the VS1000 boots up the next time, with CS1
pulled high, it uses and boots up from the nand flash with the updated software.

The software tools package for VS1000 contains the above VS1000_B.RUN file. Its
source code is shown on the next page as an example of more complicated (and pow-
erful) VS1000 programming that uses the integrated ROM code library.

Rev. 0.20 2011-10-04 Page 38(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

// Program for flashing first sector of a compatible Nand Flash chip

// from file NANDFLSH.IMG on the RAMDISK.

// Since this program is run from file VS1000_A.RUN in the ramdisk, *map already

// points to an existing ramdisk, so OpenFile() etc work from the ramdisk.

#include <vs1000.h>

#include <minifat.h>

#include <vsNand.h>

extern __y u_int16 mallocAreaY[]; /* for ramdisk */

extern u_int16 mallocAreaX[]; /* for ramboot */

extern struct FsNandPhys fsNandPhys;

extern struct FsPhysical *ph;

void main(void) {

register int j = 0;

ph = &fsNandPhys.p; // Physical disk is nand flash handler in ROM

mallocAreaY[29] = 0x3220; // Force disk image to be FAT12

if (InitFileSystem() == 0) { // Reinitialize file system in FAT12 mode

static const u_int32 bootFiles[] = { FAT_MKID('I','M','G'), 0 };

minifatInfo.supportedSuffixes = bootFiles; // Only read .IMG files

if (OpenFile(0) < 0) { // Open first .IMG file on ramdisk

j = ReadFile(mallocAreaX, 0, 2*0x1000) / 2;

if (j==0) goto fail; // Could not read from the file

} else goto fail; // OpenFile() did not find any .IMG file from the ramdisk

// File is now read to mallocAreaX and j contains its length.

((struct FsNandPhys *)ph)->nandType = mallocAreaX[2]; //nandType from imgfile

((struct FsNandPhys *)ph)->waitns = 200; //Set 200 ns wait states

if (ph->Erase(ph, 0)){ // Call ROM routine to erase flash

goto fail; // In case of erase failure

}

// Call ROM routine to write sector, goto fail if chip reports write error

if (ph->Write(ph, 0, (j+255)/256, mallocAreaX, NULL) == 0) goto fail;

/* Programming done, do special LED blink */

while(1){

PERIP(GPIO1_ODATA) = 0x04; /* GPIO1[2] (LQFP pin 24) = 1 */

for (j=0; j<10; j++) BusyWait10();

PERIP(GPIO1_ODATA) = 0x08; /* GPIO1[3] (LQFP pin 25) = 1 */

for (j=0; j<100; j++) BusyWait10();

} // Continue the blinking forever

}

fail:

PERIP(GPIO1_ODATA) = 0x08; // in fail condition constantly light LED 2

while(1)

;

}

Rev. 0.20 2011-10-04 Page 39(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

10 Using an external display

The VS1000 can be interfaced easily to an external display controller using the SPI bus.
Since all LCD controllers don’t have an embedded character generator, the VS1000
includes a ROM font that can be used to draw alphanumeric characters and symbols.

The ROM font contains

• ASCII symbols 32...127
• Half-width katakana symbols
• Special symbols (play,pause,stop,speaker,usb,cabinet,...)

Additional symbols can be defined in RAM.

The low bytes of u_int16 fontData[] contain the low end ASCII shapes and variable-
width symbols:

Figure 6: VS1000 variable-width symbols

u_int16 fontPtrs[] contains the starting offsets of pixel data for each character.

The high bytes of u_int16 fontData[] contain katakana and fixed width special sym-
bols:

Figure 7: VS1000 fixed width symbols

For more information, see files romfont.txt and display.c in the Developer Toolkit.
Also see optimized LCD functions in the VS1000 developer library (see dev1000.h) .

Rev. 0.20 2011-10-04 Page 40(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

11 Peripheral documentation

12 VS1000 System Controller

12.1 General

The System Controller controls various global aspects of VS1000 function such as the
system clock and voltages and I/O pin modes.

12.2 Registers

The System Controller is accessed through 2 registers, SCI_SYSTEM and SCI_STATUS.

12.2.1 SCI_SYSTEM: System Power and Clock Control

SCI_SYSTEM Bits
Name Bits Description
SCISYSF_CLKDIV 15 Divide Clock by 2 (for 24 MHz xtal)
SCISYSF_AVDD 14:10 Analog and Usb Voltage setting 2.5V - 3.6V
SCISYSF_IOVDD 9:5 I/O Voltage setting 1.8V - 3.3V
SCISYSF_CVDD 4:0 Core Voltage setting 1.25V - 2.7V

SCI_SYSTEM controls the internal voltage regulator and clock divider of VS1000. Set-
ting the clock divider while PLL is not used (clock multiplier = 1) makes the system run
at considerably slower clock rate, conserving the system power.

Setting bad voltage values can cause malfuntion and/or even physically harm the
device or, in case of IOVDD, even other devices attached to the I/O Pins.

The default values in reset are:

Default Regulator Output Voltages
Net Default Value Description
AVDD 2.6 V Analog and Usb Voltage
IOVDD 1.8 V I/O Voltage
CVDD 2.2 V Core Voltage

The Core VDD is directly routed to the DSP core and peripheral logic. AVDD and IOVDD
are routed by the PCB, allowing PCB layout to generate fixed AVDD and IOVDD voltages
(for AVDD and IOVDD there are separate pins for regulator output and chip input).

Rev. 0.20 2011-10-04 Page 41(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

12.2.2 USB powering

When USB is active, USB requires at least 3.5V, which is more than the default IOVDD
value, so the voltage for the USB pins is taken from AVDD output of the internal voltage
regulator.

12.2.3 SCI_STATUS: System Flags

The SCI_STATUS register is the second System Controller register. It is used to control
and read the state of several system level peripherals.

SCI_STATUS Bits (r/w)
Name Bits Description
SCISTF_SLOW_CLKMODE 15 Divide XTALI by 256
SCISTF_USB_DN_OUT 14 D- pin output state in GPIO mode
SCISTF_USB_DP_OUT 13 D+ pin output state in GPIO mode
SCISTF_USB_DDR 12 Drive D+/D- pins directly as GPIO
SCISTF_VCM_OVERLOAD 11 VCM pin overload, CBUF disconnected
SCISTF_VCM_DISABLE 10 Disable VCM protection
SCISTF_USB_DP 9 State of D+ pin
SCISTF_USB_DN 8 State of D- pin
SCISTF_USB_DIFF_ENA 7 Enable USB data input
SCISTF_USB_PULLUP_ENA 6 Activate 1.5kOhm D+ pull-up resistor
SCISTF_REGU_POWERLOW 5 Regulator input too low for good AVDD
SCISTF_REGU_POWERBUT 4 State of Power Button (“Play/Pause”) pin
SCISTF_ANADRV_PDOWN 3 Analog Output Driver power down control
SCISTF_ANA_PDOWN 2 Analog Core (bias) power down control
SCISTF_REGU_CLOCK 1 Clock in new regulator voltage values
SCISTF_REGU_SHUTDOWN 0 Regulator Shutdown control

12.2.4 USB detection

USB detection and device attachment/detachment are handled using the System Con-
troller. Actual USB data traffic is handled using the USB peripheral itself.

It is suggested that bot the D+ and D- pins have a 1 megaohm pull-up resistor on the
PCB. This makes both D+ and D- pins weakly bias to “1” state when the device is not
connected to a USB port. When the USB cable is attached, the 15 kilo-ohm pull-down
resistors of the host USB hub pull D+ and D- low, pulling the pins to “0” state. Thus
detecting SCISTF_USB_DN = 0 indicates USB cable connect.

Upon detecting the connection of the USB cable, software should switch to USB volt-
ages, change the system clock to 48 MHz (XTALI=12.000MHz, Clock Multiplier 4.0x) and
wait for the clock to stabilize before setting SCISTF_USB_PULLUP_ENA high, which
activates the integrated 1.5 kilo-ohm pull-up resistor of D+, signaling the PC to start
enumeration of the USB device.

Rev. 0.20 2011-10-04 Page 42(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

12.3 Conserving Power

Three main factors affect the power requirement of any CMOS device are clock fre-
quency, voltage, and leakage. Of these, clock frequency has the greatest effect to power
consumption.

The Clock frequency of VS1000 is controlled by

• The XTALI input (crystal oscillator)

• The System Controller

• The PLL (Phase Locked Loop) Controller (Clock multiplier)

The System Controller’s role in clock control is providing two clock dividers between the
crystal oscillator output and the analog block and the PLL controller. First there is a
divide-by-2 block, which is controlled by SCISTF_SLOW_CLKMODE. After that there is
a divide-by-256 block, which is controlled by SCISYSF_CLKDIV.

The divide-by-2 block is normally used when there is a 24 MHz crystal connected to the
XTALI/XTALO pins (normally a 12 MHz crystal is used). Setting SCISTF_SLOW_CLK-
MODE affects all system frequencies, including the PLL, but it does not prohibit using
PLL.

It should be noted that the analog block requires 12 MHz from System Controller for
proper performance.

The divide-by-256 block is used to considerably cut down power consumption. This is
especially useful when some basic operation is needed (such as the capability to recover
from USB suspend or resume after low-power PAUSE mode) but battery life needs to
be extended.

The PLL must not be used when divide-by-256 is active. The PLL tries and fails to lock
to a frequency below PLL minimum. Switch off PLL (set 1 x clock multiplier) before
setting SCISYSF_CLKDIV.

If divide-by-256 is activated without first switching the analog drivers off, the DAC sigma-
delta modulator noise (which is part of normal sigma-delta operation) drops down to au-
dible frequencies, which is undesired. To overcome this, set SCISTF_ANADRV_PDOWN
before activating SCISYSF_CLKDIV. You should also write 0 to DAC_LEFT DAC_RIGHT
to further diminish digital noise and power consumption. Remember to restore the val-
ues before resuming playback.

If playback will resume directly after recovering from the power down state, it is not
recommended to set SCISTF_ANA_PDOWN since restoring the bias voltages of the
analog block can result in a power-up pop sound. If that is not relevant (such as in a
USB suspend condition,) SCISTF_ANA_PDOWN should be asserted to further mini-
mize power consumption. Also setting the AVDD, DVDD and CVDD to a lower level will
diminish power consumption.

Rev. 0.20 2011-10-04 Page 43(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

The divide-by-2 and divide-by-256 blocks can be active at the same time, resulting in a
master clock that is divided by 512. With the standard 12 MHz crystal, this results in a
system clock of just above 23 kHz (23437.5 Hz).

12.4 I/O Pin Routing

The System Controller controls the I/O pins of the device, routing signals to/from the
peripherals such as a serial port or GPIO controller.

GPIOn_MODE Bits
Name Bits Description
periph/gpioX 15:0 bit vector; 1=peripheral 0=GPIO

GPIO0_MODE and GPIO1_MODE control output signal routing for the I/O pins. Most
pins are multiplexed between general purpose input/output and a peripheral function.
Pins are controlled by peripheral functions by default. Writing “0” to a bit in GPIOn_MODE
enables direct control over the pin.

Regardless of GPIOn_MODE register value, the input data (1/0 state of pin) can always
be read from the GPIOn_IDATA register (See section: Interruptable General Purpose
IO).

Switching a pin to GPIO mode can be used to disable data flow from a pin to a peripheral
function. The following peripheral input signal values are set when the corresponding
pin is in GPIO mode:

Peripheral Function Input Signal Values When pin is in GPIO Mode
GPIO Function Value
GPIO0[7:0] Nand Flash data input 00000000
GPIO0[8] Nand Flash Ready 1
GPIO1[0] SPI Slave Select 1
GPIO1[1] SPI Clock 1
GPIO1[2] SPI MISO 1
GPIO1[3] SPI MOSI 1
GPIO1[5] UART Receive 1

12.5 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for the System Controller:

At boot-up time, if pin D7 (pin number 12 in LQFP package) is pulled high, the ROM
software raises IOVDD from 1.8V to 3.3V. If it is pulled low, IOVDD remains at 1.8V. The
pin should not be left floating.

