
VLSI
Solution y

Confidential Document

Flash Mapper 1.0

MegaLib

Project Code:
Project Name: MegaLib

Revision History

Rev. Date Author Description
1.00 2008-11-25 HH Initial version.

Rev. 1.00 2008-11-25 Page 1(14)

VLSI
Solution y

HH

Flash Mapper 1.0 MegaLib

Table of Contents

1 Introduction 4

2 Flash Mapper Basics 5

2.1 Mapper Logical Structure . 6

2.2 A Mapper Node . 7

2.3 Traversing the Mapper Tree . 8

2.4 Wear-Levelling Cleaning . 9

2.5 Mapper Inconsistencies . 10

3 Mapper C Structures 11

3.1 Physical Structure . 11

3.2 Generic Mapper Structure . 12

3.3 Flash Mapper Structure . 13

4 Contact Information 14

Rev. 1.00 2008-11-25 Page 2(14)

VLSI
Solution y

HH

Flash Mapper 1.0 MegaLib

List of Figures

2.1 Device Chain from User Application to Flash Memory 5

2.2 An Example Mapper B Tree . 6

2.3 Two Kinds of a Mapper Node . 7

2.4 Splitting a 32-bit Disk Block Number . 8

2.5 Wear-Levelling Cleaning . 9

Rev. 1.00 2008-11-25 Page 3(14)

VLSI
Solution y

HH

Flash Mapper 1.0 MegaLib

1. INTRODUCTION

1 Introduction

The Flash Mapper is a mapper function between a 512-byte block based logical device
and a physical memory driver. Depending on the memory type the mapper may be
anything between a null pass-through function to a complex wear-levelling function.

This document presents how VLSI Solution’s version 1.0 of the Flash Mapper works.
This mapper is available in the ROM of the VS1000a through VS1000d chips.

The basic operations and logical structures of the mapper are presented in Chapter 2.

Chapter 3 presents mapper C structures.

Finally, VLSI Solution’s contact information is provided in Chapter 4.

Rev. 1.00 2008-11-25 Page 4(14)

VLSI
Solution y

HH

Flash Mapper 1.0 MegaLib

2. FLASH MAPPER BASICS

2 Flash Mapper Basics

User
application

File
system Mapper Physical memory

Flash

Software

Figure 2.1: Device Chain from User Application to Flash Memory

The Flash Mapper is a software layer between the File system and Physical layers as
shown in Figure 2.1. It hides the physical Flash Memory from the File System and
performs automatic wear-levelling.

To make wear-levelling more efficient, the logical address as seen from the file system
has been completely removed from the physical address that is used when writing a data
block to the actual Flash Memory. Approximately 10 % of the available space of the Flash
Memory is reserved for wear-levelling. If a read-only file system is to be implemented,
less than 1 % of the file system is needed for bookkeeping, though.

Rev. 1.00 2008-11-25 Page 5(14)

VLSI
Solution y

HH

Flash Mapper 1.0 MegaLib

2. FLASH MAPPER BASICS

2.1 Mapper Logical Structure

Data’ (5)

Branch3’

Branch4’

Root (1)
Supersede

Root’ (1)

Branch2’

Figure 2.2: An Example Mapper B Tree

The Mapper has been implemented as a 5-level B Tree where each of the four uppermost
node levels consist of 0. . . 128 links to lower nodes. The lowest level is the actual data. All
tree elements are 512 bytes. In addition to this, the 16-byte spare area of an underlying
flash memory is used for bookkeeping functions.

Figure 2.2 shows the logical structure of an example mapper tree. It begins with a root
node. To find a certain logical disk block, the tree is traversed to the node that contains
the disk block data. The Root Node may be superseded in which case the superseding
Node is used instead. In the example figure Root has been superseded with Root’.