The default core voltage has been raised to 2.2V in VS1000B.

The ROM code expects a 12.000 MHz crystal input.

Rev. 0.20 2011-10-04 Page 44(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

13 PLL controller v1.0 2006-05-10

13.1 General

The Phase-Locked Loop (PLL) controller is used to generate clock frequencies that are
higher than the incoming (crystal-based) clock frequency. The PLL output is used by the
CPU core and some peripherals.

Configurable features include:

• VCO Enable/Disable

• Select VCO or input clock to be output clock

• Route VCO frequency to output pin

• Select PLL clock multiplier

13.2 DAC Interpolator control

The DAC interpolator frequency control and PLL controller are controlled using the
same register pair FREQCTLH and FREQCTLL. Output sample rate is derived from the
rollover frequency of a 20-bit interpolator accumulator. Its accumulation rate is specified
by ifreq.

The maximum value for ifreq is 0x80000. Note that the DAC (and thus also the interpo-
lator) clock is not controlled by the PLL (see “VS1000 System Controller” and “Overview
of VS1000 Clocking”).

13.3 Registers

Register map is shown in the next table.

13.3.1 Interpolator Rate (low part)

FREQCTLL bits
Name Bits Description
ifreq[15:0] 15:0 Bits 15..0 of the interpolator accumulation rate

Rev. 0.20 2011-10-04 Page 45(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

13.3.2 Interpolator Rate (high part) and PLL control

FREQCTLH bits
Name Bits Description
pll-lock-read 13 0=lock failed since last test
pll-lock-test 12 1:Sets pll-lock-read to 1 to start lock test
vco-out-ena 11 Route VCO to GPIO pin (VS1000:second cs

pin)
use-pll 9 1:System clock is VCO / 0:System clock is inclk
pll-in-divide 8 divide inclk by 2 (for 1.5, 2.5 or 3.5 x clk)
pll-ratectl 7:4 PLL rate control
ifreq[19:16] 3:0 Bits 19..16 of the interpolator accumulation rate

For comprehensive reference on the function of the clock routing bits, see section
“Overview of VS1000 Clocking” below.

At the core of the PLL controller is the VCO, a high frequency oscillator, whose oscil-
lation frequency is adjusted to be an integer multiple of some input frequency. As the
name “Phase-Locked Loop” suggests, this is done by comparing the phase of the input
frequency against the phase of a signal which is derived from the VCO output through
frequency division.

If the system is stable, e.g. the comparison phase difference remains virtually zero, the
PLL is said to be “in lock”. This means that the output frequency of the VCO is stable
and reliable.

The PLL locked status can be checked by generating a high-active pulse (writing first “1”
, then “0”) to pll-lock-test and reading pll-lock-read. Pll-lock-read is set to “1” along with
the high level of pll-lock-test and to “0” whenever the PLL falls out of lock. So if the “1”
remains in pll-lock-read, PLL is in sync.

The PLL controller gets its input clock from the System Controller and its operation
optimized for frequencies around 12..13 MHz. If you activate clock dividers in the System
Controller to get a slow master clock, you should turn the PLL off before (also switch off
analog before setting a clock of less than 10 MHz).

Note that USB requires 48.0 MHz for packet sending/receiving.

It’s recommended to change the PLL rate in small steps and wait for the PLL to stabilize
after each change. For diagnostic purposes, the PLL clock output (VCO) can be routed
to an I/O pin so it can be scanned with an oscilloscope.

Bits [7:4] (pll-ratectl) control PLL multiplication rate. PLL multiplier is (pll-ratectl + 1).
When pll-ratectl is 0, the VCO is powered down and output clock is forced to be input
clock (same as use-pll = 0).

Rev. 0.20 2011-10-04 Page 46(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

13.4 Overview of VS1000 Clocking

Below is a diagram showing the basic layout of the clock signal paths in VS1000:

2 1

0

2 1

0

1

0

1

0

Analog BlockXTALI

SCI_SYSTEM[15]

256

FREQCTLH[8]

Multiplier

FREQCTLH[7:4] FREQCTLH[9]

4

CLKI

SCI_STATUS[15]

(should be

12..13 MHz

when playing)

To Core

Figure 8: VS1000 Clocking

With a 12.0000 megahertz crystal, the following core clock speeds are within limits:

Core Frequency Calculation XTALIN=12.000 MHz
Register Values Result

S
C

I_
S

Y
S

TE
M

[1
5]

S
C

I_
S

TA
TU

S
[1

5]

FR
E

Q
C

TL
H

[9
]

FR
E

Q
C

TL
H

[8
]

FR
E

Q
C

TL
H

[7
:4

] Registers:
SCI_SYSTEM[15] XTALI divide by 2
SCI_STATUS[15] XTALI divide by 256
FREQCTLH[9] Use PLL
FREQCTLH[8] Divide PLL input clock by 2
FREQCTLH[7:4] PLL rate control

1 1 0 0 0000 0.02344 MHz (23.438 kHz) (Lower CVDD possible)
0 1 0 0 0000 0.04688 MHz
1 0 0 0 0000 6 MHz
0 0 0 0 0000 12 MHz
0 0 1 1 0010 18 MHz
0 0 1 0 0001 24 MHz
0 0 1 1 0100 30 MHz
0 0 1 0 0010 36 MHz
0 0 1 1 0110 42 MHz
0 0 1 0 0011 48 MHz (required by USB, maximum used by ROM code)
0 0 1 1 1000 54 MHz
0 0 1 0 0100 60 MHz (Possible with high CVDD but not recommended)

Rev. 0.20 2011-10-04 Page 47(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

Note that higher frequencies have higher CVDD requirements and frequencies above
54 MHz are not recommended for production use.

13.5 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for PLL:

The clock rate is selected to be 12 MHz by default, 48 MHz when USB is connected
and variable between 12 and 42 MHz when Ogg Vorbis is playing. DAC rate is set to
44100 Hz when in the USB audio mode. When Vorbis is playing, the sample rate is set
to the sample rate specified in the Ogg file.

Rev. 0.20 2011-10-04 Page 48(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

14 Interruptable General Purpose IO (VS1000) v1.0 2002-04-23

14.1 General

This chapter describes the interrupt-capable 16-bit general-purpose I/O block for VS_DSP.

Note that in VS1000, pin function is partly handled also by the System Controller:
GPIOn_MODE register bits control whether output data for a GPIO pin is taken from
a peripheral function (mode=“1”) or the GPIO controller (mode=“0”).

14.2 Registers

Interruptable General I/O registers, prefix GPIOx_
Reg Type Reset Abbrev Description

0 r/w 0 DDR Data direction
1 r/w 0 ODATA Data output
2 r 0 IDATA Data input (I/O pin state)
3 r/w 0 INT_FALL Falling edge interrupt enable
4 r/w 0 INT_RISE Rising edge interrupt enable
5 r/w 0 INT_PEND Interrupt pending source
6 w 0 SET_MASK Data set (→ 1) mask
7 w 0 CLEAR_MASK Data clear (→ 0) mask
8 r/w 0 BIT_CONF Bit engine config 0 and 1
9 r/w 0 BIT_ENG0 Bit engine 0 read/write

10 r/w 0 BIT_ENG1 Bit engine 1 read/write

14.2.1 Data Direction GPIOx_DDR

The data direction register (DDR) configures the directions of each of the 16 I/O pins. A
bit set to 1 in the DDR turns the corresponding I/O pin to output mode, while a bit set
to 0 sets the pin to input mode. The register is set to all zeros in reset, i.e. all pins are
inputs by default. The current state of the DDR can also be read.

14.2.2 Output Data GPIOx_ODATA

A write sets the data register value. Change in bits that are configured as outputs are
reflected in the outputs. A read returns the state of data register value.

Note: configuring a pin as input should not reset the state of the corresponding data
register bit. If the data register is first written 0xffff and then all pins are configured as
outputs by writing 0xffff to DDR, all outputs should go to the high state.

Rev. 0.20 2011-10-04 Page 49(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

This operation enables free selection of polarity for outputs, e.g. after reset a pull-up
keeps a control line high, the data register bit is set to 1 and after this the DDR bit is set
to 1 enabling the output.

When a data register bit is set to 0, it is easy to use the I/O pin as open-drain-style
output by changing the direction: as input the line state is 1 by a pull-up, as output the
line is pulled low by the driver.

Possible delays must be documented.

14.2.3 Input Data GPIOx_IDATA

The actual logical levels of the I/O pins are seen in the input data register. Possible
delays must be documented.

14.2.4 Falling Edge Interrupt Enable GPIOx_INT_FALL

If a bit the falling edge interrupt enable register (INT_FALL) is set to 1, a falling edge in
the corresponding pin (even when configured as output) will set the corresponding bit in
the interrupt pending source register (INT_PEND).

14.2.5 Rising Edge Interrupt Enable GPIOx_INT_RISE

If a bit the rising edge interrupt enable register (INT_RISE) is set to 1, a rising edge in
the corresponding pin (even when configured as output) will set the corresponding bit in
the interrupt pending source register (INT_PEND).

14.2.6 Interrupt Pending Source GPIOx_INT_PEND

If any of the bits in the interrupt pending source register (INT_PEND) are set, an interrupt
request is generated. Bits in INT_PEND can be cleared by writing a 1-bit to the bit that
is to be cleared.

Note: the interrupt request will remain asserted until all INT_PEND bits are cleared.

14.2.7 Data Set Mask GPIOx_SET_MASK

A bit mask is written to the data set mask register. All bits that are set in the mask also
set the corresponding bit in the data output register. Other bits retain their old values.
I.e. a logical-OR operation is performed between the data output register old value and
the mask and the result is written to the data output register.

Rev. 0.20 2011-10-04 Page 50(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

14.2.8 Data Clear Mask GPIOx_CLEAR_MASK

A bit mask is written to the data clear mask register. All bits that are set in the mask
clear the corresponding bit in the data output register. Other bits retain their old values.
I.e. a logical-AND operation is performed between the data output register old value and
the mask’s inverse and the result is written to the data output register.

14.2.9 Bit Engine Config GPIOx_BIT_CONF

The bit engine config register (BIT_CONF) selects a mapping between an I/O bit and a
data output/input register bit for each of the bit engine registers.

GPIOx_BIT_CONF Bits
Name Bits Description
GPIO_BE_DAT1 15:12 Data bit selection (0..15) for bit engine 1
GPIO_BE_IO1 11:8 I/O bit selection (0..15) for bit engine 1
GPIO_BE_DAT0 7:4 Data bit selection (0..15) for bit engine 0
GPIO_BE_IO0 3:0 I/O bit selection (0..15) for bit engine 0

14.2.10 Bit Engine 0 Read/Write GPIOx_BIT_ENG0

When writing a value to the bit engine 0 register, the data bit specified in the configura-
tion register is copied to the data output register bit specified in the same register.

When reading a value from the bit engine 0 register, the data input register bit specified
in the configuration register is copied to the data bit specified in the same register, other
bits read out as 0.

14.2.11 Bit Engine 1 Read/Write GPIOx_BIT_ENG1

GPIOx_BIT_ENG1 works just like GPIOx_BIT_ENG0.

Rev. 0.20 2011-10-04 Page 51(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

14.3 VS1000 GPIO Pin Mappings

VS1000 I/O Controller 0 pins and peripheral functions
GPIO Ident LQFP

Pin
Function

GPIO0[0] NFDIO0 2 Nand-flash IO0 / General-purpose IO Port 0, bit 0
GPIO0[1] NFDIO1 3 Nand-flash IO1 / General-purpose IO Port 0, bit 1
GPIO0[2] NFDIO2 4 Nand-flash IO2 / General-purpose IO Port 0, bit 2
GPIO0[3] NFDIO3 5 Nand-flash IO3 / General-purpose IO Port 0, bit 3
GPIO0[4] NFDIO4 9 Nand-flash IO4 / General-purpose IO Port 0, bit 4
GPIO0[5] NFDIO5 10 Nand-flash IO5 / General-purpose IO Port 0, bit 5
GPIO0[6] NFDIO6 11 Nand-flash IO6 / General-purpose IO Port 0, bit 6
GPIO0[7] NFDIO7 12 Nand-flash IO7 / General-purpose IO Port 0, bit 7
GPIO0[8] NFRDY 13 Nand-flash READY / General-purpose IO Port 0, bit 8
GPIO0[9] NFRD 14 Nand-flash RD / General-purpose IO Port 0, bit 9
GPIO0[10] NFCE 15 Nand-flash CE / General-purpose IO Port 0, bit 10
GPIO0[11] NFWR 20 Nand-flash WR / General-purpose IO Port 0, bit 11
GPIO0[12] NFCLE 16 Nand-flash CLE / General-purpose IO Port 0, bit 12
GPIO0[13] NFALE 17 Nand-flash ALE / General-purpose IO Port 0, bit 13
GPIO0[14] CS2 21 General-purpose IO Port 0, bit 14

VS1000 I/O Controller 1 pins and peripheral functions
GPIO Ident LQFP

Pin
Function

GPIO1[0] XCS 22 SPI XCS / General-Purpose I/O Port 1, bit 0
GPIO1[1] SCLK 23 SPI CLK / General-Purpose I/O Port 1, bit 1
GPIO1[2] SI 24 SPI MISO / General-Purpose I/O Port 1, bit 2
GPIO1[3] SO 25 SPI MOSI / General-Purpose I/O Port 1, bit 3
GPIO1[4] TX 26 UART TX / General-Purpose I/O Port 1, bit 4
GPIO1[5] RX 27 UART RX / General-Purpose I/O Port 1, bit 5

14.4 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for GPIO pins:

NFDIO[0:7] (GPIO0[0:7]) are used as the data bus for NAND-FLASH communication,
NFRDY, NFRD, NFCE, NFWR, NFCLE, and NFALE are used as NAND-FLASH control
signals. NFCE, NFCLE, and NFALE are normal GPIO pins, the rest are controlled by
the NAND-FLASH interface peripheral.

Additionally GPIO0[0:4] are used for buttons in addition to the power button (see the
example schematic from the datasheet), and GPIO[6] is used to select between Mass
Storage / Audio Mode when USB is being attached, and GPIO[7] sets the desired IO
voltage at boot time.

GPIO0[14] is not used by the ROM code, so it can for example be used to add a serial

Rev. 0.20 2011-10-04 Page 52(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

display to SPI pins or a parallel display to NFDIO[0:7].

XCS, SCLK, SI, and SO (GPIO1[0:4]) are used for SPI EEPROM boot, if XCS is high
during power-on. During play mode GPIO1[2] and GPIO1[3] are used for play/pause
and random play indication.

TX and RX are normally used for the serial debugging connection.

Rev. 0.20 2011-10-04 Page 53(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

15 Interrupt Controller v1.0 2002-04-23

The interrupt controller is used to forward interrupt requests from peripherals to VSDSP.
The 32 interrupt sources are vectorized, i.e. the VS_DSP core jumps to a different
address according to the 5-bit interrupt vector value. There are three levels of priority
for simulteneous requests and a global disable available for all of the sources.

For an interrupt handler written in C, an assembly language stub that re-enables inter-
rupts before RETI, should be written. The assembly language stub should call the C
language handler routine.

Enable
Reg 0

IRQ Source 0
Int
Origin 0

Global Enable Write

Global Disable Write

upint

Vector
Generation
and
Interrrupt
Request
Logic

5 Int_vector

ack

IRQ Source 31

Enable
Reg 31

Int
origin 31

Global
Intr
Enable

Figure 9: Interrupt Controller Block Diagram

15.1 Registers

Interrupt Controller registers, prefix INT_
Reg Type Reset Abbrev Description

0 r/w 0 ENABLEL0 Interrupt Enable Low 0
1 r/w 0 ENABLEL1 Interrupt Enable Low 1
2 r/w 0 ENABLEH0 Interrupt Enable High 0
3 r/w 0 ENABLEH1 Interrupt Enable High 1
4 r/w 0 ORIGIN0 Interrupt Origin 0
5 r/w 0 ORIGIN1 Interrupt Origin 1
6 r 0 VECTOR[4:0] Interrupt Vector
7 r/w 0 ENCOUNT[2:0] Interrupt Enable Counter
8 w 0 GLOB_DIS[-] Interrupt Global Disable
9 w 0 GLOB_EN[-] Interrupt Global Enable

Rev. 0.20 2011-10-04 Page 54(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

• Enable registers, which contain enable/disable bits for each interrupt source. Bit
pairs configure the interrupt priority and disable.

• Origin registers, which contain the source flags for each interrupt. A request from
an interrupt source sets the corresponding bit. A bit is automatically reset when a
request for the source is generated.

• Enable counter register, which contains the value of the General Interrupt Enable
counter, and two registers for increasing and decreasing the value.

15.1.1 Enable INT_ENABLE[L/H][0/1]

Interrupt enable registers selectively masks interrupt sources. Enable registers 0 contain
sources 0..15 and enable registers 1 contain sources 16..31. Each source has two
enable bits: one in the enable low and one in the enable high register. If both bits are
zero, the corresponding interrupt source is not enabled, otherwise the bits select the
interrupt priority.

High Low Priority
0 0 Source disabled
0 1 Priority 1
1 0 Priority 2
1 1 Priority 3

Priorities only matter when the interrupt controller decides which interrupt to generate
for the core next. This happens whenever two interrupt sources request interrupts at the
same time, or when interrupts become enabled after an interrupt handler routine or part
of code where the interrupts have been disabled.

15.1.2 Origin INT_ORIGIN[0/1]

If an interrupt source requests an interrupt, the corresponding bit in the interrupt ori-
gin register (ORIGIN0 or ORIGIN1) will be set to ’1’. If an interrupt source is enabled
(using ENABLE registers), the interrupt controller generates an interrupt request signal
for VSDSP with the corresponding vector value. The bit in the origin registers is reset
automatically after the interrupt is requested.

If the source is not enabled, the processor can read the origin register state and perform
any necessary actions without using interrupt generation, i.e. polling of the interrupt
sources is also possible. The bits in the interrupt origin registers can be cleared by
writing ’1’ to them.

A read from the interrupt origin register returns the register state.

A write to the interrupt origin register clears bits in the interrupt origin register. All ’1’-
bits in the written value cause the corresponding bits in the interrupt origin register to
be cleared. All zero-bits cause the corresponding bits in the interrupt origin register to

Rev. 0.20 2011-10-04 Page 55(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

keep their state. For example writing a value 0x00ff will clear the lowest eight bits in the
interrupt origin register, while leaving the upper bits as-is.

15.1.3 Vector INT_VECTOR

The last generated vector value can be read from the vector register.

15.1.4 Enable Counter INT_ENCOUNT

The global interrupt enable/disable is used to control whether an interrupt request is sent
to the processor or not. Whenever this 3-bit counter value is non-zero, interrupt requests
are not forwarded to VSDSP. The counter is increased by one whenever the interrupt
controller generates an interrupt request for VSDSP, thus disabling further interrupts.

When read, the enable counter register returns the counter value.

Don’t write directly to INT_ENCOUNT. Use INT_GLOB_DIS and INT_GLOB_EN to ma-
nipulate the value of this register.

15.1.5 Global Disable INT_GLOB_DIS

A write (of any value) to global disable register increases the global interrupt enable/disable
counter by one. If the counter is zero, interrupt signal generation is enabled. When the
interrupt arbitrator generates an interrupt request for VS_DSP core, it automatically in-
creases the counter. The user must write to the global enable register (once) to enable
interrupts.

If an interrupt is generated in the same cycle as a write to global disable register, the
interrupt enable counter is increased by two.

15.1.6 Global Enable INT_GLOB_EN

A write (of any value) to global enable register decreases the global interrupt enable/disable
counter by one. If the counter is zero, interrupt generation is enabled.

The user must write to this register once in the end of the interrupt handler to enable
further interrupts. This should be done in assembly language.

Rev. 0.20 2011-10-04 Page 56(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

15.2 VS1000 Interrupt Sources

VS1000 Interrupt Sources
Name Vector Source
INTV_DAC 0 Digital to Analog Converter
INTV_SPI 1 Serial Peripheral Interface
INTV_USB 2 Universal Serial Bus
INTV_NFLSH 3 Byte-wide Bus (Nand Flash) Controller
INTV_TX 4 UART Transmit
INTV_RX 5 UART Receive
INTV_TIM0 6 Timer 0 underflow
INTV_TIM1 7 Timer 1 underflow
INTV_REGU 8 Input Voltage Monitor
INTV_GPIO0 9 I/O Pin Controller 0
INTV_GPIO1 10 I/O Pin Controller 1

15.3 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for interrupts:

DAC interrupt handles feeding of samples from audio FIFO to DAC registers.

UART RX interrupt is used for starting the ROM monitor. If you perform stdio opera-
tions in your program, you should disable RX interrupt during at least fread() to prevent
monitor to be erroneously triggered.

Timer 0 interrupt is used for software real time counter. The divider is automatically
changed according to the PLL so that the timer always counts 6 MHz cycles (except for
a short while when the PLL is changed).

Rev. 0.20 2011-10-04 Page 57(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

16 SPI v1.3 2005-06-09

16.1 General

MASTER

SLAVE 1 SLAVE 2 SLAVE 3

SCLK

MOSI

MISO

xCS3

xCS2

xCS1

MOSIMOSIMOSI

SCLKSCLKSCLK

MISOMISOMISO

xCS xCS xCS

Figure 10: SPI Bus

SPI is a serial bus interface that allows for simple serial communication between one
host and potentially several slaves. As depicted in Figure 10, four different signals are
required for implementing SPI:

• SCLK (Master Serial Clock): a static serial clock, offered by the master.
• MOSI (Master Out / Slave In): Master’s output data. This output is always driven

by the master.
• MISO (Master In / Slave Out): Slave’s output data. By default, all slaves on the

bus are in high impedance state. When the slave’s chip select is activated, it turns
MISO to an output, and when it starts receiving SCLKs, it behaves as defined in
the slave’s specification.
• xCS (Chip Select): Every slave requires its own chip select. Without the chip select

signal, a slave may not listen to what happens on the SPI bus.

Although widely used, SPI is not a real standard. Because of this, there are many
different implementations, more or less compatible with each other. Also, a very similar
de-facto standard, SSI, is in wide use with e.g. D/A converters. Again, there exists
another de-facto standard very close to this, Microwire. Thus, if one wants to make an
SPI/SSI/Microwire master device that works with all kinds of different slaves, it must be
well configurable.

SPI Block Compatibility
Format Master Slave
SPI Yes Yes
SSI Yes Yes
Microwire Yes No

Rev. 0.20 2011-10-04 Page 58(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

16.2 The SPI Block

The SPI block can implement both a master and slave SPI mode. Figure 11 shows
the two different physical connections for the modes. Chip Select extensions in master
mode allow for implementing several SSI variants. Also, Microwire master mode may be
implemented with this same arrangement.

SPI

slave

mode

xCS

SCLK SPI

master

mode

SCLK

MOSI

MISO

MOSI

MISO

FSYNC

Figure 11: SPI Pins

The SPI block is quite flexible, and allows for many different SPI configurations. Input
and output clock edges may be set independently, and the whole clock may be inverted.
In master mode, it is possible to delay reading a value for a given number of clock
cycles after a given clock edge, making it possible to make SPI implementations that are
not dependent of the output clock edge of a slave device, with the price of decreased
maximum SPI speed.