Rev. 1.00 2008-11-25 Page 6(14)

VLSI
Solution y

HH

Flash Mapper 1.0 MegaLib

2. FLASH MAPPER BASICS

2.2 A Mapper Node

Logical 23:16

Locical 7:0
Logical 15:8

Logical 31:24

New Branch 15:8

New Branch 31:24

unused
unused

reserved

ECC2

ECC0

Type=1...4

ECC1

Bad Block=0

New Branch 7:0

New Branch 23:16

Logical 23:16

Locical 7:0
Logical 15:8

Logical 31:24

New Branch 15:8

New Branch 31:24

unused
unused

reserved

ECC2

ECC0

Data 0
Data 1

Data 510
Data 511

ECC1

Data 509
Data 508

Data 2
Data 3

Bad Block=0

New Branch 7:0

New Branch 23:16

Link0 7:0
Link0 15:8

Link0 31:24
Link0 23:16

Link127 15:8
Link127 7:0

Link127 31:24
Link127 23:16

Node, level / type = 1,2,3,4 Data block, level / type = 5

Type=5
D

at
a

ar
ea

Sp
ar

e
ar

ea

Figure 2.3: Two Kinds of a Mapper Node

The internal structure of a Mapper Node or data block is presented in Figure 2.3.

Link is a link to a next-level node.

Data is the data of a data block.

ECC0. . . 2 are 24 error correction bits.

Type is the type, or rather the level of the branch. It is 1 for a Root Node, 2. . . 4 for a
Branch Node, 5 for a Data Node and 0xFF for an unused node. 0 is an error condition.

BadBlock should always be 0xFF. Anything else is an error condition.

If the node is a Root Node (Type = 1), Logical contains the last physical page that has
been written to. The mapper uses this information to be able to continue wear-levelling
where it was left off the last time. If the node is a Data Node (Type = 5), Logical is the
logical block number. Contents of this field doesn’t matter for other Node Types.

If New Branch is 0xFFFFFFFFU, then this node is a current node. If it is anything else,
it is the physical address for the supersede node. However, the physical address should
only be used for the Root Node.

Rev. 1.00 2008-11-25 Page 7(14)

VLSI
Solution y

HH

Flash Mapper 1.0 MegaLib

2. FLASH MAPPER BASICS

2.3 Traversing the Mapper Tree

Let’s assume we want to read a disk block, say logical disk block number 0x01234567.
The validity of the address needs to be checked: it has to fit into 28 bits. The mapper
splits the address needs in 7-bit chunks, as shown in Figure 2.4. These chunks (0x09,
0x0D, 0x0A and 0x67) will be later used as node indices.

0
1

68
2

1
3 2

7 1
2 2

4
1

3 7 0

0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 110010 0010100000

0x0A 0x670x0D0x09

Figure 2.4: Splitting a 32-bit Disk Block Number

To traverse a Mapper Tree, the Root Node must first be found. To find it the following
things need to be known:

• The Flash Mapper always skips the first Physical Erase Block. This area has been
left for user applications that write directly to the memory without going through
the file system.

• A copy of the Root Node is written to each of the first 10 Physical Erase Blocks.
This will make it sure that a Root Node can be found even if wear-levelling has
erased some Erase Blocks at the beginning of memory.

• When a Root Node has been found, it must be checked that the New Branch field
is 0xFFFFFFFFU. If it is not, the field contains the physical address of a newer
Root Node. If this is the case, the new Root Node is read and the New Branch
field of the new Node is chacked until the latest Root Node has been found.

When the Root Node has been located, the B Tree is traversed. The 7 MSb’s of the
28-bit Logical Block Number are used (in our example 0x09) to read the 32-bit LinkN
from the data area (byte offset 4× n through 4× n + 3). In the example, Link9 is read
at bytes 0x09*4. . . 0x09*4+3 = 36. . . 39 and interpreted as shown in Figure 2.3. If the
number reads 0xFFFFFFFFU, the Logical block has never been written to and thus
doesn’t physically exist. If the block is to be written to, it is created. If it is read from,
the current Flash Mapper returns a block with all-zeros. If LinkN isn’t 0xFFFFFFFFU,
that physical page is read as the next-level Node.