The most typical SPI configuration is such that 8-bit transfers are written MSB first to
the bus at falling clock edges, and read at a rising clock edges. When a transfer is not
active, the clock is low. This case is presented in Figure 12 (SPI_CF_CLKOPOL=1).

16.2.1 Master Mode

MOSI

SCLK

SCLK

MCLK

i6i7 i5 i4 i3 i2 i1 i0

o7 o6 o5 o4 o3 o2 o1 o0

FSYNC

SPI_CF_MASTER = 1
SPI_CF_DLEN = 8
SPI_CF_FSIDLE = 0
SPI_FSYNC = 0x93

(CLKPHSE=0)

(CLKPHSE=1)

SPI_CC_CLKDIV = 0
SPI_CC_CLKPOL = 0

MISO
SAMPLING
POINTS

Beginning of transfer cycle End of transfer cycle

Figure 12: Example SPI Timing, Master Mode

Rev. 0.20 2011-10-04 Page 59(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

In master mode, the SPI clock SCLK is created in the SPI block. MOSI, SCLK and
FSYNC are in output mode, and MISO in input mode. No pins are in high impedance
state.

The highest speed that can be expected to work is fs = 1
2 × fm, where fs is the SPI

speed and fm is the SPI block’s input clock.

If more than one slave devices are to be used, each device requires a separate chip
select signal. Chips selects are intended to be implemented with general I/O pins.

FSYNC is mainly intended to be used for SSI device synchronization purposes. If it is
not needed for synchronization, it can also be used to implement one chip select. This
approach makes it possible to create a chip select that is automatically deasserted when
a transfer is finished.

16.2.2 Slave Mode

SCLK

MISO

(external)

xCS

o1/7 o1/6 o1/5 o1/4 o1/3 o1/2 o1/1 o1/0 o2/7 o2/7 o2/6

i1/7 i1/6 i1/5 i1/4 i1/3 i1/2 i1/1 i1/0 i2/7

SPI_CF_MASTER = 0
SPI_CF_DLEN = 8
SPI_CF_FSIDLE = 0

MOSI
SAMPLING
POINTS

(external)

SPI_CC_CLKPOL = 0
SPI_CC_CLKPHSE = 0

Figure 13: Example SPI Timing, Slave Mode

In slave mode, the SPI clock SCLK is created externally. MOSI, SCLK and xCS are
inputs, and MISO is only an output when xCS is active. Otherwise MISO is high
impedance, as can be seen in Figure 13. The high impedance state is handled out-
side the SPI block (with gpio control).

In slave mode, the external clock, SCLK is used for latching input bits asynchronously
to the master clock MCLK.

The highest recommended input clock speed is slightly lower than fs =
1
2×fm, where fs

is the input SPI speed and fm is the SPI block’s input clock. The highest operable input
clock speed depends on the SPI block’s input clock speed, on the core clock speed, and
on the software.

There are three receive modes:

1. Interrupted xCS mode

Rev. 0.20 2011-10-04 Page 60(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

2. Falling edge xCS mode
3. Rising edge xCS mode

In interrupted xCS mode the clock is only listened to if xCS is active. Reception starts
when xCS state changes from high to low. If xCS is deasserted in the middle of the
transfer, the reception is aborted.

In falling edge xCS mode reception starts when xCS state changes from high to low, but
transfer is not aborted if xCS changes from low to high mid-transfer. If another high to
low transition is encountered during the transfer of SPI_CF_DLEN+1 bits, the partially
received data is moved to the data register, SPI_ST_BREAK is set, interrupt 0 request
is sent, and a new transfer is initiated.

Rising edge xCS mode works like the falling edge xCS mode, except that the polarity of
the synchronization is reversed.

16.3 Registers

SPI registers, prefix SPIx_
Reg Type Reset Abbrev Description

0 r/w 0 CONFIG[10:0] Configuration
1 r/w 0 CLKCONFIG Clock configuration
2 r/w 0 STATUS[7:0] Status
3 r/w 0 DATA Sent / received data
4 r/w 0 FSYNC SSI Sync data in master mode
5 r/w 0 DEFAULT Data to send (slave) if SPI_ST_TXFULL=’0’

16.3.1 Main Configuration SPIx_CONFIG

SPIx_CONFIG Bits
Name Bits Description
SPI_CF_SRESET 11 SPI software reset
SPI_CF_RXFIFOMODE 10 ’0’ = interrupt always when a word is received,

’1’ = Interrupt only when FIFO register full or CS
deasserted with receive register full

SPI_CF_RXFIFO 9 Receive FIFO enable
SPI_CF_TXFIFO 8 Transmit FIFO enable
SPI_CF_XCSMODE 7:6 xCS mode in slave mode
SPI_CF_MASTER 5 Master mode
SPI_CF_DLEN 4:1 Data length in bits
SPI_CF_FSIDLE 0 Frame sync idle state

SPI_CF_XCSMODE selects xCS mode for slave operation. ’00’ is interrupted xCS
mode, ’10’ is falling edge xCS mode, and ’11’ is rising edge xCS mode.

Rev. 0.20 2011-10-04 Page 61(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

SPI_CF_MASTER sets master mode. If not set, slave mode is used.

SPI_CF_DLEN+1 is the length of SPI data in bits. Example: For 8-bit data transfers, set
SPI_CF_DLEN to 7.

SPI_CF_FSIDLE contains the state of FSYNC when SPI_ST_TXRUNNING is clear.
This bit is only valid in master mode.

16.3.2 Clock Configuration SPIx_CLKCONFIG

SPIx_CLKCONFIG Bits
Name Bits Description
SPI_CC_CLKDIV 9:2 Clock divider
SPI_CC_CLKPOL 1 Clock polarity selection
SPI_CC_CLKPHASE 0 Clock phase selection

In master mode, SPI_CC_CLKDIV is the clock divider for the SPI block. The gener-
ated SCLK frequency f = fm

2×(c+1) , where fm is the master clock frequency and c is
SPI_CC_CLKDIV. Example: With a 12 MHz master clock, SPI_CC_CLKDIV=3 divides
the master clock by 4, and the output/sampling clock would thus be f = 12MHz

2×(3+1) =
1.5MHz.

SPI_CC_CLKPOL reverses the clock polarity. In master mode, the inverter is imple-
mented as the last thing in the output clock data chain. In slave mode, it is imple-
mented as the first thing in the input clock data chain. See Figure 14 for details.
If SPI_CC_CLKPOL is clear the data is read at rise edge and written at fall edge if
SPI_CC_CLKPHASE is clear. When SPI_CC_CLKPHASE is set the data is written at
rise edge and read at fall edge.

SCLK
 SPI
block

SPI_CC_CLKPOL

 SPI
block

SPI_CC_CLKPOL

MASTER MODE SLAVE MODE

M
U

X

M
U

X

SCLK_int

SCLK_int

SCLK

Figure 14: Normal and Reverese SPI Clock Polarity

SPI_CC_CLKPHASE defines the data clock phase. If clear the first data is written when
xcs is asserted and data is sampled at first clock edge (rise edge when SPI_CC_CLKPOL
= 0 and fall edge if SPI_CC_CLKPOL = 1). If SPI_CC_CLKPHASE is set the first data
is written a the first data clock edge and sampled at second.

Rev. 0.20 2011-10-04 Page 62(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

16.3.3 Status SPIx_STATUS

SPIx_STATUS Bits
Name Bits Description
SPI_ST_RXFIFOFULL 7 Receiver FIFO register full
SPI_ST_TXFIFOFULL 6 Transmitter FIFO register full
SPI_ST_BREAK 5 Chip select deasserted mid-transfer
SPI_ST_RXORUN 4 Receiver overrun
SPI_ST_RXFULL 3 Receiver data register full
SPI_ST_TXFULL 2 Transmitter data register full
SPI_ST_TXRUNNING 1 Transmitter running
SPI_ST_TXURUN 0 Transmitter underrun

SPI_ST_BREAK is set in slave mode if chip select was deasserted in interrupted xCS
mode or a starting edge is encountered in xCS edge modes while a data transfer was in
progress. This bit has to be cleared manually.

SPI_ST_RXORUN is set if a received byte overwrites unread data when it is transferred
from the receiver shift register to the data register. This bit has to be cleared manually.

SPI_ST_RXFULL is set if there is unread data in the data register.

SPI_ST_TXFULL is set if the transmit data register is full.

SPI_ST_TXRUNNING is set if the transmitter shift register is in operation.

SPI_ST_TXURUN is set if an external data transfer has been initiated in slave mode
and the transmit data register has not been loaded with new data to shift out. This bit
has to be cleared manually.

Note: Because TX and RX status bits are implemented as separate entities, it is rela-
tively easy to make asynchronous software implementations, which do not have to wait
for an SPI cycle to finish.

16.3.4 Data SPIx_DATA

SPIx_DATA[SPI_CF_DLEN:0] may be written to whenever SPI_ST_TXFULL is clear. In
master mode, writing will initiate an SPI transaction cycle of SPI_CF_DLEN+1 bits. In
slave mode, data is output as soon as suitable external clocks are offered. Writing to
SPIx_DATA sets SPI_ST_TXFULL, which will again be cleared when the data word was
put to the shift register. If SPI_ST_TXRUNNING was clear when SPIx_DATA was written
to, data can immediately be transferred to the shift register and SPI_ST_TXFULL won’t
be set at all.

When SPI_ST_RXFULL is set, SPIx_DATA may be read. Bits SPI_CF_DLEN:0 contain
the received data. The rest of the 16 register bits are set to 0.

Rev. 0.20 2011-10-04 Page 63(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

16.3.5 SSI Synchronization SPIx_FSYNC

SPIx_FSYNC is meant for generation of potentially complex synchronization signals,
including several SSI variants as well as a simple enough automatic chip select signal.
SPIx_FSYNC is only valid in master mode.

If a write to SPIx_DATA is preceded by a write to SPIx_FSYNC, the data written to
SPIx_FSYNC is sent to FSYNC with the same synchronization as the data written
to SPIx_DATA is written to MOSI. When SPI_ST_TXRUNNING is clear, the value of
SPI_CF_FSIDLE is set to FSYNC.

If SPIx_DATA is written to without priorly writing to SPIx_FSYNC, the last value written
to SPIx_FSYNC is sent.

SPIx_FSYNC is double-buffered like SPIx_DATA.

16.4 Interrupts

The SPI block has one interrupt.

Interrupt 0 request is sent when SPI_ST_BREAK is asserted, or when SPI_ST_TXFULL
or SPI_ST_TXRUNNING is cleared. This allows for sending data in an interrupt-based
routine, and turning chip select off when the device becomes idle.

16.5 Changes from 1.2

A default data register is added. If in slave mode there is no data to send when it is
needed (SPI_ST_TXFULL is ’0’), the default data is sent (and SPI_ST_TXURUN is set
like before).

In addition to receive and transmit data registers another set of FIFO registers are
added. In normal mode these are not used. If SPI_CF_TXFIFO is set, two words can be
waiting while a third one is in transmit. An interrupt is generated when SPI_ST_TXFULL
becomes ’0’ (like before).

If SPI_CF_RXFIFO is set, RX FIFO register holds another received word while a third
one is in receive. When SPI_DATA is read and SPI_ST_RXFIFO is ’1’, the FIFO register
value is returned, otherwise the receive register value is returned.

Status register should be writable by user, i.e. it must be possible to clear the state of
FIFO and transmit/receive register indicators.

The clock configuratio register operations has changed. This device uses the common
SPI clocking configuration modes where data clock’s polarity and phase can be inverted.

Rev. 0.20 2011-10-04 Page 64(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

16.6 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for SPI:

At boot-up the SPI chip select is checked: if it’s pulled high, SPI boot is attempted.

When SPI is not active, the default player application uses the SPI data lines (SI and
SO) in GPIO mode as LED controls.

16.7 Effect of Clock Multiplier

Note that the clock multiplier affects SPI speed. In VS1000 ROM you can read the
current clock multiplier setting in global variable clockX. Here’s a line of code that sets
the SPI clock speed taking the clock multiplier into account:

PERIP(SPI0_CLKCONFIG) = SPI_CC_CLKDIV * (clockX - 1);

Rev. 0.20 2011-10-04 Page 65(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

17 Byte-wide bus/Nand Flash controller v1.0 2006-05-10

17.1 General

The byte-wide bus peripheral implements a nand flash controller with vsdsp peripheral
bus interface. The peripheral can be configured for different speed/size memory devices.
The device has internal ECC calculation which provides the error detection data for the
dsp.

VS1000 Nand Flash interface uses chip’s master clock to generated IO signal trans-
actions. Therefore changing master clock frequency changes also the interfaces’s AC
waveforms.

The Nand Flash controller requires that dsp controls the command latch enable (CLE)
and address latch enable (ALE) pins directly (as GPIO). Memory chip enable (NFCE)
can be controlled either as GPIO or automatically by the Nand Flash controller. Other
signals are generated with NF peripheral.

• NFCE : Chip enable, active low

• NFWR : write enable, active low

• NFRD : Read enable, active low

• NFDIO : 8-bit data bus, sampled at rising edge of NFRD and written at falling edge
of NFWR

• NFRDY : Ready/xBusy signal from flash chip. This signal must be at logic HIGH
state before read or write operation is started (command, address or data trans-
action). NFRDY requires external 10 kOhm pull-up resistor.

The nand flash IO signals can be read at any time through GPIO0_IDATA.

The peripheral provides clocked byte transfers of 1..32 bytes from an integrated buffer
memory freeing the DSP from having to generate clocking for each transferred byte. The
peripheral also provides standard Error Correcting Code (ECC) calculation for 1..512
byte blocks.

Configurable features include:

• Programmable address cycles from 1 to 32

• Programmable wait states from 0 to 63 (i.e. Read/write pulse time)

• ECC calculation disable/enable

• Interrupt request disable/enable

• Chip select write mode continuous/byte-at-a-time (for LCDs)

• 1 - 512 byte blocks ECC calculation (in 16-bit words)

• Programmable burst transactions from 1 to 32 bytes

Rev. 0.20 2011-10-04 Page 66(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

17.2 Block Diagram

Figure 15: Simplified Nand Flash Interface Block Diagram.

The nand flash controller consists of the memory interface signal generation unit and
ECC calculation and logging unit. These units can operate separately from each other.

The peripheral implements a memory mapped interface that generates the control sig-
nals for flash memory read/write operation. It also calculates and logs the parity bit
information from one read/write block. The block size is not limited but the byte counter
is only 9 bits. Reads/writes can be done one at a time or from a 32-byte data buffer in
bursts from 1 to 32 bytes at a time. Block diagram with the main registers is shown in
the next figure.

The architecture has timing control logic which controls the flash operation delay of each
write/read. This logic controls the NFWR, NFRD and NFCE signal toggling. NFWR and
NFRD pulses are always symmetric. Without wait states each write/read cycle takes two
master clock cycles. When waitstates are set to 1 each cycle takes 2+2 master clock
cycles. I.e. Each operation takes (waitstates+1) * 2 master clock cycles. Waitstates can
be set from 0 to 63 (6-bit register). For LCDs the chip select in write mode can be set to
toggle between bytes.

The 32-byte buffer memory consists of 16 addresses, 16 bits each. In the byte-wide bus
operations, the high 8 bits (MSB) are transferred first.

Rev. 0.20 2011-10-04 Page 67(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

17.3 Registers

Nand flash controller user registers can be divided to three groups: the nand flash in-
terface control registers, the dsp interface control registers and the ECC control/logging
registers. Register map is shown in the next table.

Byte-wide bus peripheral registers
Offset Type Register Function
0 rw CTRL[8:0] Byte-wide Bus (Nand Flash) Controller Control
1 r LPL[15:0] Calculated Line Parity for 512-byte block
2 r CP_LPH[7:0] Calculated Column Parity for 512-byte block
3 rw DATA[15:0] Buffer Data read/write register
4 rw NFIF[12:0] Buffer-to-Physical Interface Control
5 rw DSPIF[7:0] Buffer-to-DSP Interface Control
6 r ECC_CNT[7:0] Error Correction Code counter

17.3.1 Control register

NFLSH_CTRL bits
Name Bits Description
lcd-ce-mode 8 Chip select operation mode in read/write cycles
int-enable 7 Interrupt enable
nf-sreset 6 Resets the controller
waitstates 5:0 Number of wait states in read/write cycles

Waitstates delays the read/write operation by (1+n)+(1+n) master clock cycles where n
is the number of wait states. I.e. The flash read/write enable low and high times are
both delayed.

17.3.2 Line and Column parity registers

NFLSH_LPL bits
Name Bits Description
lpl 15:0 Low part (bits 15:0) of Line Parity

NFLSH_CP_LPH bits
Name Bits Description
cp 7:2 Calculated Column Parity bits (6 bits)
lph 1:0 High part (bits 17:16) of Line Parity

Lp and cp calculate the parity bits as descibed in Samsung’s Application Note for NAND
Flash Memory (Revision 2.0). The parity calculation can be used with or without actually
accessing any physical Nand Flash device. A nand operation can be active during ECC
calculation but it must be from/to the data buffer.

When ECC is enabled (ecc-ena=1), each read and write to the dreg register updates

Rev. 0.20 2011-10-04 Page 68(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

the ECC. ECC is calculated from the 16-bit values of dreg register.

The ECC generation uses the Hamming ECC principle. In case of 528 byte page nand
flash (small page) a 24 bit ECC is generated. This gives a performance of 2 bit de-
tection and 1 bit correction. For 2112 byte page nand flash memories (large page) the
calculation can be done in 512 byte sections.

17.3.3 Data register

NFLSH_DATA bits
Name Bits Description
dreg 15:0 Data read/write register. Can be used with or

without ECC.

All data transfers to/from the are done through this register. The operation of NFLSH_DATA
depends from dsp-ena-dbuf, dsp-rd-wrx and nf-rd-wrx. When dsp-rd-wrx is set the reg-
ister samples the data buffer (from pointer address dsp-dbuf-pntr) or the nand flash input
register (when dsp-ena-dbuf is low).

Data buffer reads/writes can be done in 16 consecutive clock cycles. It must be noted
that when the read mode (dsp-rd-wrd set) is selected it takes one clock cycle for the
control to transfer the first word from data buffer to dreg. Therefore it is recommended
that the read mode is set (+ ecc reset/enable/disable) as the nand flash operation is
started.

17.3.4 Interface control towards physical pins

NFLSH_NFIF bits
Name Bits Description
nf-byte-cnt 12:8 Rx / tx byte counter, hardware sends nf-byte-cnt

+ 1 bytes
nf-use-dbuf 7 write from buffer(1) or dreg register(0)
nf-dbuf-pntr 6:2 pointer address of the data buffer for next

read/write
nf-do-op 1 nand flash interface start operation bit (resets

when done)
nf-rd-wrx 0 read(1)/write(0) selection

NFIF control register can only be written in idle state. Current nand flash operation can
be terminated by setting the nf-sreset bit of the control register. When all bytes are
read/written an interrupt is given (if enabled)

Rev. 0.20 2011-10-04 Page 69(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

17.3.5 Interface control towards DSP

NFLSH_DSPIF bits
Name Bits Description
dsp-dbuf-pntr 7:4 Data buffer pointer for next operation
dsp-ena-dbuf 3 Use data buffer for operations (’1’ = enabled)
dsp-rd-wrx 2 Dsp read/write selection (’1’ = read)
ecc-ena 1 Ecc calculation enable
ecc-sreset 0 Ecc register reset bit (zeroed after one cycle)

When dsp-ena-dbuf is 0, the 32-byte buffer memory is not changed.

17.3.6 ECC counter register

NFLSH_ECC_CNT bits
Name Bits Description
ecc-cnt 7:0 Calculated ecc words (data is processed in 16-

bit format)

Ecc-cnt register counts the 16-bit words that are read or written to dreg. This information
is required when lpl, lph and cp are calculated. The register is updated only when the
ecc is enabled (ecc-ena = ’1’). In write operation the register is updated one clock cycle
after the write took place (as the data is being moved to the data buffer) and in the read
operation it is updated in the same clock cycle.

Rev. 0.20 2011-10-04 Page 70(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

17.4 Timing

Figure 16. shows the signal generation for the command write operation when wait
states is 1. The write pulse duration can be calculated from equation:

Twl = 1/fCLKI ∗ (WS + 1), where

CLKI is the internal clock frequency and WS is the nand flash IF wait state register.
Same principle applies to NFDIO signals.

Nand Flash Command Write Transaction
Sym Parameter CLKI cyc Min@48MHz Max@48MHz
Tcles Command latch enable setup

time
> 1 41.6ns

Tcleh Command latch enable setup
time

> 1 41.6ns

Tcled ALE inactive to CLE active
delay

> 1 41.6ns

Tces NFCE active to NFWR active
delay

1 20.8ns 20.8ns

Tceh NFWR inactive to NFCE inac-
tive delay

1 20.8ns 20.8ns

Twl Write enable low time 1+WS 41.6ns
Twh Write enable high time 1+WS 41.6ns
Tdos NFDIO data out setup time 1+WS 41.6ns
Tdoh NFDIO data out hold time 1+WS 41.6ns

Figure 16: Nand Flash IF Command Write, WaitStates = 1

Rev. 0.20 2011-10-04 Page 71(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

Figure 17. shows the signal generation for the 4-byte address write operation when wait
states is 0.

The write pulse duration can be calculated from equation:

Twl = 1/fCLKI ∗ (WS + 1), where

CLKI is the internal clock frequency and WS is the nand flash IF wait state register.
Same principle applies to NFDIO signals.

Nand Flash Address Write Transaction
Sym Parameter CLKI cyc Min@48MHz Max@48MHz
Taled CLE inactive to ALE active

delay
> 1 41.6ns

Tales Address latch enable setup
time

> 1 41.6ns

Taleh Address latch enable setup
time

> 1 41.6ns

Tces NFCE active to NFWR active
delay

1 20.8ns 20.8ns

Tceh NFWR inactive to NFCE inac-
tive delay

1 20.8ns 20.8ns

Twl Write enable low time 1+WS 20.8ns
Twh Write enable high time 1+WS 20.8ns
Tdos NFDIO data out setup time 1+WS 20.8ns
Tdoh NFDIO data out hold time 1+WS 20.8ns

Figure 17: Nand Flash IF 4-byte Address Write, WaitStates = 0

Rev. 0.20 2011-10-04 Page 72(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

Figure 18. shows the signal generation for the 4-byte data read transaction when wait
states is 0.

The read pulse duration can be calculated from equation:

Trl = 1/fCLKI ∗ (WS + 1), where

CLKI is the internal clock frequency and WS is the nand flash IF wait state register.