The Branch Nodes are followed similarly to how the Root Node was, except that the
mapper should never run to a superseded Node (example: Node number 0x0D is read
from Branch 2, Node number 0x0A from Branch 3 and Node number 0x67 from Branch
4). This way the Mapper will end up with the physical page address for the actual data.
The data is read from the physical page and returned to the caller.

Rev. 1.00 2008-11-25 Page 8(14)

VLSI
Solution y

HH

Flash Mapper 1.0 MegaLib

2. FLASH MAPPER BASICS

2.4 Wear-Levelling Cleaning

Data

Empty FLASH

Superseded data

Before cleaning

After cleaning

Figure 2.5: Wear-Levelling Cleaning

Regardless of what logical disk block addresses the file system writes into, the Mapper
uses the Flash Memory in a cyclic manner. Wear-levelling is performed whenever the
cycle has gone through the whole memory so that there would be a danger of running
out of space.

Wear-Level Cleaning copies Nodes and Data Blocks from the erasable area, removes
unused ones, and writes the ones in use to the current write area. This is continued until
there exists enough of free space for the Mapper to operate. Depending on the fullness of
the disk and how files are located on it, an automatic clean operation can take anything
from a few milliseconds to several seconds.

If the power of a unit is cut or program execution is stopped in another way while
performing a Wear-Level Cleaning operation, the Mapper system may end up in an
inconsistent state.

Rev. 1.00 2008-11-25 Page 9(14)

VLSI
Solution y

HH

Flash Mapper 1.0 MegaLib

2. FLASH MAPPER BASICS

2.5 Mapper Inconsistencies

Running into an non-existing Node (LinkN at any stage is 0xFFFFFFFF) is usually not
an error. It only indicates that this Node hasn’t been written to before. The Flash
Mapper returns a block full of zeros in this case.

The following conditions all indicate a problem in the Mapper system:

• Root Node cannot be found in Physical Erase Blocks 1. . . 10.

• Root Node New Branch points to a Node with different Type.

• Link points to a Node that doesn’t have a Type one larger than the current Node.

• A Data Block doesn’t have the correct Logical address (should be the same that
was being looked for).

• When traversing a tree, you should never run into a superseded Node at any Node
level.

• Orphan Nodes or Data Blocks exist. An Orphan Node or Data Block is a data
page that doesn’t have a New Branch (New Branch = 0xFFFFFFFFU) but no
other valid Node points to it.

Rev. 1.00 2008-11-25 Page 10(14)

VLSI
Solution y

HH

Flash Mapper 1.0 MegaLib

3. MAPPER C STRUCTURES

3 Mapper C Structures

This Chapter presents the Mapper C structures.

3.1 Physical Structure

Physical is the lowest layer that actually converses with a hardware device. Read and
write operations are based on pages. An erase block may contain one or more pages.
The erase block size should be a power of two.

struct FsPhysical {
/** Version number. 8 MSBs contain version number, 8 LSBs size of

the structure in words. */
u_int16 version;
/** In 16-bit words */
u_int16 pageSize;
/** In pages */
u_int16 eraseBlockSize;
/** The size of the memory unit in erasable blocks */
u_int16 eraseBlocks;
/** Creates a physical layer. param is a device-specific parameter,

usually 0. */
struct FsPhysical *(*Create)(u_int16 param);
/** Delete a physical layer */
s_int16 (*Delete)(struct FsPhysical *p);
/** Read pages. meta is physical-specific data and not necessarily

used. If either data or meta is NULL, that information is not
returned. Setting both pointers to NULL is an error condition. */

s_int16 (*Read)(struct FsPhysical *p, s_int32 firstPage, u_int16 pages,
u_int16 *data, u_int16 *meta);
/** Write pages. meta is physical-specific data and not necessarily

used. If either data or meta is NULL, that information is not
written. Setting both pointers to NULL is an error condition. */

s_int16 (*Write)(struct FsPhysical *p, s_int32 firstPage, u_int16 pages,
u_int16 *data, u_int16 *meta);