Nand Flash Data Read Transaction
Sym Parameter CLKI cyc Min@48MHz Max@48MHz
Tclei CLE inactive to NFCE active

delay
> 1 41.6ns

Talei ALE inactive to NFCE active
delay

> 1 41.6ns

Tces NFCE active to NFRD active
delay

1 20.8ns 20.8ns

Tceh NFRD inactive to NFCE inac-
tive delay

1 20.8ns 20.8ns

Twed NFWR inactive to NFCE ac-
tive delay

> 1 41.6ns

Trl Read enable low time 1+WS 20.8ns
Trh Read enable high time 1+WS 20.8ns
Tdis NFDIO data in setup time 15ns
Tdih NFDIO data in hold time 0ns
Tz2cs Data bus tri-state setup/hold

time from NFCE edge
1 20.8ns 20.8ns

Figure 18: Nand Flash IF 4-byte Data Read, WaitStates=0

Rev. 0.20 2011-10-04 Page 73(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

Figure 19. shows the signal generation for the 4-byte data write transaction when wait
states is 0.

The write pulse duration can be calculated from equation:

Twl = 1/fCLKI ∗ (WS + 1), where

CLKI is the internal clock frequency and WS is the nand flash IF wait state register.

Nand Flash Data Write Transaction
Sym Parameter CLKI cyc Min@48MHz Max@48MHz
Tclei CLE inactive to NFCE active

deley
> 1 41.6ns

Talei ALE inactive to NFCE active
deley

> 1 41.6ns

Tces NFCE active to NFWR active
delay

1 20.8ns 20.8ns

Tceh NFWR inactive to NFCE inac-
tive delay

1 20.8ns 20.8ns

Tred NFRD inactive to NFCE ac-
tive delay

> 1 41.6ns

Twl Write enable low time 1+WS 20.8ns
Twh Write enable high time 1+WS 20.8ns
Tdos NFDIO data out setup time 1+WS 20.8ns
Tdoh NFDIO data out hold time 1+WS 20.8ns

Figure 19: Nand Flash IF 4-byte Data Write, WaitStates=0

Rev. 0.20 2011-10-04 Page 74(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

17.5 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for the Nand Flash controller:

At boot-up the Nand Flash chip select is checked: if it is pulled high, Nand flash scan
is attempted. NFCE is configured as a GPIO pin and asserted/deasserted in software.
Nand flash boot scan is performed using 660 ns read/write low time for access (27 wait-
states, CLKI = 3.5x).

A number of access methods are used to attempt to read the first 512 bytes of the Nand
Flash chip and look for an 8-byte NandType record from the beginning of the block.
A string "VLSI" must be found from the beginning of the block to recognize a proper
NandType record.

The NandType record sets the proper access method for the Flash in question (small or
large page, number of address bytes) and specifies the device size and erasable block
size of the Flash chip (see datasheet).

A valid nand flash identification record also contains a setting for access time in nanosec-
onds. New waitstate setting is calculated from this value and the active internal clock for
each subsequent access.

The remaining 504 bytes of the first block and a specified number of additional sectors
(upto total of 16 sectors, i.e. 8192 bytes) can contain VS1000 boot code, which can
be used to load data to X data RAM, Y data RAM, or instruction RAM and optionally
execute code to extend or replace firmware functionality on chip.

If the FLASH type is not supported by the ROM firmware, but reading of at least the first
block is successful with one of the ROM read methods, the boot record can replace the
read method to continue boot.

17.5.1 Nand Flash access methodology

VS1000 writes to the nand flash in blocks of 512 (data) + 16 (spare) bytes. single-level
cell (SLC) large page flashes (block size 2112) are mostly ok with this, but multi-level cell
(MLC) have problems with this so those are not supported by the ROM code. VS1000
ROM contains own wear levelling algorithm and logical-to-physical block mapper that
greatly extends the life of the nand flash chips.

MLC memories and larger than 2 kB page sizes can be supported with custom boot
code, as long as at least the first 512-byte sector can be successfully read using the
ROM boot method. The application in question determines how feasible this is.

Rev. 0.20 2011-10-04 Page 75(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

18 Timers v1.0 2002-04-23

18.1 General

There are two 32-bit timers that can be initialized and enabled independently of each
other. If enabled, a timer initializes to its start value, written by a processor, and starts
decrementing every clock cycle. When the value goes past zero, an interrupt is sent, and
the timer initializes to the value in its start value register, and continues downcounting.
A timer stays in that loop as long as it is enabled.

A timer has a 32-bit timer register for down counting and a 32-bit TIMER1_LH register
for holding the timer start value written by the processor. Timers have also a 2-bit
TIMER_ENA register. Each timer is enabled (1) or disabled (0) by a corresponding
bit of the enable register.

18.2 Registers

Timer registers, prefix TIMER_
Reg Type Reset Abbrev Description

0xC030 r/w 0 CONFIG[7:0] Timer configuration
0xC031 r/w 0 ENABLE[1:0] Timer enable
0xC034 r/w 0 T0L Timer0 startvalue - LSBs
0xC035 r/w 0 T0H Timer0 startvalue - MSBs
0xC036 r/w 0 T0CNTL Timer0 counter - LSBs
0xC037 r/w 0 T0CNTH Timer0 counter - MSBs
0xC038 r/w 0 T1L Timer1 startvalue - LSBs
0xC039 r/w 0 T1H Timer1 startvalue - MSBs
0xC03A r/w 0 T1CNTL Timer1 counter - LSBs
0xC03B r/w 0 T1CNTH Timer1 counter - MSBs

18.2.1 Configuration TIMER_CONFIG

TIMER_CONFIG Bits
Name Bits Description
TIMER_CF_CLKDIV 7:0 Master clock divider

TIMER_CF_CLKDIV is the master clock divider for all timer clocks. The generated
internal clock frequency fi = fm

c+1 , where fm is the master clock frequency and c is
TIMER_CF_CLKDIV. Example: With a 12 MHz master clock, TIMER_CF_DIV=3 di-
vides the master clock by 4, and the output/sampling clock would thus be fi =

12MHz
3+1 =

3MHz.

Rev. 0.20 2011-10-04 Page 76(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

18.2.2 Configuration TIMER_ENABLE

TIMER_ENABLE Bits
Name Bits Description
TIMER_EN_T1 1 Enable timer 1
TIMER_EN_T0 0 Enable timer 0

18.2.3 Timer X Startvalue TIMER_Tx[L/H]

The 32-bit start value TIMER_Tx[L/H] sets the initial counter value when the timer is
reset. The timer interrupt frequency ft =

fi
c+1 where fi is the master clock obtained with

the clock divider (see Chapter 18.2.1 and c is TIMER_Tx[L/H].

Example: With a 12 MHz master clock and with TIMER_CF_CLKDIV=3, the master
clock fi = 3MHz. If TIMER_TH=0, TIMER_TL=99, then the timer interrupt frequency
ft =

3MHz
99+1 = 30kHz.

18.2.4 Timer X Counter TIMER_TxCNT[L/H]

TIMER_TxCNT[L/H] contains the current counter values. By reading this register pair,
the user may get knowledge of how long it will take before the next timer interrupt.
Also, by writing to this register, a one-shot different length timer interrupt delay may be
realized.

18.3 Interrupts

Each timer has its own interrupt, which is asserted when the timer counter underflows.

18.4 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for timers:

Timer 0 is used as the System Timer, updating a software real time counter that is used
for all timing of the ROM routines. Timer 1 is free for user applications.

The ROM software keeps the master clock divider at a value that results in a 6 MHz
counting frequency (12 MHz crystal). The frequency is stable except in 2 cases: 1)
When VS1000 changes its internal clock speed (PLL multiplier), the frequency can be
more or less than 6 MHz for a short time. 2) During USB suspend or low power pause
the frequency is less than 6MHz.

During USB activity the internal clock speed must be stable at 48 MHz so the timer
frequency is also stable at 6 MHz.

Rev. 0.20 2011-10-04 Page 77(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

19 UART v1.11 2007-03-16

19.1 General

RS232 UART implements a serial interface using rs232 standard.

Start
bit D0 D1 D2 D3 D4 D5 D6 D7

Stop
bit

Figure 20: RS232 Serial Interface Protocol

When the line is idling, it stays in logic high state. When a byte is transmitted, the
transmission begins with a start bit (logic zero) and continues with data bits (LSB first)
and ends up with a stop bit (logic high). 10 bits are sent for each 8-bit byte frame.

19.2 Registers

UART registers, prefix UARTx_
Reg Type Reset Abbrev Description

0xC028 r 0 STATUS[3:0] Status
0xC029 r/w 0 DATA[7:0] Data
0xC02A r/w 0 DATAH[15:8] Data High
0xC02B r/w 0 DIV Divider

19.2.1 Status UARTx_STATUS

A read from the status register returns the transmitter and receiver states.

UARTx_STATUS Bits
Name Bits Description
UART_ST_FRAMERR 4 Framing Error (stop bit was 0)
UART_ST_RXORUN 3 Receiver overrun
UART_ST_RXFULL 2 Receiver data register full
UART_ST_TXFULL 1 Transmitter data register full
UART_ST_TXRUNNING 0 Transmitter running

UART_ST_FRAMERR is set at the time of stop bit reception. When reception is func-
tioning normally, stop bit is always “1”. If, however, “0” is detected at the line input at
the stop bit time, UART_ST_FRAMERR is set to “1”. This can be used to detect “break”
condition in some protocols.

UART_ST_RXORUN is set if a received byte overwrites unread data when it is trans-
ferred from the receiver shift register to the data register, otherwise it is cleared.

UART_ST_RXFULL is set if there is unread data in the data register.

Rev. 0.20 2011-10-04 Page 78(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

UART_ST_TXFULL is set if a write to the data register is not allowed (data register full).

UART_ST_TXRUNNING is set if the transmitter shift register is in operation.

19.2.2 Data UARTx_DATA

A read from UARTx_DATA returns the received byte in bits 7:0, bits 15:8 are returned
as ’0’. If there is no more data to be read, the receiver data register full indicator will be
cleared.

A receive interrupt will be generated when a byte is moved from the receiver shift register
to the receiver data register.

A write to UARTx_DATA sets a byte for transmission. The data is taken from bits 7:0,
other bits in the written value are ignored. If the transmitter is idle, the byte is immediately
moved to the transmitter shift register, a transmit interrupt request is generated, and
transmission is started. If the transmitter is busy, the UART_ST_TXFULL will be set and
the byte remains in the transmitter data register until the previous byte has been sent
and transmission can proceed.

19.2.3 Data High UARTx_DATAH

The same as UARTx_DATA, except that bits 15:8 are used.

19.2.4 Divider UARTx_DIV

UARTx_DIV Bits
Name Bits Description
UART_DIV_D1 15:8 Divider 1 (0..255)
UART_DIV_D2 7:0 Divider 2 (6..255)

The divider is set to 0x0000 in reset. The ROM boot code must initialize it correctly
depending on the master clock frequency to get the correct bit speed. The second
divider (D2) must be from 6 to 255.

The communication speed f = fm
(D1+1)×(D2)

, where fm is the master clock frequency,
and f is the TX/RX speed in bps.

19.3 Interrupts and Operation

Transmitter operates as follows: After an 8-bit word is written to the transmit data register
it will be transmitted instantly if the transmitter is not busy transmitting the previous byte.
When the transmission begins a TX_INTR interrupt will be sent. Status bit [1] informs

Rev. 0.20 2011-10-04 Page 79(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

the transmitter data register empty (or full state) and bit [0] informs the transmitter (shift
register) empty state. A new word must not be written to transmitter data register if it
is not empty (bit [1] = ’0’). The transmitter data register will be empty as soon as it is
shifted to transmitter and the transmission is begun. It is safe to write a new word to
transmitter data register every time a transmit interrupt is generated.

Receiver operates as follows: It samples the RX signal line and if it detects a high to
low transition, a start bit is found. After this it samples each 8 bit at the middle of the
bit time (using a constant timer), and fills the receiver (shift register) LSB first. Finally if
a stop bit (logic high) is detected the data in the receiver is moved to the reveive data
register and the RX_INTR interrupt is sent and a status bit[2] (receive data register full)
is set, and status bit[2] old state is copied to bit[3] (receive data overrun). After that the
receiver returns to idle state to wait for a new start bit. Status bit[2] is zeroed when the
receiver data register is read.