/** Erase block. \e firsPage is the page number of the first page in the
block. */

s_int16 (*Erase)(struct FsPhysical *p, s_int32 page);
/** Frees the bus for other devices */
s_int16 (*FreeBus)(struct FsPhysical *p);
/** Re-initializes bus after a fatal error (eg memory card removal) */
s_int16 (*Reinitialize)(struct FsPhysical *p);

};

Rev. 1.00 2008-11-25 Page 11(14)

VLSI
Solution y

HH

Flash Mapper 1.0 MegaLib

3. MAPPER C STRUCTURES

3.2 Generic Mapper Structure

The generic mapper structure is a structure common to all different mappers.

struct FsMapper {
/** Version number. 8 MSBs contain version number, 8 LSBs size of

the structure in words. */
u_int16 version;
/** How many 16-bit words in a block */
u_int16 blockSize;
/** How many usable blocks in the whole system */
u_int32 blocks;
/** How many blocks can be cached by the mapper */
u_int16 cacheBlocks;
/** Create a mapper. */
struct FsMapper *(*Create)(struct FsPhysical *physical, u_int16 cacheSize);
/** Delete a mapper */
s_int16 (*Delete)(struct FsMapper *map);
/** Read blocks */
s_int16 (*Read)(struct FsMapper *map, u_int32 firstBlock, u_int16 blocks,
u_int16 *data);
/** Write blocks */
s_int16 (*Write)(struct FsMapper *map, u_int32 firstBlock, u_int16 blocks,
u_int16 *data);

/** Free blocks (implementation must be able to go fastly through
large free areas. */

s_int16 (*Free)(struct FsMapper *map, u_int32 firstBlock, u_int32 blocks);
/** Flush all data. if \e hard is non-zero, all potential journals are

also flushed. */
s_int16 (*Flush)(struct FsMapper *map, u_int16 hard);
/** Pointer to this Mapper’s Physical layer. */
struct FsPhysical *physical;

};

Rev. 1.00 2008-11-25 Page 12(14)

VLSI
Solution y

HH

Flash Mapper 1.0 MegaLib

3. MAPPER C STRUCTURES

3.3 Flash Mapper Structure

These are the structures needed by the flash mapper.

/** Meta data */
struct FmfMeta {

u_int16 ecc01;
u_int16 ecc2AndType;
u_int16 reservedAndBadBlock;
u_int16 unused;
u_int32 logicalPageNo; /* For root node, this is last used */
s_int32 newBranch; /* Page # for root node, non- -1 for others */

};

#define FS_MAP_NON_FULL 4

/**
A Flash Mapper specific structure that contains required
extensions to the basic Mapper structure.

*/
struct FsMapperFlash {

/** Public structure that is common to all mappers. */
struct FsMapper m;
/** Root node physical address. */
u_int32 root;
/** Logical blocks in erase unit. */
s_int16 blocksPerErase;
/** Last new physical address. */
s_int32 lastUsed;
/** Internal cache. */
struct FmfCache *cache;
/** Total of physical pages. */
s_int32 physPages;
/** Blocks that are not (almost) completely full with FMF_TYPE_DATA */
s_int32 emptyBlock[FS_MAP_NON_FULL];
/** How many pages in a block must be free for the block to be non-full */
s_int16 nonFullLimit;
/** How many blocks have been skipped while cleaning. */
s_int32 skipped;
/** How many blocks have been cleaned */
s_int32 freed;

};

Rev. 1.00 2008-11-25 Page 13(14)

VLSI
Solution y

HH

Flash Mapper 1.0 MegaLib

4. CONTACT INFORMATION

4 Contact Information

VLSI Solution Oy
Entrance G, 2nd floor

Hermiankatu 8
FIN-33720 Tampere

FINLAND

Fax: +358-3-3140-8288
Phone: +358-3-3140-8200

Email: sales@vlsi.fi
URL: http://www.vlsi.fi/

For technical questions or suggestions regarding this application, please contact
support@vlsi.fi.

Rev. 1.00 2008-11-25 Page 14(14)