RS232 communication speed is set using two clock dividers. The base clock is the
processor master clock. Bits 15-8 in these registers are for first divider and bits 7-0 for
second divider. RX sample frequency is the clock frequency that is input for the second
divider.

19.4 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for the UART:

UART receive is by default tied to the ROM monitor. If byte 0xef is received, the firmware
jumps to the monitor. This enables debugging via a serial cable using vsemu command
line tool and IDE environment available from VLSI.

The default communication speed of the UART is 115200 bit/s with a 12 MHz crystal.

VS1000 ROM automatically changes the UART divider according to the uartByteSpeed

variable whenever the PLL setting is changed.

Rev. 0.20 2011-10-04 Page 80(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

20 Universal Serial Bus Controller v1.0 2006-01-05

20.1 General

The Universal Serial Bus Controller handles USB 1.1 data traffic at a 12 Mbit/s signalling
speed.

The USB device can handle traffic for the control endpoint (0) plus three input and output
endpoints. Bulk, Isochronous and Interrupt transfer modes are supported at Full Speed
(12 Mbit/s). The maximum packet size is 1023 bytes.

4 kilobytes of X data memory are used as the USB packet buffer: 2 KiB for incoming
packets (X:0x2C00-0x2FFF) and 2 KiB for outgoing packets (X:0x3000-0x33FF). The
input buffer is a ring buffer with incoming packets consisting of a status word and n data
words. The output buffer has 16 possible start locations for outgoing packets at 128-
byte (64-address) intervals (note that all data addressing in VS1000 is based on 16-bit
words).

20.2 Registers

Universal Serial Bus Controller Registers
Address Register Function
0xC080 USB_CONFIG USB Device Config
0xC081 USB_CONTROL USB Device Control
0xC081 USB_STATUS USB Device Status
0xC082 USB_RDPTR Receive buffer read pointer
0xC083 USB_WRPTR Receive buffer write pointer
0xC088 USB_EP_SEND0 EP0IN Transmittable Packet Info
0xC089 USB_EP_SEND1 EP1IN Transmittable Packet Info
0xC08A USB_EP_SEND2 EP2IN Transmittable Packet Info
0xC08B USB_EP_SEND3 EP3IN Transmittable Packet Info
0xC090 USB_EP_ST0 Flags for endpoints EP0IN and EP0OUT
0xC091 USB_EP_ST1 Flags for endpoints EP1IN and EP1OUT
0xC092 USB_EP_ST2 Flags for endpoints EP2IN and EP2OUT
0xC093 USB_EP_ST3 Flags for endpoints EP3IN and EP3OUT

Rev. 0.20 2011-10-04 Page 81(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

20.2.1 USB_CONFIG - USB Device Config 0xC080

USB_CONFIG bits
Name Bits Description
reset 15 Reset Active
dtogg-host 14 Reset value of host data toggle (set to 0)
dtogg-device 13 Reset value of device data toggle (set to 0)
debug12-11 12:11 Debug bits (set to 0)
dtogg-errctl 10 Data Toggle error control (set to 0)
reserved9 9 Reserved (set to 0)
rstusb 8 Reset receiver (set to 0)
usb-enable 7 Enable USB
usb-address 6:0 Current USB address

20.2.2 USB_CONTROL - USB Device Control 0xC081

USB_CONTROL bits
Name Bits Description
USB_STF_BUS_RESET 15 Interrupt mask for bus reset
USB_STF_SOF 14 Interrupt mask for start-of-frame
USB_STF_RX 13 Interrupt mask for receive data
USB_STF_TX_READY 12 Interrupt mask for transmitter holding register

empty
USB_STF_TX_EMPTY 11 Interrupt mask for transmitter empty (idle)
USB_STF_NAK 10 Interrupt mask for NAK packet sent to host
usb-configured 0 Configured. 0→1 transition loads dtogg-host

and dtogg-device

Software should write “1” to usb-configured bit when completing the USB Chapter 9
Set_Configuration request. Setting this bit loads all device and host side data toggle reg-
isters with the defaults set at the dtogg-host and dtogg-device bits at the USB_CONFIG
register. The dtogg-host and dtogg-device bits should normally always be “0”.

VS1000A ROM does not use the USB interrupt.

VS1000B ROM uses the USB interrupt for SOF detection to detect USB suspend con-
dition.

Rev. 0.20 2011-10-04 Page 82(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

20.2.3 USB_STATUS - USB Device Status 0xC082

USB_STATUS bits
Name Bits Description
USB_STF_BUS_RESET 15 Bus reset occurred
USB_STF_SOF 14 Start-of-frame
USB_STF_RX 13 Receive data
USB_STF_TX_READY 12 Transmitter holding register empty
USB_STF_TX_EMPTY 11 Transmitter empty (idle)
USB_STF_NAK 10 NAK packet sent to host
USB_STF_SETUP 7 Setup packet received
USB_STM_LAST_EP 3:0 Endpoint number of last rx/tx transaction

The USB_STM_LAST_EP can be used mainly for debugging purposes, final software
should be able to work without it.

20.2.4 USB_RDPTR - Receive buffer read pointer 0xC083

USB_RDPTR bits
Name Bits Description
USB_RDPTR 15:0 Packet Read Pointer

This buffer marks the index position of the last word that the DSP has successfully read
from the receive packet buffer. DSP should control this register and update the position
after each packet it has read from the receive buffer. After reset this register is zero.

20.2.5 USB_WRPTR - Receive buffer write pointer 0xC084

USB_WRPTR bits
Name Bits Description
USB_WRPTR 15:0 Packet Write Pointer

After a packet has been received from the PC, the USB hardware updates this pointer to
the receive buffer memory. USB_WRPTR is index location of the next free word location
in the USB receive buffer. When USB_RDPTR equals to USB_WRPTR, the packet input
buffer is empty. After reset this register is zero.

Rev. 0.20 2011-10-04 Page 83(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

20.2.6 USB_EP_SENDn - EPnIN Transmittable Packet Info 0xC088..0xC08B

USB_EP_SENDn bits
Name Bits Description
txpkt-ready 15 Packet ready for transmission
start-addr 13:10 Starting location of packet
length 9:0 Length of packet in bytes (0..1023)

When the DSP has written a packet into the transmit buffer, that is ready to be trans-
mitted to the PC by an endpoint, the DSP signals the USB firmware by setting the
value of the USB_EP_SENDn register of the endpoint that should transmit the packet
(USB_EP_SEND0 for endpoint 0, USB_EP_SEND1 for endpoint 1 etc).

The txpkt-ready bit should be set to “1” by the DSP. When the packet information (not
contents) is loaded to the internal Transmit Holding Register of the endpoint, txpkt-ready
bit is set to “0” by the hardware. Note that this does not indicate that the packet is sent
to the PC, merely that it is ready for sending when the PC next requests “IN” data for
that endpoint. Scanning the txpkt-ready bit merely allows software to prepare the next
packet to be sent even before the previous packet has been sent to the PC.

The start-addr field is index to a 64-word boundary in the transmit buffer memory area.
The actual memory location that start-addr corresponds to is calculated by:

packet start address = USB_SEND_MEM + (start-addr × 64)

which in VS1000 corresponds to address X:0x3000 for start-addr=0, X:0x3040 for start-
addr=1 etc.

20.2.7 USB_EP_STn - Endpoint flags EPnIN and EP0nUT 0xC090..0xC093

USB_EP_STn bits
Name Bits Description

EPnOUT (PC→ Device) endpoint (0 .. 3) flags
out-type 15:14 00=bulk 01=interrupt 11=isochronous
out-enable 14:13 1=enabled 0=disabled
out-forcestall 12 Force STALL
out-stall-sent 11 At least 1 STALL sent
reserved 10:8 Set to 0

EPnIN (Device→ PC) endpoint (0 .. 3) flags
in-type 7:6 00=bulk 01=interrupt 11=isochronous
in-enable 5 1=enabled 0=disabled
in-forcestall 4 Force STALL
in-stall-sent 3 At least 1 STALL sent to PC
in-nak-sent 2 At least 1 NAK sent to PC
in-xmit-empty 1 Transmitter empty
reserved 0 Set to 0

Rev. 0.20 2011-10-04 Page 84(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

20.3 Receiving Packets from PC (EP0OUT, EP1OUT, ... , EP3OUT)

The USB hardware handles all necessary token (ACK, NAK, IN, OUT, SETUP, STALL)
sending and receiving. The software sees only the data packet contents plus some state
information about the sent tokens.

20.3.1 Reception

All received packets for all endpoints arrive to the same 2 KiB (1 KiW) ring buffer mem-
ory in X address space. This maximizes memory usage efficiency, but leads to one
important side-effect: The USB specification dictates that an incoming SETUP transfer
to the control endpoint must be the first packet to be processed at all times.

For instance the PC might issue a SETUP control request to the control endpoint before
the software has had time to process a data packet that has previously arrived to a data
endpoint. In such a case, the software should ignore the pending data and handle the
SETUP packet instead.

For achieving this functionality, the hardware can test the USB_STF_SETUP bit at the
USB_CONTROL register. If it is “1”, all packets until the last received SETUP packet
need to be truncated and the last SETUP packet processed. A reasonably fast USB
implementation should be able to achieve this without problems, but delays of several
milliseconds (such as for sending debug messages etc) can cause problems with this
clause, which result in “random hang-ups” of the USB communication with the PC. If care
is taken to process the packets in the correct order, most (if not all) USB transactions
can perfectly well cope with delays of several seconds. In practice the PC waits patiently
for several seconds if the data you send is “correct,” e.g. what the PC expects, but very
quickly responds to any unexpected data by issuing a bus reset.

Software can detect a received packet by scanning the USB_RDPTR and USB_WRPTR
registers. When their values differ, there is a packet ready for processing in the input
buffer.

USB_RDPTR points now to a header word. The actual packet data words are in the
buffer memory after the header word. The packet header word has the following struc-
ture:

Packet header word bits
Name Bits Description
crc-err 15 1=CRC error detected
setup 14 1=SETUP packet, 0=DATA packet
endpoint 13:10 Endpoint to which the packet is addressed to
pktlength 9:0 Length of packet in bytes

This is immediately followed by (pktlength+1)/2 data words, MSB first.

A quick routine can access the contents directly in the buffer memory, or choose to copy
the packet contents to another location in memory. In either case, the software should

Rev. 0.20 2011-10-04 Page 85(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

update the value of USB_RDPTR, indicating that the packet is no longer needed.

The USB hardware automatically NAK’s incoming data packets if there is less than
40 words space left in the buffer memory. In this situation the hardware still accepts
SETUP packets. If receiving a packet would cause the USB_WRPTR to be overrun by
USB_RDPTR, e.g. there is no more room for even the SETUP packet, even the SETUP
packets are NAK’ed.

20.3.2 Sending Packet to PC (EP0IN, EP1IN, ... , EP3IN)

To send a USB packet, software must prepare the packet to the transmit buffer area,
starting at a 64-word boundary. The data is to be stored in Big Endian format, e.g.
the first byte to be sent should be in the most significant 8 bits of the first word. Next,
software should load the USB_EP_SEND register of the chosen endpoint with the start
location selector and size of the transmittable packet (in bytes). The most significant bit
of the register (txpkt-ready) should be set to “1”.

When the internal Transmit Holding Register for the endpoint is ready, the value of the
USB_EP_SEND register is loaded to the internal Transmit Holding Register and txpkt-
ready bit of the USB_EP_SEND register is set to “0”. This indicates that the packet is
queued for transmission and the USB_EP_SEND register can be loaded with informa-
tion about the next sendable packet (if any).

To get information about when the packet has actually been transmitted to the PC, the
Transmitter Idle (in-xmit-empty) bit of the endpoint’s USB_EP_ST register can be polled
(or the corresponding interrupt used).

20.3.3 How to know that the PC is expecting data

During software development, when protocol matters can be still somewhat unclear, it
is sometimes difficult to know when the PC actually is expecting you to send a packet
to some endpoint. In the USB hardware there is a feature to assist in finding out this
information: the endpoint’s in-nak-sent bit of the endpoint’s USB_EP_ST register. Using
this bit can avoid a common pitfall: loading a transmitter register with packet that is never
actually requested by a PC. That would cause the packet information to remain in the
transmitter register (until next USB reset), which again would cause the packet to be
sent as an answer to the next request of the PC, causing unexpected results.

20.3.4 Stalling

STALL is a special condition on the USB bus, which more or less states, that “I can’t
handle this data packet now nor in the future”. For example when the software needs to
STALL reception of data from PC, software should set out-forcestall to “1” and out-stall-
sent to “0”. The hardware will then wait for the next OUT token from the PC and respond

Rev. 0.20 2011-10-04 Page 86(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

with STALL token. Bit out-stall-sent indicates that a STALL token has been successfully
transmitted to the PC.

A more common case of stalling regards the handling of control requests (SETUP mes-
sages sent to the control endpoint). In case of receiving an unsupported request, the
device should respond wit a stall. Since the control endpoint must remain open for the
next request for the PC and stalling a control request should be a rare event, a possible
way to handle this is:

• In the USB_EP_ST0 register, set out-forcestall to “1” and out-stall-sent to “0”

• Busy loop until out-stall-sent is “1” OR a USB reset occurs OR a time-out occurs

• Set out-forcestall to “0”

In a normal case this would send a single STALL to the control endpoint and leave the
endpoint open for the next request.

If an endpoint’s (other than 0) Halt feature is set (USB Chapter 9 standard request), the
endpoint should be stalled (forcestall set to “1”).

Mass storage class device can use STALL to end a bulk transfer [Axelson, J.: USB Mass
Storage].

20.4 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for the USB:

• Endpoint 0: USB Standard Requests (USB Chapter 9 functionality)

• Endpoint 1 OUT: USB Speakers

• Endpoint 2 OUT: Mass Storage Class (PC→ VS1000)

• Endpoint 3 IN: Mass Storage Class (VS1000→ PC)

Depending on the state of GPIO0:6 during boot-up, the descriptors sent to the PC select
either Audio or Mass Storage functionality.

Rev. 0.20 2011-10-04 Page 87(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

20.4.1 Augmenting the ROM functionality

Changing only the descriptors is easy since the descriptors are accessed via a descrip-
tor pointer table in RAM that consists of 6 pointers to X memory:

USB.descriptorTable entries
Index Function
[0] String Descriptor 0 (Language Index)
[1] String Descriptor 1 (Manufacturer: “VLSI”)
[2] String Descriptor 2 (Model: “VS1000”)
[3] String Descriptor 3 (Serial Number: “100010001003”)
[4] Device Descriptor
[5] Configuration Descriptors

Because the configuration descriptor is actually a set of descriptors, its size is stored
in USB.configurationDescriptorSize. For other descriptors, the size is taken from the
descriptor itself.

Note: A good storage driver should overwrite the serial number string descriptor with a
unique one. For a NAND flash, this could be done easily in the first sector’s optional boot
code. Since the USB.descriptorTable default values are loaded at each USB init (attacj),
the most straightforward way to do this would be to hook the DecodeSetupPacket()
function to load USB.descriptorTable[3] and call the RealDecodeSetupPacket() in ROM.

USB-related software hooks are:

• void USBHandler() - USB task handler

• void DecodeSetupPacket() - handles SETUP packets to EP0OUT

• void MSCPacketFromPC() - handles mass storage class command packets

• void ScsiTaskHandler() - handles (pending) disk operations

Hooking means replacing a ROM function with a RAM function by setting the hook vector
address. This is normally used to augment or replace functionality of the ROM code. In
most cases, the original ROM function can be called after handling some special case
in the RAM function. The ROM functions are called by using a function name with prefix
“Real”.

Rev. 0.20 2011-10-04 Page 88(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

20.4.2 Hooking: Example

This example augments the USBHandler to blink LED 2 if there is an uncomplete disk
write operation.

void USBHandler(void);

void RealUSBHandler(void);

void MyUSBHandler(void) {

if (SCSI.mapperNextFlushed == -1) {

USEX(GPIO1_ODATA) &= ~LED2;

} else {

USEX(GPIO1_ODATA) ^= LED2;

}

RealUSBHandler(); /* Call original ROM function */

}

The hook can be loaded by calling

SetHookFunction((u_int16)USBHandler, MyUSBHandler);

or by setting the hook vector directly in the boot record (via a Set X Memory directive).

Note that since VS1000B the blinking LED is implemented in the ROM firmware.

20.4.3 Used memory areas

The USB transmitting routines in VS1000 ROM are limited to transmitting packets of
max. 64 bytes. Only the first 512 bytes (addresses X:0x3000-0x30FF) of transmit packet
memory is used, leaving 1536 bytes (768 words) of X memory (addresses X:3100-
0x33ff) free for other uses. However, in future revisions of the chip (VS1000E etc..) this
memory may not be available.

Rev. 0.20 2011-10-04 Page 89(90)

PKP

VS1000 PROGRAMMER’S GUIDE VSMPG

21 Watchdog v1.0 2002-08-26

21.1 General

The watchdog consist of a watchdog counter and some logic. After reset, the watchdog
is inactive. The counter reload value can be set by writing to WDOG_CONFIG. The
watchdog is activated by writing 0x4ea9 to register WDOG_RESET. Every time this is
done, the watchdog counter is reset. Every 65536’th clock cycle the counter is decre-
mented by one. If the counter underflows, it will activate vsdsp’s internal reset sequence.

Thus, after the first 0x4ea9 write to WDOG_RESET, subsequent writes to the same
register with the same value must be made no less than every 65536×WDOG_CONFIG
clock cycles.

Once started, the watchdog cannot be turned off. Also, a write to WDOG_CONFIG
doesn’t change the counter reload value.

After watchdog has been activated, any read/write operation from/to WDOG_CONFIG
or WDOG_DUMMY will invalidate the next write operation to WDOG_RESET. This will
prevent runaway loops from resetting the counter, even if they do happen to write the
correct number. Writing a wrong value to WDOG_RESET will also invalidate the next
write to WDOG_RESET.

Reads from watchdog registers return undefined values.

21.2 Registers

Watchdog, prefix WDOG_
Reg Type Reset Abbrev Description

0xC020 w 0 CONFIG Configuration
0xC021 w 0 RESET Clock configuration
0xC022 w 0 DUMMY[-] Dummy register

21.3 VS1000 ROM code usage

The ROM code in VS1000 has the following usage for the watchdog:

Watchdog is not currently used by the firmware.

Rev. 0.20 2011-10-04 Page 90(90)

	Introduction
	Table of Contents
	Introducing the VS1000
	VS_DSP Basics
	VS1000 RAM Memory Map
	VS1000 Integrated Peripherals
	VS1000 Register Map and Frequently Used Tables
	Software Tools
	vcc
	vslink
	vs3emu
	coff2spiboot
	coff2nandboot
	makenandimage (required for VS1000A only)

	Examples
	Hello, World!
	Compiling
	Linking
	Loading
	Note
	Input and Output

	Making the LEDs blink
	Adjusting the Player User Interface
	Hooking custom storage controller
	ReadDiskSector is for reading only

	Setting your own USB descriptors
	Descriptor data format

	Booting from SPI EEPROM
	Using a VS1000 Developer Board as an eeprommer

	Booting from NAND FLASH
	Nand Flash startup sequence and structure
	Preparing a nand flash image
	Using the VS1000 Demostration/Developer Board as a nand flash writer

	Using an external display
	Peripheral documentation
	VS1000 System Controller
	General
	Registers
	SCI_SYSTEM: System Power and Clock Control
	USB powering
	SCI_STATUS: System Flags
	USB detection

	Conserving Power
	I/O Pin Routing
	VS1000 ROM code usage

	PLL controller v1.0 2006-05-10
	General
	DAC Interpolator control
	Registers
	Interpolator Rate (low part)
	Interpolator Rate (high part) and PLL control

	Overview of VS1000 Clocking
	VS1000 ROM code usage

	Interruptable General Purpose IO (VS1000) v1.0 2002-04-23
	General
	Registers
	Data Direction GPIOx_DDR
	Output Data GPIOx_ODATA
	Input Data GPIOx_IDATA
	Falling Edge Interrupt Enable GPIOx_INT_FALL
	Rising Edge Interrupt Enable GPIOx_INT_RISE
	Interrupt Pending Source GPIOx_INT_PEND
	Data Set Mask GPIOx_SET_MASK
	Data Clear Mask GPIOx_CLEAR_MASK
	Bit Engine Config GPIOx_BIT_CONF
	Bit Engine 0 Read/Write GPIOx_BIT_ENG0
	Bit Engine 1 Read/Write GPIOx_BIT_ENG1

	VS1000 GPIO Pin Mappings
	VS1000 ROM code usage

	Interrupt Controller v1.0 2002-04-23
	Registers
	Enable INT_ENABLE[L/H][0/1]
	Origin INT_ORIGIN[0/1]
	Vector INT_VECTOR
	Enable Counter INT_ENCOUNT
	Global Disable INT_GLOB_DIS
	Global Enable INT_GLOB_EN

	VS1000 Interrupt Sources
	VS1000 ROM code usage

	SPI v1.3 2005-06-09
	General
	The SPI Block
	Master Mode
	Slave Mode

	Registers
	Main Configuration SPIx_CONFIG
	Clock Configuration SPIx_CLKCONFIG
	Status SPIx_STATUS
	Data SPIx_DATA
	SSI Synchronization SPIx_FSYNC

	Interrupts
	Changes from 1.2
	VS1000 ROM code usage
	Effect of Clock Multiplier

	Byte-wide bus/Nand Flash controller v1.0 2006-05-10
	General
	Block Diagram
	Registers
	Control register
	Line and Column parity registers
	Data register
	Interface control towards physical pins
	Interface control towards DSP
	ECC counter register

	Timing
	VS1000 ROM code usage
	Nand Flash access methodology

	Timers v1.0 2002-04-23
	General
	Registers
	Configuration TIMER_CONFIG
	Configuration TIMER_ENABLE
	Timer X Startvalue TIMER_Tx[L/H]
	Timer X Counter TIMER_TxCNT[L/H]

	Interrupts
	VS1000 ROM code usage

	UART v1.11 2007-03-16
	General
	Registers
	Status UARTx_STATUS
	Data UARTx_DATA
	Data High UARTx_DATAH
	Divider UARTx_DIV

	Interrupts and Operation
	VS1000 ROM code usage

	Universal Serial Bus Controller v1.0 2006-01-05
	General
	Registers
	USB_CONFIG - USB Device Config 0xC080
	USB_CONTROL - USB Device Control 0xC081
	USB_STATUS - USB Device Status 0xC082
	USB_RDPTR - Receive buffer read pointer 0xC083
	USB_WRPTR - Receive buffer write pointer 0xC084
	USB_EP_SENDn - EPnIN Transmittable Packet Info 0xC088..0xC08B
	USB_EP_STn - Endpoint flags EPnIN and EP0nUT 0xC090..0xC093

	Receiving Packets from PC (EP0OUT, EP1OUT, ... , EP3OUT)
	Reception
	Sending Packet to PC (EP0IN, EP1IN, ... , EP3IN)
	How to know that the PC is expecting data
	Stalling

	VS1000 ROM code usage
	Augmenting the ROM functionality
	Hooking: Example
	Used memory areas

	Watchdog v1.0 2002-08-26
	General
	Registers
	VS1000 ROM code usage

